2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

Size: px
Start display at page:

Download "http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n"

Transcription

1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k= ɛ-n a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ (1.1.1) ɛ n > N(ɛ) a n α < ɛ (1.1.2) N(ɛ) ( ɛ > N(ɛ) n > N(ɛ) = a n α ) < ɛ (1.1.3) 1 1 2

2 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n α ɛ N(ɛ) N(ɛ) N(ɛ) ɛ N ɛ N ɛ lim n a n = a n a n n lim n a n = + M N(M) n > N(M) a n > M (1.1.4) lim a n = + lim a n = {a n } n n n n N n N

3 3 N N N = 1 4 N = 1 1 N = 1 1 N n a n = 1/n n n n ɛ > n a n α ɛ ɛ ɛ ɛ = 1 6 ɛ = 1 14 ɛ = 1 2 N ɛ a n α N ɛ 3 a n α a n α n a n = 1/n ɛ =.1 n > 1 n > 1 a n α <.1 ɛ = 1 6 n > 2 n > 2 a n α < 1 6 ɛ = 1 12 n > 1 2 ɛ = 1 1 n > 1 3 ɛ > lim n a n = α ɛ = 1 3 N lim n a n = α N ɛ ɛ-n N ɛ n a n α n a n α ɛ a n α N n ɛ a n α ɛ-n ɛ N(ɛ) ɛ N n = 1, 2, 3,... a n = 1 n, b n = 1 log(2 + log(2 + log n)), c 1 n = log(2 + log(2 + log n)) (1.1.5) n n a n b n c n

4 4 a n b n c n b n c n n n a n 1/n b n log n c n 1 8 n n n N ɛ a n α ɛ ɛ n n a n α ɛ ɛ-n n N(ɛ) n = 1, 2, 3,... a n = 3, b n = 1 n, c n = 1, d n = 1 n n n 1, 1 2, 1 3, 1 4, 1 5, 1 6,... e n = (1.1.6) (1.1.7) (1.1.5) n f n = n + 3 n, g n = sin n n, h n = n + 1 n, p n = 2n + 1 n + 1, q 1 n = log(n + 1) (1.1.8) ɛ-n ɛ-n lim a n = α, lim b n = β lim (a n + b n ) = α + β. n n n lim a n = α, lim b n = β lim a nb n = αβ. n n n lim a n = α, lim b a n n = β β lim = α n n n b n β. b n m b m = {b n } a n = n a n n lim a n = α lim a n = β n n α = β

5 5 ɛ-n a n b n = 1 n n k=1 a k lim n a n = α lim n b n = α ɛ-n lim a a 1 + a a n n = α = lim = α n n n a 1 a n ρ 1, ρ 2, ρ 3,... ( n ) / ( n ) b n := ρ j a j ρ j j=1 lim a n = α lim b n = α ρ 1, ρ 2, ρ 3,... n n ρ 1 = ρ 2 = ρ 3 =... = 1 j=1 1.2 ɛ-δ 4 n a n x x a f(x) f(x) a, b f(x) x a b lim x a f(x) = b ɛ δ(ɛ) < x a < δ(ɛ) x f(x) b < ɛ (1.2.1) ( ɛ > δ(ɛ) > < x a < δ(ɛ) = f(x) b ) < ɛ (1.2.2) x a > x = a f(x) a f(a) b f(a) = b x a 4

6 6 δ(ε 2 ) b ε 2 ε 2 ε 1 ε 1 x δ(ε 1 ) a ɛ-n < x a < δ(ɛ) f(x) b < ɛ < x a δ(ɛ) f(x) b ɛ < x a ɛ-n ɛ, δ ɛ, δ x a f(x) b ɛ-n ɛ δ ɛ-n α f(x) b < ɛ δ(ɛ) δ(ɛ) 1) lim x x, a > ( 2) lim x 2 2x + 3 x ) ( ), 3) lim x 2 2x + 3. (1.2.3) x 1 1 x 2 1 4) lim, 5) lim x 1 + x x 1 x 1, 6) lim sin 1 x x, (1.2.4) x 3 a 3 7) lim x a x a 1 + x 1 x 8) lim x x 9) lim x x (1.2.5) f(x) lim f(x) x ɛ-δ.1 x = 1 1, 1 2, 1 3, 1 4,... f(x) := x { } { } lim f(x) = α lim g(x) = β lim f(x) + g(x) = α + β lim f(x)g(x) = αβ x a x a x a x a ɛ-δ

7 () a 1, a 2, a 3,... {a n } {a n } {a n } 1, 2, 3, 4, 5, 6,... 1, 3, 5, 7, 9,... 1, 4, 9, 16, 25,... 1, 2, 5, 1, 1, 132, , () {a n } L n a n < L K n a n > K K, L {a n } n a n L n K () {a n } {b n } {b n } a 1, a 2, a 3,... K L accumulation point a 11 a23 K a 1 a 4 a 2 a3 a 5 a 8 a 15 a 12 a 9 a 1 L

8 8 a n 2 n (1.3.1) a 1 = 1.4, a 2 = 1.41, a 3 = 1.414,... 2 II Bolzano-Weiertrass lim a n = α a n n α ( ) ɛ > N(ɛ) n > N(ɛ) a n α < ɛ (1.4.1) α e ( e = lim n (1.4.2) n n) e x = 1 + x + x2 2! + x3 3! + = lim N N n= x n n! (1.4.3) x e x e x 6 lim N N n= x n n n! lim N N n= x n n n! (1.4.4) e x

9 () a 1 a 2 a 3... a n... a n (monotone) increasing (monotone) decreasing (monotone) non-decreasing (monotone) non-increasing. strictly increasing n n ( 2.2) {a n } lim a n {a n } lim a n n n {a n } lim a n = + {a n } n lim a n = n + ± lim n a n a n 2 n a n 2

10 1 n a n ɛ-δ α {a n } {b k } α {a n } α α {b k } α k b k α (1.4.5) {b k } {a n} {b k } k 1 b k1 > α n 1 k b k b k1 > α b k α {b k } {a n } k n b k = a n (1.4.5) a n = b k a n a n α a n n a n α n m a m a n α {b k } k a n = b k n n a n α (1.4.6) {a n }, {b k } {b n } α ɛ > K(ɛ) > ( ) k > K(ɛ) = b k α < ɛ (1.4.7) k > K(ɛ) α ɛ < b k (1.4.8) a n = b k n α ɛ < a n {a n } n 1 α ɛ < a n1 n > n 1 α ɛ < a n1 a n ɛ > (1.4.7) K(ɛ) K(ɛ) k 1 a n1 = b k1 n 1 n > n 1 α ɛ < a n (1.4.9)

11 11 (1.4.6) ɛ > n 1 > n > n 1 α ɛ < a n < α (1.4.1) lim n a n = α ɛ-δ {a n } α α ( ) a n Cauchy sequence ɛ > N(ɛ) m, n N(ɛ) a m a n < ɛ (1.5.1) ε 1 ε 2 N(ε 1 ) N(ε 2 ) n a n a n a m m, n () a n a n lim sup lim inf 7 4

12 N(ɛ) a n := 1 n b n := 1 n 2 c n := ( 1)n n d n := ( 1)n n {a n }, {b n }, {c n } α c n a n := log n + n k=1 1 k b n := c 1 := 1, n 1 c n+1 := 1 2 n ( 1) k 1 k=1 k (c n + α c n ) c n a n, b n (1.4.4) e x e x = n= x n n! x x > x sin x = x x3 3! + x5 5! x7 7! + x < r < 1 {a n } a n+2 a n+1 r a n+1 a n n = 1, 2, 3,... n x a () lim x a f(x) f(x) (C) ɛ > δ(ɛ) > < x a < δ(ɛ) < y a < δ(ɛ) x, y f(x) f(y) < ɛ

13 b a f(x) f(x) > a < b f(x)dx [a, b] y = f(x) x- f(x) [a, b] n n a = x < x 1 < x 2 <... < x n 1 < x n = b (x i 1, x i ) i = 1, 2,..., n [a, b] i = x i x i 1 = max (x i x i 1 ) = max i 1 i n 1 i n [x i 1, x i ] ζ i i = 1, 2,..., n ζ 1, ζ 2,..., ζ n ζ, ζ S(f;, ζ) = n f(ζ i ) (x i x i 1 ) = i=1 n f(ζ i ) i (2.1.1) ζ S(f;, ζ), ζ b f(x)dx a b a i=1 f(x)dx lim S(f;, ζ) (2.1.2) f(x) > n = 5 R(f; P, ζ) y=f(x) x ζ 1 x ζ 1 2 x ζ 2 3 x ζ 3 4 x ζ 4 5 x 5 x x f(x) = 1 x 1 f(x)dx (2.1.3) () f(x) [a, b] f [a, b]

14 x, y f(x, y) f(x, y) = xy xy- A = {(x, y) a x b, c y d} f A f(x, y)dxdy z = f(x, y) (x, y, z)- f(x, y) xy A A f(x, y)dxdy 1 A A x- a = x < x 1 < x 2 <... < x n 1 < x n = b y- c = y < y 1 < y 2 <... < y m 1 < y m = dm, n A mn I ij = [x i 1, x i ] [y j 1, y j ] 1 i n, 1 j m = max {(x i x i 1 ), (y j y j 1 )} i,j I ij ζ ij = (ξ ij, η ij ) mn ζ ij ζ, ζ S(, ζ) = n i=1 j=1 A m f(ξ ij, η ij ) (x i x i 1 ) (y j y j 1 ) (2.2.1) ζ A f f(x, y)dxdy = lim S(, ζ) (2.2.2) A f(x, y) f 1 f xy- A A A () f(x, y) A f A

15 xy- A = [a, b] [c, d] xy- B B xy B χ B (x, y) 1 (x, y) B χ B (x, y) = (x, y) B B B B ( ) B (2.3.1) B χ B (x, y) dxdy (2.3.2) B B B χ B B B (B ) B B x = x(t), y = y(t) t 1 x() = x(1), y() = y(1) B x(t), y(t) t C 1 - x = a, x = b y = ϕ(x), y = ψ(x) a x b ϕ(x) ψ(x) ϕ(x) ψ(x) x B y- x- y = c, y = d, x = ϕ(y), x = ψ(y) (2.3.3)

16 16 y y x x ( ) B B f(x, y) f B f(x, y)dxdy f(x, y)χ B (x, y) dxdy (2.3.4) B B f B f B B ( ) B f B f B 2.4 n n A = [a, b] [c, d] f(x, y) A ( ) f(x, y) A x [a, b] A f(x, y)dxdy = F (x) = b a d c F (x)dx = f(x, y)dy (2.4.1) b a [ d c ] f(x, y)dy dx (2.4.2) x, y y [c, d] G(y) = b a f(x, y)dx (2.4.3)

17 17 A f(x, y)dxdy = d c G(y)dy = d c [ b a ] f(x, y)dx dy (2.4.4) z = f(x, y) x- (2.4.2) F (x) (2.4.2) b d a c f(x, y)dy dx (2.4.5) a, b, c, d x, y x, y b a dx d c dy f(x, y) (2.4.6) (Riemann Fubini ) f A b a [ d c ] f(x, y)dy dx = d c [ b a ] f(x, y)dx dy (2.4.7) x- x-y y- y- z y x

18 A F (x) x [a, b] f(x, y) A = [, 1] [, 1] (x 2 + y 2 )dxdy, a) A = [1, 3] [, 2] f(x, y) = xy. b) A = [, 1] [, 1] f(x, y) = A A A f(x, y) dxdy 1 3x + y + 1. c) A x =, y =, x + y = 1 f(x, y) = xy dxdy, (2.4.8) 1 3x + y + 1. d) A y = x y = x 2 f(x, y) = (y x 2 ) f(x, y) A b [ d ] d [ b f(x, y)dy dx = a c f A c a ] f(x, y)dx dy (2.4.9) f (2.4.9) A [, 1] [, 1] S k- ( ) p k k = 1, 2,... 1 m k m, n p k, n p k S T T = k=1 { ( m, n ) } < m < p k, < n < p k p k p k (2.4.1) ( (x, y) T ) f(x, y) = 1 ( (x, y) S\T ) (2.4.11) 1 [ 1 f(x, y) dxdy S ] f(x, y)dy dx = 1 [ 1 ] f(x, y)dx dy = 1 (2.4.12) Riemann Lebesgue Lebesgue Lebesgue Lebesgue Riemann

19 19 B B a x b ϕ(x) < ψ(x) x = a, x = b, y = ϕ(x), y = ψ(x) (2.4.13) B f(x, y) dxdy = b [ ψ(x) a ϕ(x) ] f(x, y)dy dx (2.4.14) Fubini c) x =, y =, 2x + y = 1 x, y x y B (x 1) 2 + y 2 1 y x, y f a, b > a 1/2 bx dx dy f(x, y) = bx x dx dy f(x, y) = x 2 ab 1/4 a a dy dx f(x, y) + dy dx f(x, y), y/b ab y/b dy y y dx f(x, y) + 1/2 1/4 dy 1/2 y B dx f(x, y) x 2 y dxdy f(x) x 1. f (t) f(t) t f(x) = f(a) + x a f (t)dt, f (t) = f (a) + 2. f(x) f(x) = f(a) + f (a)(x a) + 3. f(x) n x a t a f (s)ds (2.4.15) (x s)f (s)ds (2.4.16) [a, x] x 1 f (n+1) (x 1 )(x a) n+1 /(n + 1)! x 1

20 x = x(t) x2 t2 f(x) dx = f(x(t)) x (t) dt (2.5.1) x 1 t 1 t 1, t 2 x(t) x 1, x 2 t x t x (t) (x, y) (u, v) (u, v) (x, y) (u, v) x = x(u, v), y = y(u, v) (2.5.2) x = u + v, y = u v (x, y) A (u, v) B f g(u, v) g(u, v) f(x(u, v), y(u, v)). (2.5.3) f(x, y)dxdy u, v A B A y v x u A B f(x, y) dxdy = g(u, v) dudv (2.5.4) A B [x 1, x 2 ] [t 1, t 2 ] x2 t2 f(x) dx = f(x(t)) dt (2.5.5) x 1 t 1 x2 t2 f(x) dx = f(x(t)) x (t) dt (2.5.6) x 1 t 1 x (t)

21 (2.5.2) J(u, v) x (x, y) J(u, v) (u, v) det u y u (2.5.2) A B x = x(u, v) y = y(u, v) B J(u, v) x v. (2.5.7) y v f(x, y) dxdy = g(u, v) J(u, v) dudv (2.5.8) A B A B A B x (t) (x, y) (r, θ) x = r cos θ, y = r sin θ (2.5.9) J(r, θ) = det [ cos θ sin θ ] r sin θ = r cos 2 θ + r sin 2 θ = r (2.5.1) r cos θ dxdy rdrdθ e (x2 +y 2) dxdy x 2 +y 2 1 x 2 +y 2 1 e (x2 +y 2) dxdy = 1 dr r 2π dθ e r2 = 2π 1 e r2 r dr = 2π ( ) 2 e x2 dx = e x2 dx e y2 dy = ] 1 [ e r2 2 = π(1 e 1 ) (2.5.11) e x2 dx = π (2.5.12) R 2 e (x 2 +y 2) dxdy (2.5.13)

22 22 f(x, y)dxdy xy f(x, y) A h(u, v)dudv uv B h y v x u y+dy v+dv y v x x+dx u u+du uv- [u, u + du] [v, v + dv] xy- (x(u, v), y(u, v)), (x(u + du, v), y(u + du, v)), (x(u, v + dv), y(u, v + dv)), (x(u + du, v + dv), y(u + du, v + dv)) (2.5.14) du, dv x [ ] x(u + du, v) x(u, v) u du x x [ ] y(u + du, v) y(u, v) = u du x(u, v + dv) x(u, v) v dv x y u du y y(u, v + dv) y(u, v) = v dv y u v dv y v [ ] (2.5.15) a b (a, b) (c, d) ad bc c d x u du x v dv x x det y u du y = det u v dudv = J(u, v) du dv (2.5.16) v dv y y u v 2.6

23 23 n 1. n n n n n n n (x 1, x 2,..., x n ), (u 1, u 2,..., u n ) x i u 1 u n f(x 1, x 2,..., x n ) dx 1 dx 2 dx n = g(u 1, u 2,..., u n ) (x 1, x 2,..., x n ) A B (u 1, u 2,..., u n ) du 1du 2 du n (2.6.1) B (u 1, u 2,..., u n ) A g f n n x 1 x 1 x u 1 u 2 1 u n (x 1, x 2,..., x n ) (u 1, u 2,..., u n ) = det x 2 x 2 x u 1 u 2 2 u n x n u 2 x n u 1 x n u n (2.6.2) x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ (2.6.3) (r, θ, φ) r, θ π, φ 2π sin θ cos φ r cos θ cos φ r sin θ sin φ (x, y, z) (r, θ, φ) = det sin θ sin φ r cos θ sin φ r sin θ cos φ = r 2 sin θ (2.6.4) cos θ r sin θ

24 24 n r n-x x x 2 n r 2 V n (r) n- x n r 2 x 2 n (n 1) x n n V n (r) = r r dx n V n 1 ( r 2 x 2 n) (2.6.5) r 1 r n a n V n (r) = r n V n (1) = r n a n (2.6.6) a n a n 1 a 2 = π, a 3 = 4π/3 a n V n (r) 2 n 1 +x x2 n ) dx 1 dx 2... dx n R n e (x π n/2 n drr n 1 c n e r2 c n n 1 n- a n c n = na n π n/2 = n a n dr r n 1 e r2 (2.6.7) a n V n (r) Γ / () f(x) [a, b] f [a, b] f f f(x) f 2.7.1

25 (i) f(x) x = a lim f(x) = f(a) (2.7.1) x a (ii) f(x) [a, b] [a, b] c a c b f c [a, b] lim f(x) = f(c) (2.7.2) x c x = a, b f lim f(x) = f(a) lim x a+ f(x) = f(b) (2.7.3) x b f (2.7.2) (2.7.2) c 2.7.2(ii) ɛ δ c [a, b] ɛ > δ(ɛ, c) > x c < δ(ɛ, c) = f(x) f(c) < ɛ (2.7.4) δ ɛ c c a δ(ɛ, c) f(x) [a, b] δ(ɛ, c) c [a, b] c δ(ɛ) f(x) [a, b] I ( ) f(x) I ɛ > δ(ɛ) > c I x c < δ(ɛ) = f(x) f(c) < ɛ (2.7.5) δ c f(x) = 1 (, 1) (2.7.6) x (, 1)

26 26 Remark. uniform ɛ-δ x x a y y y y y x x c c δ x c c c ( ) a < b [a, b] ɛ > δ(ɛ) > x, y [a, b] x y < δ(ɛ) = f(x) f(y) < ɛ (2.7.7) δ(ɛ) x, y [a, b] [a, b] f(x) = (x, x 1,..., x n ) [x i 1, x i ] f(x) m i (f; ), M i (f; ) n n s(f; ) := m i (f; ) (x i x i 1 ), S(f; ) := M i (f; ) (x i x i 1 ) (2.7.8) i=1 i=1 s(f; ) S(f; ) n = 5 x x 1 x 2 x 3 x 4 x 5 x

27 27 ζ s(f; ) R(f;, ζ) S(f; ) (2.7.9) f [a, b] lim s(f; ) lim S(f; ) (2.7.1) S lim s(f; ) = lim S(f; ) = S (2.7.11) (2.7.9) lim R(f;, ζ) S ζ [a, b] 2 n (n) s(f; ) S(f; ) 1. s(f; ) s(f; ) S(f; ) S(f; ) (2.7.12) s S s S 1 2 s(f; 1 ) S(f; 2 ) (2.7.13) s(f; 1 ) s(f; 12 ) S(f; 12 ) S(f; 2 ) (2.7.14) 2. [a, b] 2 n (n) (2.7.12) s(f; (n) ) n S(f; (n) ) n (2.7.12) 3. s(f; (n) ) S(f; (n) ) n s S s(f; (n) ) S(f; (n) ) s(f; (n) ) s S(f; (n) ) S (2.7.15)

28 28 s S s S 2 n - 4. s = S s(f; (n) ) S(f; (n) ) S(f; (n) ) s(f; (n) ) = 2 n i=1 {M i (f; (n) ) m i (f; (n) )} (x i x i 1 ) (2.7.16) M i (f; (n) ) m i (f; (n) ) [x i 1, x i ] f(x) ɛ ɛ (2.7.7) δ(ɛ) (n) = (b a)/2 n (2.7.7) [x i 1, x i ] x, y f(x) f(y) < ɛ f(x) x, y ɛ ɛ > (n) < δ(ɛ) M i (f; (n) ) m i (f; (n) ) < ɛ (2.7.16) S(f; (n) ) s(f; (n) ) < 2 n i=1 ɛ (x i x i 1 ) = ɛ(b a) (2.7.17) b a ɛ ɛ ɛ s = S (2.7.15) lim {S(f; n (n) ) s(f; (n) )} = (2.7.18) s(f; (n) ) s = S = S(f; (n) ) (2.7.19) 5. (2.7.17) ɛ ɛ (2.7.7) δ(ɛ) 3 M i (f; ) m i (f; ) < ɛ (2.7.17) S(f; ) s(f; ) < ɛ(b a) (2.7.2) 6. S (2.7.17) ɛ > n S(f; (n) ) s(f; (n) ) < ɛ(b a) (2.7.21) 2 (2.7.2) (2.7.19) S(f; 2 ) s(f; 2 ) < ɛ(b a) (2.7.22) s(f; (n) ) S S(f; (n) ) (2.7.23)

29 29 (2.7.13) s(f; (n) ) S(f; 2 ) s(f; 2 ) S(f; (n) ) (2.7.24) s(f; 2 ) S(f; 2 ) (2.7.21) (2.7.23) S(f; (n) ) < s(f; (n) ) + ɛ(b a) S + ɛ(b a) (2.7.25) s(f; (n) ) > S(f; (n) ) ɛ(b a) S ɛ(b a) (2.7.26) S S(f; (n) ) < S + ɛ(b a) S ɛ(b a) < s(f; (n) ) S (2.7.27) (2.7.24) s(f; 2 ) S(f; (n) ) S + ɛ(b a) S(f; 2 ) s(f; (n) ) S ɛ(b a) (2.7.28) (2.7.22) (2.7.22) s(f; 2 ) S(f; 2 ) ɛ(b a) (2.7.28) s(f; 2 ) (2.7.3) 2 s(f; 2 ) S ɛ(b a) ɛ(b a) = S 2ɛ(b a) (2.7.29) S 2ɛ(b a) s(f; 2 ) S + ɛ(b a) (2.7.3) S ɛ(b a) S(f; 2 ) S + 2ɛ(b a) (2.7.31) ɛ S s(f; 2 ) < 2ɛ(b a) (2.7.32) lim s(f; 2) = S (2.7.33) 2 ɛ δ ɛ = 2ɛ(b a) (2.7.31) 2 ɛ δ S S(f; 2 ) < 2ɛ(b a) (2.7.34) lim S(f; 2) = S (2.7.35) 2 lim s(f; 2) = lim S(f; 2) = S (2.7.36) 2 2 S

30 3 f (2.7.17)

31 dx dx (1) x 1 + x2 (2) 1 1 dx = lim x ɛ 1 ɛ 1 x dx, 1 L 1 dx = lim dx (2.8.1) 1 + x2 L 1 + x2 x = ɛ ɛ + [, L] L lim ɛ lim lim a ɛ ɛ + ɛ + x a lim lim lim a x a x a x a x a lim lim lim x a x a+ x a + dxf(x) f(x)dx = L lim K K L + f(x)dx (2.8.2) ( ) A f f(x, y)dxdy A (a) A a f a {A n } n A (b) A {A n } n A lim n f(x, y)dxdy A n (2.8.3) {A n } {A n } A f(x, y)dxdy {A n} f(x, y)dxdy A (a), (b) f A n {A n } A n A n

32 32 α > 1 1 (a) (x 2 + y 2 dxdy, (b) ) α (x 2 + y 2 dxdy (2.8.4) ) α <x 2 +y 2 1 x 2 +y 2 1 (a) A n 1 n 2 x 2 + y 2 1 A n 1 n r 1, θ 2π 1 2π 1 A n (x 2 + y 2 ) α dxdy = dθ drr 1 1 = 2π dr r 1 2α (2.8.5) 1/n r2α 1/n α < 1 n α 1 n α < 1 A n A n A B A 1 (x 2 + y 2 ) α dxdy 1 B (x 2 + y 2 dxdy (2.8.6) ) α A n A n α < 1 (b) 1 x 2 + y 2 n 2 A n 1 A n (x 2 + y 2 ) α dxdy = n 1 drr 1 r 2α = n 1 dr r 1 2α (2.8.7) n α > 1 α 1 (a) α > 1 (a) f(x, y) (a) (b) (i) f(x, y)dxdy A (ii) (a) (b) f(x, y)dxdy A n

33 33 S n := f(x, y)dxdy n > af(x) A n S n S := lim S n n A n A n A n B n A B f(x, y)dxdy f(x, y)dxdy A n B n A n+1 A n A B A n+1 B n f(x, y)dxdy f(x, y)dxdy f(x, y)dxdy A n B n A n+1 lim f(x, y)dxdy lim f(x, y)dxdy n A n n B n f(x, y) dxdy f(x, y)dxdy A f(x, y) dxdy A A n A

34 ( ) n- t n- r(t) = (x 1 (t), x 2 (t), x 3 (t),..., x n (t)) t t [, 1] t 1 t = t = 1 t n- (1, 1) r(t) = (t, t) r(t) = (t 2, t 2 ) r(t) = ( t, t) r(t) = (x 1 (t), x 2 (t), x 3 (t)) r(t) = (x(t), y(t), z(t)) () n- r(t) = (x 1 (t), x 2 (t), x 3 (t),..., x n (t)) (1) x i (t) t (2) r (t) t n- r(t) t 1 (x, y, z) F (x, y, z) = (,, ) a = (a, b, c) Step 1. (a, b, c) F F a 2 + b 2 + c 2 F > F <

35 35 Step 2. a = (a, b, c) F = (F x, F y, F z ) F ( a n = a2 + b 2 + c, b 2 a2 + b 2 + c, c ) F 2 a2 + b 2 + c 2 n F n a b a b (F n)n Step 1 (F n) a 2 + b 2 + c 2 = F x a + F y b + F z c = F a (3.2.1) Step 1 Step 3. r = (,, ) n r 1, r 2,..., r n = a = (a, b, c) r i 1 r i l i l i F i l i Step 2 F i (r i r i 1 ) (a, b, c) n F i (r i r i 1 ) (3.2.2) i=1 Step 4. r(t) = (x(t), y(t), z(t)) t 1 r = (x, y, z) F (r) = (F x (x, y, z), F y (x, y, z), F z (x, y, z)) (x, y, z) Step 3 r =, r 1, r 2,..., r n = a Step 3 r i 1 r i l i l i F (r) r l i F (r) Step 3 = n F (r i ) (r i r i 1 ) (3.2.3) lim i=1 i=1 n F (r i ) (r i r i 1 ) (3.2.4) n i r i r i 1

36 C : r(t) = (x(t), y(t), z(t)) t 1 F (r) C F C r, r 1,..., r n C i = 1, 2,..., n r i 1 r i ζ i ζ 1 ζ n ζ ζ S(, ζ) n F (ζ i ) (r i r i 1 ) (3.2.5) i=1 = max i r i 1 r i ζ C F F (r) dr = lim S(, ζ) (3.2.6) C C (1, 1, 1) y = z = x 2 F z F (x, y, z) = y (3.2.7) F (r) dr C F ( ) C F (x, y, z) x, y, z C x F (r) dr x i (t) F

37 ( ) t F (r) dr = 1 C F (r(t)) r (t) dt (3.3.1) t r (t) r(t) = (x(t), y(t), z(t)) t (x (t), y (t), z (t)) r (t) F (t) η i ζ [, 1] n- t = < t 1 < t 2 <... < t n 1 < t n = 1 [t i 1, t i ] s i t i r i = r(t i ) ζ i = r(s i ) 8 S(, ζ) = t i 1 t i n F (r(s i )) (r(t i ) r(t i 1 ) ) (3.3.2) i=1 r(t i ) r(t i 1 ) r (t i 1 )(t i t i 1 ) (3.3.3) 9 (3.3.2) S(, ζ) n F (r(s i )) r (t i 1 )(t i t i 1 ) (3.3.4) i=1 r (t) t i 1 s i r (t i 1 ) r (s i ) S(, ζ) n F (r(s i )) r (s i )(t i t i 1 ) (3.3.5) 1 (3.3.5) i=1 F (r(t)) r (t) dt 1 F (r(t)) r (t) dt 8 (3.2.5) t i, s i (3.3.2) t F (r(t i )) 9

38 r (t) dt (3.3.6) a = (x, y, z) a = x 2 + y 2 + z 2 F ( r(t) ) = r (t) r (t) (3.3.7) 1 f(x, y, z) 1 f(x, y, z) r (t) dt (3.3.8) F (r(t)) = r (t) r f(r(t)) (3.3.9) (t) (3.3.8) (3.3.8) (3.3.1) 1 F (r) dr = F (r(t)) r (t) dt (3.3.1) C F C ρ C F (r) 1 ρ(r(t)) r (t) dt (3.3.11) F (r) 1 F (r(t)) r (t) dt (3.3.12) f(r) C f(r) ds C f(r) dr 1 f(r(t)) r (t) dt (3.3.13) (3.3.1) 1 1 F (r) dr = F (r(t)) r r (t) (t) dt = F (r(t)) C r (t) r (t) dt = (F t)ds (3.3.14) C

39 t(r) r (t) r (t) (F t)ds F F t ds C F (r(t)) r (t)dt = C C C f(r(t)) r (t) dt = F (r)dr F C f(r) dr f 3.4 S ρ(r) S v(r) 1 f(r) dσ(r) = lim f (3.4.1) S dσ(r) r

40 4 S 1, S 2, S 3,... S i η i S i S i η i S i τ i (η i ) S(, η) = i f(η i ) τ i (η i ) (3.4.2) f(r)dσ(r) = lim S( ; η) = lim f(η i ) τ i (η i ) (3.4.3) S η S i

41 41 ( ) F (r) ds(r) F (r) n(r) dσ(r) (3.4.4) S S n(r) r 1 F n F ds = ndσ dσ ds Step 1. S u Su Step 2. u u 1 n u n Step 1 (u n) S Step 3. u S i S i S i 1 n i S i Step 2 (u i n i )S i u i S i (u i n i ) S i (3.4.5) i u i n i S i Step 4. S i Step 3 S i η i η i S i S i τ i (η i ) S i τ i (η i ) S i τ i 1 n i u i = u(η i ) (u i n i )τ i (η i ) S(, η) = i (u i n i )τ i (η i ) = i ( u(ηi ) n(η i ) ) τ i (η i ) (3.4.6) η S u(r) ds(r) = lim ( u(ηi ) n(η i ) ) τ i (η i ) (3.4.7) f(r) u(r) n(r) (3.4.3) u(r) ds(r) = u(r) n(r) dσ (3.4.8) (3.4.4) S i S

42 dσ n a (a 1 a 2, a 3 ) b (b 1, b 2, b 3 ) a b a b = (a 2 b 3 a 3 b 2, a 3 b 1 a 1 b 3, a 1 b 2 a 2 b 1 ) (3.5.1) a b sin θ θ a, b a b a, b a b r = r(u, v) (u, v) r(u) z = f(x, y) x = u, y = v, z = f(u, v) S (u, v) U f(r)dσ(r) U uv- S U f(r(u, v)) dudv (3.5.2) r S (u, v) U f r r(u, v) dσ dudv f(x, y)dxdy (u, v) A g(u, v)dudv J(u, v) g(u, v) J(u, v) dudv dxdy dudv (u, v)- dudv xy- uv- uv- (u, v) (u 2, v 2 ) = (u + u, v + v) u, v (u, v) (x(u, v), y(u, v), z(u, v)) (u 2, v 2 ) (x(u 2, v 2 ), y(u 2, v 2 ), z(u 2, v 2 )) ( x (x(u 2, v), y(u 2, v), z(u 2, v)) (x(u, v), y(u, v), z(u, v)) u (x(u, v 2 ), y(u, v 2 ), z(u, v 2 )) (x(u, v), y(u, v), z(u, v)) y z ) u, u, u u u = ( x u, y u, z ) u (3.5.3) u ( x y z ) ( x v, v, v v v v = v, y v, z ) v (3.5.4) v r = (x, y, z) r ( x u := u, y u, z ), u r ( x v := v, y v, z ) v (3.5.5) r u u r v (3.5.6) v

43 43 r u r v u v r = u r u v (3.5.7) v dσ dudv dσ r u r v f(r)dσ(r) = f ( r(u, v) ) r u r dudv (3.5.8) v S U u, v (3.4.4) dσ n (3.5.6) r u r v (3.5.9) 1 r n(r) = ± u r v r u r v (3.5.1) ± (u, v) S F (r) n dσ = ± F (r(u, v)) U r u r v r u r r u r dudv = ± v v U ( r F (r(u, v)) u r ) dudv (3.5.11) v n ± n F r u r v r x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ θ, φ r θ = r(cos θ cos φ, cos θ sin φ, sin θ), r = r( sin θ sin φ, sin θ cos φ, ) (3.5.12) φ r θ r φ = r2 sin θ (sin θ cos φ, sin θ sin φ, cos θ) (3.5.13) r θ r φ = r2 sin θ ˆr (3.5.14) ˆr = r/ r r n U f(r) r 2 sin θ dθ dφ (3.5.15)

44 44 r 2 sin θ dr dθ dφ F (r) ˆr r 2 sin θ dθ dφ (3.5.16) U θ φ

45 gradient, divergence, rotation A A = (A x, A y, A z ) x, y, z d- 1 x i = d j=1 R ijx j R ij d d R ij φ(r) φ φ d- d- (A 1, A 2,..., A d ) A i = d j=1 R ija j R R B ij 1 i, j d d 2 B ij = d k,l=1 R ikr jl B kl

46 gradient, divergence, rotation r (gradient, divergence, rotation ) (x, y, z) φ(x, y, z) grad φ(x, y, z) ( φ x, φ y, φ ) z φ gradient A (4.1.1) div A(x, y, z) A x x + A y y + A z z A divergence A rot A(x, y, z) = ( Az y A y z, A x z A z x, A y x A ) x y (4.1.2) (4.1.3) A rotation curl gradient, divergence ( x, y, ) z (4.1.4) grad φ = φ, div A = A, rot A = A (4.1.5) 4.2 gradient, potential Gradient Gradient φ t D t φ lim h φ(r + ht) φ(r) h (4.2.1) φ t t t D t φ

47 47 gradient ( gradient) φ(r + ht) φ(r) D t φ = lim = t grad φ (4.2.2) h h t φ = grad φ t t t x, t y, t z φ(r + ht) φ(r) = φ(x + ht x, y + ht y, z + ht z ) φ(x, y, z) φ x ht x + φ y ht y + φ z ht z (4.2.3) grad φ ht h (4.2.2) φ(r + ht) φ(r) D t φ = lim = t grad φ (4.2.4) h h t t grad φ (4.2.2) grad φ (Gradient ) grad φ D t φ t D t φ (4.2.2) (4.2.2) grad φ (4.1.1) F (r) φ(r) F (r) = grad φ(r) = φ(r) (4.2.5) F φ F ( ) φ F C F (r) dr = φ( ) φ( ) (4.2.6) C φ( ) φ( ) C φ C r(t) t 1 F = grad φ F (r) dr = 1 C grad φ ( r(t) ) r (t) dt (4.2.7)

48 48 r = (x, y, z) 1 d φ dx φ(r(t)) = dt x dt + φ y grad φ ( r(t) ) r (t) dt = 1 dy dt + φ z dz dt = grad φ(r) r (4.2.8) d [ ] 1 dt φ(r(t)) dt = φ(r(t)) = φ( ) + φ( ) (4.2.9) rotation 4.3 Divergence Gauss Divergence (x, y, z ) (x +, y +, z + ) S F (r) F (r) ds(r) S F (r) r x- x = x ( 1,, ) x = x + x (1,, ) ( ) F x (x +, y, z ) F x (x, y, z ) 2 F x x 2 = F x x 3 (4.3.1) 12 y- ( ) F y (x, y +, z ) F x (x, y, z ) 2 F y y 3, (4.3.2) z- S ( ) F z (x, y, z + ) F x (x, y, z ) 2 F z z 3 (4.3.3) F (r) ds(r) S ( Fx x + F y y + F ) z 3 + (higher orders) (4.3.4) z (4.1.2) div F 1 div F (r) = lim 3 F (r) ds(r) (4.3.5) S r divergence F 3 F div F divergence F x F x (x +, y, z ) (x, y, z ) F x x, y, z 4 13 S

49 ( ) V S = V V F (r) V div F (r)dxdydz = S F (r) ds(r) (4.3.6) divergence V (divergence ) A(r) r A divergence 1 div A(r) lim A(r) ds(r) (4.3.7) V V V r V V V V V divergence divergence (Green) V V V φ, ψ (r) ( ) φ 2 ψ + φ ψ dxdydz = φ ψ ds (4.3.8) V V ( ) φ 2 ψ ψ 2 φ dxdydz = Green Green V V ( ) φ ψ ψ φ ds (4.3.9) (φ ψ) = φ ψ + ( φ) ( ψ) (4.3.1) V (4.3.8) (4.3.8) φ, ψ (4.3.9) 4.4 Rotation Stokes rotation A r

50 5 r (x, y, z ) (x +, y +, z + ) (x, y, z ) ɛ n = (n x, n y, n z ) C A(r) dr rotation C ( rotation) n ɛ C 1 lim ɛ πɛ 2 A(r) dr = n rot A (4.4.1) C n rot A n C n z- (,, z) y- α, z- β n n n x cos β sin β cos α sin α sin α cos β = sin β cos β 1 = sin α sin β (4.4.2) n y n z 1 sin α cos α C xy- x = ɛ cos t, y = ɛ sin t t 2π r r cos β sin β cos α sin α ɛ cos t cos α cos β cos t sin β sin t r(t) = r + sin β cos β 1 ɛ sin t = r + ɛ cos α sin β cos t + cos β sin t 1 r (t) sin α cos α 1 cos α sin α cos t (4.4.3) cos α cos β sin t sin β cos t r (t) = ɛ cos α sin β sin t + cos β cos t (4.4.4) sin α sin t A(r) C A(r) f(r) = f(r ) + f r (r r ) + O( r r 2 ) { f = f(r ) + ɛ x ( cos α cos β cos t sin β sin t ) + f y ( ) f ( ) } cos α sin β cos t + cos β sin t + sin α cos t z + O(ɛ 2 ) (4.4.5) f = A x, A y, A z O(ɛ 2 ) r (t) t 2π

51 51 C ( A(r) dr = πɛ 2 A x y cos α + A x z sin α sin β + A y x cos α A y sin α cos β z A z x sin α sin β + A z y sin α cos β ) = πɛ 2 ( A x y n z + A x z n y + A y x n z A y z n x A z x n y + A z y n x = πɛ 2 n rot A + O(ɛ 3 ) (4.4.6) rotation r (4.4.1) ) (4.4.1) n n rot A rot A grad φ (Rotation ) rot φ (4.4.1) n (4.4.1) rotation Stokes (Stokes) S C S C F (r) F (r) dr = rot F (r) ds(r) (4.4.7) C S F (r) rotation-free rot F = A B F (r) dr A B C C A B C 1, C 2 C 2 B A C 2 C 1 C 2 A B A F (r) dr = F (r) dr + F (r) dr = F (r) dr F (r) dr (4.4.8) C 1 C 2 C 1 C 2 C 1 C 2 rot F = F (r) dr = rot F ds = (4.4.9) C 1 C 2 S

52 52 S C 1 C 2 F (r) dr = F (r) dr (4.4.1) C 1 C (1) V V ( ) F ds = F dxdydz (4.5.1) V V (2) F (r) = aφ(r) a ( ) φ(r)ds(r) = φ dxdydz (4.5.2) V V (3) F (r) = a A(r) a ( ) ds(r) A(r) = A dxdydz (4.5.3) V V C S C = S S C (4) Stokes ( ) A dr = A ds (4.5.4) S S (5) A(r) = aφ(r) a φ(r)dr = ds φ (4.5.5) S S (6) A(r) = a F (r) a ( ) dr F (r) = ds(r) F (r) (4.5.6) S S

53 A(r) rot E = (rotation-free ) rot E = φ(r) E(r) = grad φ(r) (4.6.1) E E = grad φ rot E = A B C C E(r) dr C φ φ(r) = φ E(r) dr C r (4.6.2) C grad φ = E φ(r) φ div B = (divergence-free ) div B = A(r) B(r) = rot A(r) (4.6.3) B A, A φ A A = grad φ grad φ A(r) A A x1 A(x 1, y 1, z 1 ) = B z (x, y 1, z 1 )dx y1 B x (, y, z 1 )dy x 1 B y (x, y 1, z 1 )dx (4.6.4)

54 54 A B A B = rot A rot A = rot (A grad φ) = rot A rot grad φ = rot A = B (4.6.5) A B = rot A = rot A rot (A A ) = B B = (4.6.6) A A rotation-free A A gradient divergence-free rotation-free ( ) F divergence-free B rotation-free E F (r) = E(r) + B(r), rot E =, div B = (4.6.7) E 1, B 1 E 2, B 2 E 1 E 2 = B 2 B 1 = grad ψ, ψ = (4.6.8) ψ E 1, B 1 (4.6.7) (4.6.8) E 2, B 2 (4.6.7) ( ) F φ A F (r) = grad φ(r) + rot A(r) (4.6.9) E E = grad φ B B = rot A div E = div F, rot E = (4.6.1) rot B = rot F, div B = (4.6.11) div F rot F F (r) E B

55 ψ(r) div E(r) = ψ(r), rot E(r) = (4.6.12) E G(r) div B(r) =, rot B(r) = G(r) (4.6.13) B rot E = φ E = grad φ φ E E(r) = grad φ(r) (4.6.14) div ψ(r) = div E(r) = div grad φ(r) (4.6.15) div grad ( 2 ) div grad φ(x, y, z) = x y z 2 φ(x, y, z) φ(x, y, z) (4.6.16) φ φ(x, y, z) = ψ(x, y, z) (4.6.17) φ E (4.6.17) φ (4.6.17) Poisson ψ(r) φ(r) = 1 4π ψ(q) dv(q) (4.6.18) r q ψ(r) (4.6.17) 14 dv(q) q φ E(r) = grad φ(r) B A B(r) = rot A(r) (4.6.19) rot rot ( rot A(r) ) = rot B(r) = G(r) (4.6.2) A 14 1 q = 4πδ(r q) r q q q

56 56 (4.6.2) rot rot ( rot A(r) ) = A(r) + grad ( div A(r) ) (4.6.21) div A(r) = r (4.6.22) A A(r) = G(r) (4.6.23) (4.6.17) A(r) = 1 4π G(q) dv(q) (4.6.24) r q (4.6.22) E E 1, E 2 i = 1, 2 div E i = ψ, rot E i = (i = 1, 2) (4.6.25) div Ẽ =, rot Ẽ = (4.6.26) Ẽ = E 1 E 2 Ẽ rotation-free φ Ẽ = grad φ (4.6.27) φ = div grad φ = (4.6.28) φ E (4.6.12) φ (4.6.28) E = E + grad φ (4.6.12) φ E φ = φ E = E + grad φ B 1, B 2 B = B 1 B 2 div B =, rot B = (4.6.29) (4.6.26)

57 φ, φ φ =, φ = (4.6.32) E(r) = grad φ(r) + grad φ, φ(r) = 1 4π B(r) = rot A(r) + grad φ, A(r) = 1 4π ψ(q) dv(q) (4.6.3) r q G(q) dv(q) (4.6.31) r q div E = div F rot E = div B = rot B = rot F E, B F = E + B div E = div F, rot E = (4.6.33) E B = F E B div B = div F div E = (4.6.34) E, B F = E + B, div B =, rot E = (4.6.35) E, B Q2 E B = F E Q2 Q Q Poisson Poisson φ(r) = ρ(r) (4.6.36) Poisson V V V φ f φ R 3 φ φ 1, φ 2 ψ(r) = φ 1 (r) φ 2 (r) ψ(r) =, r V (4.6.37) ψ(r) =, r V (4.6.38)

58 58 ψ Green Green ( ψ ψ + ( ψ) 2) dxdydz = ψ ψ ds (4.6.39) V ψ = ( ψ) 2 dxdydz = (4.6.4) V V ψ = V (4.6.41) ψ V

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

曲面のパラメタ表示と接線ベクトル

曲面のパラメタ表示と接線ベクトル L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

Fubini

Fubini 3............................... 3................................ 5.3 Fubini........................... 7.4.............................5..........................6.............................. 3.7..............................

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 { 7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2.

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2. 213 12 1 21 5 524 3-5465-74 nkiyono@mail.ecc.u-tokyo.ac.jp http://lecture.ecc.u-tokyo.ac.jp/~nkiyono/index.html 3 2 1 3.1 ρp, t EP, t BP, t JP, t 35 P t xyz xyz t 4 ε µ D D S S 35 D H D = ε E B = µ H E

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1 III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

Acrobat Distiller, Job 128

Acrobat Distiller, Job 128 (2 ) 2 < > ( ) f x (x, y) 2x 3+y f y (x, y) x 2y +2 f(3, 2) f x (3, 2) 5 f y (3, 2) L y 2 z 5x 5 ` x 3 z y 2 2 2 < > (2 ) f(, 2) 7 f x (x, y) 2x y f x (, 2),f y (x, y) x +4y,f y (, 2) 7 z (x ) + 7(y 2)

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

untitled

untitled 0.1 1 vector.tex 20010412;20;23;25;28 0507;09 19;0917-19;22;23;1017;1127;1204; 20020108;15; 20061107; 0 1 0.1............................................. 1 0.2....................................... 2

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30 2.4 ( ) 2.4.1 ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) I(2011), Sec. 2. 4 p. 1/30 (2) Γ f dr lim f i r i. r i 0 i f i i f r i i i+1 (1) n i r i (3) F dr = lim F i n i r i. Γ r i 0 i n i

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

Ver.2.2 20.07.2 3 200 6 2 4 ) 2) 3) 4) 5) (S45 9 ) ( 4) III 6) 7) 8) 9) ) 2) 3) 4) BASIC 5) 6) 7) 8) 9) ..2 3.2. 3.2.2 4.2.3 5.2.4 6.3 8.3. 8.3.2 8.3.3 9.4 2.5 3.6 5 2.6. 5.6.2 6.6.3 9.6.4 20.6.5 2.6.6

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF 2

2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF     2 2 ( 28 8 (http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ 2 2 ( Riemann ( 2 ( ( 2 ( (.8.4 (PDF http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/ http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu/

More information

II 2 ( )

II 2 ( ) II 2 ( 26 1 1 1 3 1.1....................................... 3 1.1.1.............................. 3 1.1.2.............................. 4 1.1.3..................... 5 1.2 : R 3...............................

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information