F8302D_1目次_ doc
|
|
|
- あきたけ うえや
- 9 years ago
- Views:
Transcription
1 N D F 830D
2
3 N D F 830D.. JI C 4003 JI C JI C 40 ND F 800 ND F 800 ND F 804 ND F 808 ND F a) b) c) d) e) f ) g) h)
4 F 830D i ) j ) a) (V) b) Hz c) d)
5 3 F 830D JI C JI C ND F ND F ND F ND F ND F
6 4 F 830D ND F 800 ND F 808 a) ND F 83 b) 7. ND F JI C ND F 804
7 5 F 830D -.. ND F
8 6 F 830D -.. ND F
9 7 F 830D -.. ND F
10 8 F 830D -3.. ND F
11 9 F 830D -3.. ND F
12 0 F 830D..
13 F 830D 3.
14 F 830D a) R T V V U W U R T W V Z R T R T U W U W V V Y U X W U Y V Z W X U Y V W Z X b) R T V V V U V W R T U W R T R T U V W U V W U W U W U V W U V W U V W U U V V W W R T U V W U V R T U V W W V W U U V W R T R T U V W U V W U V W V V R T R T R T V3 V R T R T R T U3 W3 U3 V3 W3 U W U V W U W U V3 W U V W U V W U V W U3 V W3 U W U3 V3 U V W U3 V3 W3 W3 V V3 R T R T R T U W U V W U V W U3 W3 U V W U3 V3 W3 U V W
15 3 F 830D..... a) b) c) d) s Vr I r I x I n x I M r M s x M I I r x r x V I n r n =r +r M x n =x +x -s s r I I V r x r x I M r M -s s r x M
16 4 F 830D 3.7kW 5.5kW r x s r x. a) R 35 + T r = 35 + t R O t T AEB T = 75 FH T =5 F B B b) V I 0 W 0 I w = I 0 0 W 0 3V I0 I 0 l = I 0 I 0w I 0 I n c) I ' V ' W '
17 5 F 830D Z ' = V ' 3I ' W ' Z ' R' = 3I ' Z ' X ' = Z ' R ' X' x = ) Z R =R' AEB =.3R' FH X = X ' Z = R + X I V I = 3Z I I I w = R Z I I I l = X Z AEB Z =Z ' V I = I ' W V ' V = W ' V ' I w = W 3V = W ' V 3V ' I l = I I w ) I '' V '' W '' V'' W'' Z '' = R'' = 3I '' 3I '' X '' = Z '' R '' R 'R ''X ' X '' 3 R '''X '''
18 6 F 830D 3 R X f 5X''' f R''' X'' f R'' X' f R' f 5 f f R ''' =.6R '' 0.6R ' X ''' = 0.64X '' 0.X ' Z R = R ''' AEB =.3R ''' FH X = 5X ''' = 3.X '' 0.6X Z = R + X I ' I = V 3Z I I I w = R Z I I I l = X Z h = X R '' X ' R '' ' h h Z I w I + h m = 3 m( R ' R'' ) [ R '' m( R' R '' )] '' + m( X '' X ' ) R = R '' AEB =.3 FH X = X Z = R + X. c)
19 7 F 830D ).3 0cm a) 4 O ON' =I 0W O' =I w N' ' N' N=I 0 ' =I N' N U N NU C C CN N=I U T TU= 3I r / V TN N O D D N DF' NG' DF ' ' F NT NG' G C N NT P m P m P T P m Q m P T Q T Q m N Q T NT PW ( ) I = P / 3 V DF' DH=I H H N P P O' P' P ODN DP F Y NP G R P NT Q 4 P T F' ' F G' Y Pm PT G R P0 P' H P Q Q0 Qm QT T N' O D N C U b) ) OP I = A
20 8 F 830D pf OP ' = 00 % OP FY = 00 % F GR = 00 % G = V PQ Nm n n rpm ) 3) P 3 P Q max = V m m W max = V P Q T n T Nm P 0 0 t maxn m) max %= 00 tn m) 0 h c) 5 O ON' =I 0w O' =I w N' ' N' N=I 0 ' =I N' N NN'' N O O' 3 / V max OV V ON VV' =I 0 r V' ON V' V'' V' V'' =I 0 x V'' O VOV'' N NN'' NA NA U N NU C C CN U T TN T = I I ( I I ) w 0w N O D D N NU DF' NG' 0 3r V
21 9 F 830D NU DF ' F' ' F=F' F NT NG' G C N NT P m P m P T NU P m Q m P T Q T Q m N Q T NT PW ( ) I = P / 3 V DF' DH=I H H N P P O' P' P ODN DP F Y NP G R P NU NT Q P T 5 V' V'' V ' F Y Pm PT F' G' G R P0 T O P' H N' D P N Q Q0 Qm QT C U N'' A d) ) OP I = A OP ' pf = 00 % OP FY = 00 % F GR = 00 % G
22 0 F 830D 3V PQ = 9.55 Nm.07 n n rpm ) 3) P 3 P Q max = V m m W max = V P T Q n T Nm P 0 0 max max N m max%= 00 N m 0 h.4 a) U = k = I w I 0 NU = q = I I w l 0 l k NC( ) = = q + q N= I = q + k q tan= cos sin tan k 3r TU = k = ( q + ) k V 3I V r T = k = k k q tan= tan k ) I = P 3 V
23 F 830D a = sin I I cos I cos b = a a I a + I a I b = = b cos, b b sin k c = b k t = c + I I w = I 0w + b + l = I0 l b I + I w I l I = I + A I w pf = 00 % I I = 00 % I w c = 00 t % = V t n ) 3) P = 3V tan max W max = V tan n b 0 0 max max N m max %= 00 N m 0 b = a a I = a + a I h
24 F 830D b) k q = I w I 0w = I I l 0 l N = I = q + tan = V k I 0 l r I 0w x ( / 3 ) I0w r I 0 lx U = k' = k cos q sin cos sin NU = q ' = q cos + k sin k' NC( ) = = q' + q' q' I l ' tan' = 'cos ' sin ' tan k' I w T k ' = k ( I I ) 3r = 0 V TU = ' = k' k ' k q' ' tan ' = ' tan k ' ) I P = 3 V I a' = sin ' I cos ' I cos ' b' b ' ' b = a' a' I = b' cos ' = b' sin ' k ' ' = b ' k' c a' + I a' I t' = c ' + ' = b ' B + B + = B ' cos b ' sin B I w I 0w + B = b ' cos B ' sin = I l = I 0 l + B w I l I = I + A
25 3 F 830D pf I = I w 00 I = 00 I w c = ' 00 t ' = V t' n ) 3) b' ' = 3V tan W Pmax = 9.55 max ( ' / ) 3V tan Nm n P 0 0 max N m N m max max%= 00 0 b' = a' a' I = a' + a' I h I t 3.5% a) 00% t ( V / V ) I = I A l l V V V l V
26 4 F 830D I A l b) 00%00% I I 3 (A) V V 3 (V) c) I = I t ( V / V ) l l = = log ( I / I )/log( V V ) 3 3 / () 50% I (A) V (V) t 3 ( V ) / V 3 ( ) I =.04I A = = ( I / I) / log( V V) ( I / I )/ log( V V ) = log / = log 3 3 / 3. I st 3.5% a) V I t = I 3 V b) V I t = I a V a c) 3.a) 3.3 t R = P R W R ( s )( W ' 3I ' R / )( I '/ I ') P R t
27 5 F 830D s R I ' A R O I ' 3.5% I ' = I A t t I t A W ' W ( V ' ) min I t ' = I A t ( V ' )max (V ' )min I ' V (V ' )max I ' V W ' I ' (V ' ) W It
28 6 F 830D
29 7 F 830D. ND F 830C ND F 800. a) JI C a) JI C 40 ND F 830C JEC-37 ND F 830C JI C 40 JEC-37 JI C 40 ND F 830 JEM77 JI C 40 JEM77 b) JI C 40
30 8 F 830D JI C 40 JEC-37 JEM77 JI C 40 ND F JI C 40JEC-37 JEM JI C 40 JEC-37 JEM JI C a) ND F 830C ND F 800D JI C 4004 JI C JI C ND F 800D ND F 800D
31 F 830D a) ) ) 3 b) a) ND F 830C JEC-37
32 30 F 830D. 6.a. 7. a)978 JI C 40 JI C 407 JI C 40 JI C 407 JI C 40 JEC JI C 40 4
33 F 830D 3 5 JI C 40 JI C 40 JEC-37 JEM77 ND F 830 JI C 407 JEC-37 b) c) JI C 407
34 3 F 830D
35 F 830D 33
36 34 F 830D
37 F 830D a)
38 36 F 830D b) 3 3 c) d) 4 4 e) f ) 5 5 g) 6 6. a) 6
39 F 830D
40 38 F 830D -
41 F 830D JI B h6>50 m6 4.
42 40 F 830D JI B 040
43 F 830D JI B h6>50 m
44 4 F 830D JI B
45 F 830D JI B 040
46 44 F 830D 7.. JI B 040
47 F 830D JI B 040
48 46 F 830D JI B 040
49 F 830D JI B 040
50 48 F 830D.. 3. JI B
51 F 830D 49.. JI B JI B 040
52 50 F 830D 3..
53 4 F 830D 5.
54 5 F 830D 5.
55 6 F 830D 53..
56 54 F 830D 7.
57 8 F 830D 55..
58 56 F 830D 9-..
59 9- F 830D 57..
60 58 F 830D 9-3..
61 0 F 830D 59..
62 60 F 830D.. 50 h6>50 m6
63 F 830D 6..
64 6 F 830D 3..
65 F 830D 4 63
66 64 F 830D JI H 50 JI K 6380 JI G 4303 JI H 50 ND F 885 ND F 885 JI G 4303
67 65 F 830D JI H 50 JI K 6380 JI G 4303 JI H 50 ND F 885 ND F 885 JI G 4303
68 66 F 830D JI G 4303 JI H 50 JI K 6380 JI H 50 ND F 885 ND F 885 JI G 4303
69 67 F 830D JI K 6380 JI G 4303 JI H 50 JI H 50 ND F 885 ND F 885 JI G 4303
70 68 F 830D JI H 50 JI K 6380 JI G 4303 JI H 50 ND F 885 ND F 885 JI G 4303
71 F 830D. ND F 830C..ND F 830C.. a) b) c) d). a) b) c) d) e) f ) g) h).
72 F 830D a) b) ND F 800
73 F 830D a) b)
74 F 830D 3 7. JI B ND F 88
75 F 830D 5 4. ND F 800 ND F ND F 830C ND F 800D
76 F 830D. ) ) WRkg 3) N 800 rpm4 f n ) f h 4.0 5). ) ) WP K m 0. DL K e K F r F a F h f ewr K ekm b / a + b K WR + WP f nc f h C C P r VXF r + YF a F a P r VXF r Y P r 0.56F r a b A D B L K m K e f e 0. K F r A F a A W P P r C V.0 X 0.56 Y.0
77 F 830D N C a,b (mm) WR K Fr Pr Fa WP
5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 = 4. () = 8 () = 4
... A F F l F l F(p, 0) = p p > 0 l p 0 P(, ) H P(, ) P l PH F PF = PH PF = PH p O p ( p) + = { ( p)} = 4p l = 4p (p 0) F(p, 0) = p O 3 5 5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 =
( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +
(.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d
高等学校学習指導要領解説 数学編
5 10 15 20 25 30 35 5 1 1 10 1 1 2 4 16 15 18 18 18 19 19 20 19 19 20 1 20 2 22 25 3 23 4 24 5 26 28 28 30 28 28 1 28 2 30 3 31 35 4 33 5 34 36 36 36 40 36 1 36 2 39 3 41 4 42 45 45 45 46 5 1 46 2 48 3
1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1
sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V
さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1
... 0 60 Q,, = QR PQ = = PR PQ = = QR PR = P 0 0 R 5 6 θ r xy r y y r, x r, y x θ x θ θ (sine) (cosine) (tangent) sin θ, cos θ, tan θ. θ sin θ = = 5 cos θ = = 4 5 tan θ = = 4 θ 5 4 sin θ = y r cos θ =
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ
1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c
( )
18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................
a,, f. a e c a M V N W W c V R MN W e sin V e cos f a b a ba e b W c V e c e F af af F a a c a e be a f a F a b e f F f a b e F e ff a e F a b e e f b e f F F a R b e c e f F M N DD s n s n D s s nd s
Untitled
II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j
1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(
1 1 y = y() y, y,..., y (n) : n y F (, y, y,..., y (n) ) = 0 n F (, y, y ) = 0 1 y() 1.1 1 y y = G(, y) 1.1.1 1 y, y y + p()y = q() 1 p() q() (q() = 0) y + p()y = 0 y y + py = 0 y y = p (log y) = p log
2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta
009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n
20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................
1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h
IB IIA 1 1 r, θ, φ 1 (r, θ, φ)., r, θ, φ 0 r
genron-3
" ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
CAT. No. 1102q 2014 G-2
A7 A4 4 45 46 75 76 83 84 09 0 8 82 205 206 243 244 279 280 303 304 325 326 333 334 345 346 355 356 379 33 AT. No. 02q NSKAT. No. 02q NSK SI JIS NSK NSK http://www.nsk.com A 7. A 7.2 A 7 A6 A8 3. A8 3.2
(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37
4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin
5. 5.1,, V, ,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 3-1, 2-2, 1-3,,, L1, L3, L2, ,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1
5. 5.1,,, 5.2 5.2.1,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 31, 22, 13,,, L1, L3, L2, 0 5.2.4,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1 D C 1 0 0 A C 2 2 0 j X E 0 5.3: 5.5: f,, (),,,,, 1, 5.2.6
A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6
1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67
B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π
8 Biot-Svt Ampèe Biot-Svt 8.1 Biot-Svt 8.1.1 Ampèe B B B = µ 0 2π. (8.1) B N df B ds A M 8.1: Ampèe 107 108 8 0 B line of mgnetic induction 8.1 8.1 AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B
No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y
No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ
4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................
II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re
II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier
B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:
B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O
n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m
1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
1 I p2/30
I I p1/30 1 I p2/30 1 ( ) I p3/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) g(y) = f()d I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1)
数学Ⅱ演習(足助・09夏)
II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w
Jacobi, Stieltjes, Gauss : :
Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes
4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X
4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0
OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P
4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e
, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f
,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)
1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C
0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,
2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+
R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x
CAT. No. 1102k 2011 E-3 B206-B243
0 00mm B20 B2 0 60mm B24 B27 0 90mm B28 B22 5 20mm B224 B227 60 500mm B228 B2 B24 B24 2 2 5 52 52 52U 5 5 5U 54 54 54U 522 542 542U 52 54 54U 524 544 544U 500 552X 5200 526X 505 56X 5405 548X 5200 526X
新入_本文.smd
52 28 220 28 4 1 017-777-1511 2 2 8 2 9 8 9 47.2% 12.8% 11.5% 6.0% 4 2 (49.6%)(13.0%) (14.7%) (7.4%)(8.4%) (52.3%)(9.1%) (11.4%) (10.0%) 33.0% 23.4% 15.6% 9.6% (26.0%) (18.3%) (46.5%) (30.0%) (20.0%) 2
18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (
8 ) ) [ ] [ ) 8 5 5 II III A B ),,, 5, 6 II III A B ) ),,, 7, 8 II III A B ) [ ]),,, 5, 7 II III A B ) [ ] ) ) 7, 8, 9 II A B 9 ) ) 5, 7, 9 II B 9 ) A, ) B 6, ) l ) P, ) l A C ) ) C l l ) π < θ < π sin
さくらの個別指導 ( さくら教育研究所 ) a a n n A m n 1 a m a n = a m+n 2 (a m ) n = a mn 3 (ab) n = a n b n a n n = = 3 2, = 3 2+
5 5. 5.. a a n n A m n a m a n = a m+n (a m ) n = a mn 3 (ab) n = a n b n a n n 0 3 3 0 = 3 +0 = 3, 3 3 = 3 +( ) = 3 0 3 0 3 3 0 = 3 3 =, 3 = 30 3 = 3 0 a 0 a`n a 0 n a 0 = a`n = a n a` = a 83 84 5 5.
(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)
2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x
() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (
3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc
0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2
24 11 10 24 12 10 30 1 0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 23% 29% 71% 67% 6% 4% n=1525 n=1137 6% +6% -4% -2% 21% 30% 5% 35% 6% 6% 11% 40% 37% 36 172 166 371 213 226 177 54 382 704 216
10 117 5 1 121841 4 15 12 7 27 12 6 31856 8 21 1983-2 - 321899 12 21656 2 45 9 2 131816 4 91812 11 20 1887 461971 11 3 2 161703 11 13 98 3 16201700-3 - 2 35 6 7 8 9 12 13 12 481973 12 2 571982 161703 11
φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m
2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x
http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................
c 2009 i
I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................
[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt
3.4.7 [.] =e j(t+/4), =5e j(t+/3), 3 =3e j(t+/6) ~ = ~ + ~ + ~ 3 = e j(t+φ) =(e 4 j +5e 3 j +3e 6 j )e jt = e jφ e jt cos φ =cos 4 +5cos 3 +3cos 6 =.69 sin φ =sin 4 +5sin 3 +3sin 6 =.9 =.69 +.9 =7.74 [.]
/02/18
3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,
A
A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................
*2015カタログ_ブック.indb
-319 -320 -321 -322-40 1600-20 0 20 40 60 80 100 1600 1000 600 400 200 100 60 40 20 VG 22 VG 32 VG 46 VG 68 VG 100 36 16 ν opt. 10 5 5-40 -25-10 0 10 30 50 70 90 115 t min = -40 C t max = +115 C 0.5 0.4
5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)
5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x
381
P381 P386 P396 P397 P401 P423 P430 P433 P435 P437 P448 P451 P452 381 382 383 384 385 3.0mm 5.0mm 3.0mm 5.0mm SK SK3.0mm SK5.0mm 3.0mm PUR PUR3.0mm 2.0mm 2.0mm3.0mm 2.5mm 2.5mm3.0mm 3.0mm 5.0mm 3.0mm 1.8mm
1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +
( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n
D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y
5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x
2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =
¹₄ ³₈ ³₈ ¹₂ ¹₂ ¹₂ ³₄ ³₄
33 4 5 2 63 2 1 3 1 4 2 5 6 19 ¹₄ ³₈ ³₈ ¹₂ ¹₂ ¹₂ ³₄ ³₄ 1 1 5 6 6 7 1 1 1 1 1 1 35 GDC LB 1 1 Y 2 A54 2 1 2 1 1 5 1 1 21 1 2 2 2 53 512 53 53 512 3 12 2 2 4 5 63 1 1 2 4 5 63 1 1 2 45 1 5 2 3 4 4 3 4 4
20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................
プランマブロック
CAT. NO. B00- SD 300TSTAC 46 4 6 8 0 SN 500 0 SN 600 4 SN 3300 8 SN 3400 0 SSN 500TSTAC V 500 48 V 600 5 SSN 600TSTAC 6 SSN 00B 30 SSN 300B 34 SD 500 38 SD 600 40 V 00 56 V 300 60 SD 3300 4 SD 3400 44
Chap9.dvi
.,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim
20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33
ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y
01 4 17 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy + r (, y) z = p + qy + r 1 y = + + 1 y = y = + 1 6 + + 1 ( = + 1 ) + 7 4 16 y y y + = O O O y = y
曲面のパラメタ表示と接線ベクトル
L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =
5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................
5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)
Nobelman 絵文字一覧
Nobelman i-mode EZweb J-SKY 1 88 2 89 3 33 4 32 5 5 F[ 6 6 FZ 7 35 W 8 34 W 9 7 F] W 10 8 F\ W 11 29 FR 12 30 FS 13 64 FU 14 63 FT 15 E697 42 FW 16 E678 70 FV 17 E696 43 FX 18 E6A5 71 FY 19 117 20 E6DA
8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )
http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b
( ) x y f(x, y) = ax
013 4 16 5 54 (03-5465-7040) [email protected] hp://lecure.ecc.u-okyo.ac.jp/~nkiyono/inde.hml 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy
6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4
35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m
1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV
all.dvi
38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t
入試の軌跡
4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf
untitled
No. 1 2 3 1 4 310 1 5 311 7 1 6 311 1 7 2 8 2 9 1 10 2 11 2 12 2 13 3 14 3 15 3 16 3 17 2 18 2 19 3 1 No. 20 4 21 4 22 4 23 4 25 4 26 4 27 4 28 4 29 2760 4 30 32 6364 4 36 4 37 4 39 4 42 4 43 4 44 4 46
