9 4 I 9:00 9:20 9:20 9:40 :M L 0:00 :00, :0 2:0 2:0 3:40 II 3:40 4:00 4:00 4:20 4:40 5:40, 5:50 6:50 7: II 9:5 9:35 9:35 9:55 Colored hook formu

Size: px
Start display at page:

Download "9 4 I 9:00 9:20 9:20 9:40 :M L 0:00 :00, :0 2:0 2:0 3:40 II 3:40 4:00 4:00 4:20 4:40 5:40, 5:50 6:50 7:00 9 5 II 9:5 9:35 9:35 9:55 Colored hook formu"

Transcription

1 :30 2: :55 9:00 9:00 9:20 9:20 9:40 poset 9:40 0: :20 :20, :30 2:30 2:30 4:30 4:30 5:30, 5:40 6:40 7:00 7:20 p q g 7:20 7:40 NTT 7:40 8:05 labeled tree chordal graph 8:05 8:25 8:25 9:50 I 9:50 20:0 Trace generating functions of plane partitions 20:0 20:30 Catalan, Motzkin, Schröder Hankel q-analogue 20:30 20:50 GAP Partition

2 9 4 I 9:00 9:20 9:20 9:40 :M L 0:00 :00, :0 2:0 2:0 3:40 II 3:40 4:00 4:00 4:20 4:40 5:40, 5:50 6:50 7: II 9:5 9:35 9:35 9:55 Colored hook formula for a generalized young diagrams 0:5 0:35 A wild configuration chase 0:35 :00 Homotopy type of the box complexes of graphs without 4-cycle :00 :20 Algebraic shifting of strongly edge decomposable spheres :20 :40 3 :40 :

3 (Asai-Yoshida[3]) A, G Hom(A, G) 0 mod gcd( A/A, G ) A A A [2] A A n C n Frobenius F (Frobenius ) G n N # {x G x n = } 0 mod gcd(n, G ) I (Iwasaki []) G H G n N # {x G x n H} 0 mod H Frobenius G n H G H n N G σ # {x HσH x n H} 0 mod H 2 kamijo-a@mail.sci.hokudai.ac.jp

4 2 G H n N G σ, τ # {x HσH x n HτH} 0 mod H 3 G Ω n 2 a Ω a σ a σ G G a := {g G a g = a} G a,a σ := {g G a g = a, (a σ ) g = a σ }, G a n G a n Ga σ Z G a,a σ := {x G x n G a } Iwasaki 4 ( ). Frobenius Iwasaki G H G G a H a := i 0 a i H ai H := a i Ha i C a := {haδh h H δ H a } C a a H- 4 G H G x x H- C x G H- G = C x C x2 C xr (disjoint union). ( x = G ). ( C xi ) n := {α n α C xi } # {x G x n H} = H # { i ( C xi ) n = C G } [] S.Iwasaki, A Note on the nth Roots Ratio of a Subgroup of a Finite Group,Jounal of Algebra 78 (982), [2] T.Yoshida, Hom(A, G),J.Algebla 56(993) [3] T.Yoshida and T.Asai, Hom(A, G),J.Algebra 60(993)

5 Poset Bjorner Factor-order, Subword-order Mobius Bjorner, Sagan, Vatter Rooted-forest( component tree Poset) Generalizedsubword-order Mobius Rooted-forest Conjecture P := {a, b, c a < c, b < c } P Generalizedsubword-order P Mobius µ µ(a i, c j ) = T i+j (X) X j i for 0 i j {T n (X) n N} Chebyshev Definition s ( 2), m N Tm(X) s (s = 2 Chebyshev T0 s (X) =, T s (X) = (s )X Tm(X) s + Tm+2(X) s = sx Tm+(X) s Tm(X) s P s = {a, a s, c a i < c, for i =, r} Theorem s( 2), 0 m n,{a m } {a i a im i, i m {, s}} µ({a m }, c n ) Tm+n(X) s X n m 2 Finite Graded poset ab-index Quasi-symmetric-function( Qsym ) Euler poset c = a + b, d = ab + ba cdindex Stembridge P-partition Enriched-P-partition Stembridge map cd-index Qsym Enriched-P-partition Peak-algebra Billera, Ehrenborg, Readdy ( oriented matroid) Poset ab-index Intersection lattice ab-index c-2d index

6 Hetyei Poset Chebyshev Billera, Ehrenborg, Hsiao, Readdy, Willigenburg Stembridge map, c-2d index Chebyshev open problem 2

7 (Hiroki Shimakura) (VOA) ( )., VOA., VOA,.. VOA VOA. VOA, VOA., VOA Lam.,, Lam,.. n k (binary linear code) C F 2 n F n 2 k.,,. F n 2 {e, e 2,..., e n }, F n 2 c = c i e i (c, c 2,..., c n ).,. F n 2 c (weight) 0 wt(c). (doubly even), 4, (triply even) 8. F n 2,., x, y F n 2, x, y = n i= x iy i mod 2. C, C = {x F n 2 x, y = 0 y C} (dual code). C

8 (self-orthogonal), C C, (self-dual) C = C. n C n 2 C 2 n + n 2 C C 2.,. 2, ϕ : F n 2 F 2n 2, c (c, c). n C, 2n Φ(C) F 2 ϕ(c), ( n, 0 n ).,. 2.. C., Φ(C) 2. VOA, () 6 Reed-Muller RM(, 4) 3. (2) 32 RM(, 4) RM(, 4) Φ(d + 6)., d , 48., 24 7., , , RM(, 4) RM(, 4) RM(, 4).,,.. F n +n 2 2 F n 2, Fn C 8, Φ(C) 6. 3 H 8 [8, 4, 4], RM(, 4) = Φ(H 8 )

9 Theorem F. Let p be prime and a be integer. Then a p a (mod p). Corollaly F. Let p be prime and (a, p) =. Then a p (mod p). Corollaly F2. Let p be prime and (a, p) =. Then sa p s (mod p) for s p. Definition. When sa n s (mod n), let a i = sa i mod n (i =, 2,..., n) for s n. Find the first i (i =2, 3,..., n) such that a i = s. Put the i be L. Then the sequence a (= s),a 2 (= sa),a 3 (= sa 2 ),..., a L (= s) is called an L-orbit starting s. When there exist (n ) L-orbits starting, 2,..., n, we say that n admits L-orbits. Note. Let p be prime. It is a widely known result that p admits p-orbits and that a is called a primitive root w.r.t. mod p. Especially, the least a denoted g is called a least primitive root w.r.t mod p. Example. (p, g) =(2, ), (3, 2), (5, 2), (7, 3), (, 2), (3, 2), (7, 3), (9, 2), (23, 5), (29, 2), (3, 3), (37, 2), (4, 6), (43, 3), (47, 5), (53, 2), (59, 2), (6, 2), (67, 2), (7, 7), (73, 5), (79, 3), (83, 2), (89, 3), (97, 5). (p, g) =(5, 2) p-orbit :, 2, 4, 3, (p )-cycle C =(, 2, 4, 3). (p, g) =(7, 3) p-orbit :, 3, 2, 6, 4, 5, (p )-cycle C =(, 3, 2, 6, 4, 5). Definition. Let K n denote the symmetric complete digraph of n vertices. The symmetric complete multi-digraph λk n is the symmetric complete digraph K n in which every edge is taken λ times. Let C k be the directed cycle on k vertices.the C k -t-foil is a digraph of t edge-disjoint C k s with a common vertex. When λk n is decomposed into edge-disjoint sum of C k -t-foils, we say that λk n has a C k -t-foil decomposition. Moreover, when n =(k )t + and every vertex of λk n appears in the same number of C k -t-foils, we say that λk n has a tightly balanced C k-t-foil decomposition. This decomposition is a type of resolvable C k -foil designs. Example 2. (n, g) = (3, 2) n-orbit :, 2, 4, 8, 3, 6, 2,, 9, 5, 0, 7, (n )-cycle C =(, 2, 4, 8, 3, 6, 2,, 9, 5, 0, 7). C 5-3-foil = (3,, 2, 4, 8) (3, 3, 6, 2, ) (3, 9, 5, 0, 7). C 5-3-foil = (3, 2, 4, 8, 3) (3, 6, 2,, 9) (3, 5, 0, 7, ). C 5-3-foil = (3, 4, 8, 3, 6) (3, 2,, 9, 5) (3, 0, 7,, 2). C 5-3-foil = (3, 8, 3, 6, 2) (3,, 9, 5, 0) (3, 7,, 2, 4). These C 5-3-foils comprise a tightly balanced C 5-3-foil decomposition of 5K 3. Conjecture. λk n has a tightly balanced C k-t-foil decomposition if and only if λ 0 (mod k) and n =(k )t +. Department of Informatics, Faculty of Science and Technology, Kinki University, Osaka , JAPAN. E- mail:ushio@info.kindai.ac.jp Tel: (ext. 5409) Fax:

10 グラフのトラックレイアウト 宮 内 美 樹 日 本 電 信 電 話 株 式 会 社 NTT コミュニケーション 科 学 基 礎 研 究 所 グラフ G=(V,E)の 頂 点 集 合 V を 2 つの 部 分 集 合 A と B に 分 けて,G の 辺 がすべて A の 頂 点 と B の 頂 点 とを 結 ぶ 辺 になっているようにできるとき G を 2 部 グラフという.この 分 割 集 合 A, B を 部 集 合 と 呼 び,A, B の 頂 点 の 個 数 がそれぞれ m, n のとき,G = G m,n で 表 す.もし G が A の 頂 点 と B の 頂 点 を 結 ぶ 辺 を 全 て 含 んでいれば G は 完 全 2 部 グラフと 呼 ばれ G=K m,n で 表 す. グラフ G の 辺 上 に 次 数 2 の 頂 点 を 幾 つか 付 け 加 えて 得 られるグラフを G の 細 分 という. 付 け 加 えられた 次 数 2 の 頂 点 を 細 分 点 と 呼 ぶ.グラフはまたそれ 自 身 の 細 分 ともみなす. 集 合 S の 全 順 序 というのは,S 上 の 全 順 序 σ のことをさす. 集 合 S はσによって 順 序 付 けられ ているというように, 全 順 序 σ のことを 簡 単 に 全 順 序 σとも 書 くことにする.グラフ G の 頂 点 順 序 というのは, 頂 点 集 合 V(G) 上 の 全 順 序 σのことである. 頂 点 集 合 V(G)の 分 割 {V i : i t}が G の 頂 点 t- 彩 色 であるとは, 任 意 の 辺 vw E(G)に 対 して, v V i かつ w V j ならば i j が 成 り 立 つときのことを 言 う. G の 頂 点 t- 彩 色 {V i : i t}の 各 部 分 集 合 V i が < i によって 順 序 づけられているとき, 順 序 集 合 (V i, < i ) をトラックと 呼 び,{(V i, < i ) : i t} を G の t-トラック 割 り 当 て と 呼 ぶ. 各 部 分 集 合 での 順 序 がわかっているときは, 単 にトラック 割 り 当 てを{ V i : i t}とも 表 記 する. トラック 割 り 当 てにおける X- 交 差 とは, 異 なる i と j で v < i x かつ y < j w となるような 2 辺 vw と xy のことを 言 う.E(G)の 分 割 {E i : i k} のことを,G の 辺 k- 彩 色 と 言 う. 辺 vw E i は 色 i に 彩 色 されていると 言 う.グラフ G の (k, t)-トラックレイアウトとは,g の t-トラッ ク 割 り 当 てと, 同 色 の X- 交 差 を 持 たない G の 辺 k 彩 色 からなるものを 言 う.(k, t)-トラックレイ アウトを 持 つグラフのことを (k, t)-トラックグラフという. グラフ G の 頂 点 の 順 序 において,L(e) と R(e) をそれぞれ,G の 辺 e E(G)の 両 端 点 で,L(e) < σ R(e)を 満 たすものとする.L(e) < σ L( f )なる, 異 なる 2 辺 e, f E(G) に 対 して,e と f がネスト しているとは, L(e) < σ L( f ) < σ R( f ) < σ R(e) を 満 たすときをいう. グラフ G のキューとは, 辺 集 合 E(G)の 部 分 集 合 E E(G) で E のどの 辺 もネストしていな い 部 分 集 合 を 言 う.グラフ G の k-キューレイアウトとは,g の 頂 点 順 序 σと 辺 集 合 E(G)の 分 割 {E s : s k} からなるセットで, 各 分 割 集 合 E s が 頂 点 順 序 σに 対 して,キューとなっているも のをいう.k-キューレイアウトを 持 つグラフを k-キューグラフと 呼 ぶ.グラフ G のキュー 数 qn(g)とは G が k-キューグラフとなるような 最 小 の k のことである. 今 回 は,グラフの 細 分 の(k,2)-トラックレイアウトについてキュー 数 と 関 連 付 けられた 結 果 を 紹 介 するとともに 最 新 の 成 果 を 発 表 する.

11 Labeled tree G 4 T G ()T G (2)T Q i Q h Q j path Q h Q j Q i Theorem. (H. Shinohara 2007 preprint) L V ( V = k) L L, L 2 L L L 2 u, v L 2 u v w w L \uv u L vw\uv L L minimal separator

12 . Ising Model Gibbs NP Chertkov and Chernyak [].2 AI LDPC, , tel , Institute of Statistical Mathematics, 4-6-7, Minami-Azabu, Minato-Ku, Tokyo, Definition ( ). V = {i,..., i N },E V V G := (V, E) (j, i) E i j V E E i.e. (j, i) E (i, j) E i.e. (i, i) / E G, (j, i) (i, j) ji(= ij) Ẽ N(i) i d i := N(i) i Definition 2 ( ). G = (V, E) χ := i V χ i G x = (x i ) i V χ i = {0, } χ G Definition 3. (G, χ) ji Ẽ ψ ji : χ j χ i R 0 G Ψ = {ψ ji } ji Ẽ (G, χ, Ψ) p(x) = Z ji Ẽ ψ ji(x j, x i ) χ p x = (x i ) i V,Z 2.2 (Belief Propagation) {p i (x i )} i V Z loopy belief propagation

13 [2] Algorithm (Belief Propagation) (j, i) E t = 0 i j m t=0 (j,i) R χj m (j,i) (x j ) = χ j x j χ j 2. t = 0,,... m t+ (j,i) (x j) = ω x i χ i ψ ji (x j, x i ) k N(i)\{j} m t (i,k) (x i) () ω x j m t+ (j,i) (x j) = {m (j,i) } (j,i) E 3. p(x) p i (x i ), p ji (x j, x i ) b i (x i ) := ω j N(i) b ji (x j, x i ) := ω ψ ji (x j, x i ) m (j,k) (x j) k N(j)\{i} m (i,j) (x i) (2) k N(i)\{j} 4. log Z log Z B = m (i,k ) (x i) (3) b ji (x j, x i ) log ψ ji (x j, x i ) ji Ẽ x jx i b ji (x j, x i ) log b ji (x j, x i ) x jx i ji Ẽ + i V (d i ) x i b i (x i ) log b i (x i ) (4) G tree( ) 2.3 Loop Loop (G, χ, ψ) {m (i,j)} {β ij } ij Ẽ, {γ i} i V x R {f n (x)} n=0 f 0(x) =, f (x) = 0, f n+ (x) = xf n (x) + f n (x) : 2.3. Loop Z = + β l + β r + β l β 67 β r γ 6 γ 7 (5) β l = β 2 β 23 β 34 β 45 β 56 β 6, β r = β 78 β 89 β 9(0) β (0)() β ()(2) β (2) Z B = 5 Z B Theorem (Loop Expansion). Z = Z B ( + C G r(c)) (6) G G 2 C = (E C, V C ) d C,i C i r(c) := 3 ij ẼC β ij i V C f dc,i (γ i ) (7) 6 Pfaffian [] M. Chertkov and V.Y. Chernyak. Loop series for discrete statistical models on graphs. Journal of Statistical Mechanics, page P06009, 2006a. [2] J. Pearl Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference Morgan Kaufman, 988. [3] M. E. Fisher, On the Dimer Solution of Planar Ising Models J. Math. Phys., 7:776-78, E G = 2 E. 6

14 Trace Generating Functions of Plane Partitions Soichi OKADA Graduate School of Mathematics, Nagoya University A plane partition is an array of non-negative integers π π 2 π 3 π = π 2 π 22 π 23.. satisfying i,j π i,j < and π i,j π i,j+, π i,j π i+,j for all i and j. A plane partition π is identified with its diagram {(i, j, k) P 3 : k π i,j }, where P is the set of positive integers, and can be visualized as a stack of unit cubes. For positive integers a, b and c, we denote by P(a, b, c) the set of all plane partitions whose diagrams are contained in the a b c box. Given a plane partition π = (π i,j ), we define the k-th trace t k (π) by putting t k (π) = π i,i+k. In this talk, we follow an idea of Okounkov and Reshetikhin to prove Gansner s formula b π P(a,b, ) k= a+ q t k(π) k = where q[i, j] = j k=i q k and its finite analogue b π P(a,b,c) k= a+ q t k(π) k a i= j=. b ( q[ i +, j ]), = ( q a a+ qa 2 a+2 q ) c s(c a )(z, z 2,, z a+b ), where s (c a ) is the Schur function corresponding to the rectangular Young diagram (c a ) and z i = q[ a +, a + i ] ( i a + b).

15 Catalan, Motzkin, Schröder Hankel q-analogue 4 0 ishikawa@fed.tottori-u.ac.jp Mathematics Subject Classifications: Primary 05A5; Secondary 05A7, 05E05, 05E0. Keywords: Catalan numbers, Fibonacci numbers, Hankel determinants. Introduction Catalan Hankel determinants q-analogue. Catalan path Catalan Motzkin Schröder path,. Catalan c n = n+( 2n ) n (n = 0,, 2,... ) c0 =, n c n = c n c k (.) k=0 [4]. Catalan n Hankel Mn t = c t c t+... c t+n c t+ c t+2... c t+n (.2) c t+n c t+n... c t+2n 2 det M 0 n = det M n =, (.3) det M 2 n = n +, (.4) det Mn 3 = (n + )(n + 2)(2n + 3) (.5) 6 [, 3]. c t + c t+ c t+ + c t+2... c t+n + c t+n c t+ + c t+2 c t+2 + c t+3... c t+n + c t+n+ Sn t = c t+n + c t+n c t+n + c t+n+... c t+2n 2 + c t+2n (.6).

16 n Hankel det M 0 n = f 2n (.7) det M n = f 2n+ (.8) [, 2]. f n Fibonacci ( f 0 = f =, f n = f n + f n 2 ). 2 Catalan q-analogue c n (q) c 0 (q) = n c n (q) = q (k+)(n k) c n k (q)c k (q) (2.) k=0., Hankel (.2) q-analogue ( ) Mn(q) t = q (i j)(i j+)/2 c i+j+t 2 (q),. Theorem 2.. n i,j n (2.2) det M 0 n(q) = det M n(q) = (2.3) Conjecture 2.2. n. [n] q = qn q det M 2 n(q) = [n + ] q, (2.4) det M 3 n(q) = [n + ] q[n + 2] q (( + q 2 )[n + ] q + q n+ ) [3] q [2] q (2.5) q-. q-motzkin numbers m n (q) q-schröder numbers s n (q) m 0 (q) = s 0 (q) =, n 2 m n (q) = q 2n m n (q) + q 2(k+2)(n 2 k) m n 2 k (q)m k (q), (2.6) k=0 n s n (q) = q 2n s n (q) + q 2(k+2)(n k) s n k (q)s k (q) (2.7) k=0.. [] A. Benjamin, N. Cameron, J. Quinn and C. Yerger, Catalan Determinants A Combinatorial Approach, preprint. [2] A. Cvetkovié, P. Rajkovié and M. Ivkovié, Catalan numbers, the Hankel transform, and Fibonacci numbers, J. Integer Seq. 5 (2002), Article [3] M.E. Mays and J. Wojciechowski, A determinant property of Catalan numbers Discrete Math. 2 (2000), [4] R. Stanely, Enumerative Combinatorics, Volume, 2, Cambridge University Press,

17 Gap Partition Partition 2 3 {{f, m, m 2, m 4 }, {f 2 }, {f 3, f 4 }{f 5, m 3 }, {m 5 }} w, w 2 Q (Q C) C A (Partition ) A n (Q) f f 2 f 3 f 4 f 5 T2 T3 T4 T T5 w w w 2 =Q w 2 m m 2 m 3 m 4 m 5 : dim A n (Q) 2n Bell

18 B(2n) Bell n (), 2, (5), 5, (52), 203, (877), 440, (247), 5975,... Young Young λ (0) λ (0) n λ (n) Young λ (i) (inner) corner box λ (i+/2) λ (i+/2) (outer) corner box λ (i+) Young Bell B(2n) 0-th -st 2-nd rd : A n (Q) Bratteli GAP A n (Q) Bell B(2n) n A n (Q) GAP Groups Algorithms and Programming GAP GAP 2

19 NUIDA, Koji CD DVD [] ID [2] 2 Marking Assumption w m w i 0 w {0, } m u,..., u l w,..., w l j j Marking Assumption (Marking Assumption) j m w,j = w 2,j = = w l,j y y j = w,j

20 Marking Assumption y l P l (y) = {{u,..., u l } Z l u < u 2 < < u l N, y j {w,j,..., w l,j } for all j m} N [3] P l (y) 3 P l (y) x = (x i,j ) i N, j m M N,m ({0, }) m y = (y,..., y m ) {0, } m j (MA) j m y j {x i,j, x i2,j,..., x il,j} {,..., N} l {i,..., i l } Ω(N l ) N l [] JASRAC INTERNET Watch 027/special.htm [2] D. Boneh and J. Shaw, Collusion-secure fingerprinting for digital data, IEEE Trans. Inform. Theory 44 (998) pp [3] K. Nuida, M. Hagiwara, T. Kitagawa, H. Watanabe, K. Ogawa, S. Fujitsu, and H. Imai, A tracing algorithm for short 2-secure probabilistic fingerprinting codes strongly protecting innocent users, 4th Annual IEEE Consumer Communications and Networking Conference (CCNC 2007) DRM Workshop, Nevada, USA, Jan.,

21 2007/09/04 9:20-9:40 CSS CSS LDPC LDPC LDPC IEEE802.n( LAN 2.4GHz/5GHz 00Mbps IEEE802.6e MAN Mobile WiMAX 3Km 2Mbps IEEE802 IEEE802.6e Acknowledgement: This research was partially supported by Grants-in- Aid for Young Scientists (B), , 2006.

22 X-compact X-compact X-code x =(x (),x() 2,...,x() m ) x 2 =(x (2),x(2) 2,...,x(2) m ) F 2 m x x 2 superimposed sum x x 2 x x 2 =(x () x (2),x() 2 x (2) 2,...,x() m x m (2) ), x ( j) i = x (l) k = 0 x ( j) i x (l) k = 0 x x 2 = x x x 2 cover X F 2 m n e e d X superimposed sum n x e cover X (m,n,e,x) X-code X-code X- compact

23 ¹ Ù Û Ö º Û Ò º º Ô ÇÒÐ Ò Ò ÈÖÓ Ð Ñ ÓÖ Ê ÙÐ Ö ÈÓÐÝ ÓÒ À ÖÓ Ù Û Ö ÃÛ Ò Ù Ò ÍÒ Ú Ö ØÝ ½ ÁÒØÖÓ ÙØ ÓÒ ÁÒ Ø ¹ ÖÚ Ö ÔÖÓ Ð Ñ Ø ÔÐ Ý Ö Ñ Ò ÖÚ Ö Ý Ò Ò Ø Ö ÐÓ Ø ÓÒ Ó Ø Ø Ø Ð Ø ÓÒ Ó Ø Ñ ÖÚ Ø Ö ÕÙ Ø Ø Ø Ñ Ø Ô º ÁÒ Ø Ô Ô Ö Û ØÙ Ý ½¹ ÖÚ Ö ÔÖÓ Ð Ñ ÓÒ Ø ÜݹÔÐ Ò º ÇÒ Ñ Ý Ø Ò Ø Ø Ø ÔÐ Ý Ö ÓÛÒ ÓÒÐÝ ÓÒ ÖÚ Ö Ø Ö ÒÓ Ó Ò ÖÚ Ö ÐÓ Ø ÓÒ Ò Ø Ö ÓÖ Ø ÓÑÔ Ø Ø Ú Ö Ø Ó ÐÛ Ý ÓÒ º Ì Ó Ú ÓÙ ÐÝ ØÖÙ Ø ÔÐ Ý Ö ØÓ ÑÓÚ Ø ÖÚ Ö ØÓ Ø Ü Ø ÔÓ Ø ÓÒ Ó Ø Ö Õ٠غ ÀÓÛ Ú Ö Ø ÒÓÙ ØÓ ÑÓÚ Ø ÓÑ Û Ö Ò Ö Ø Ö ÕÙ Ø Ø Ò Ø ÔÐ Ý Ö Ó Ú Ó º Æ Ñ ÐÝ ÒØ ÓÒÐ Ò Ò ÔÖÓ Ð Ñ Ö ÕÙ Ø ÖØ Ò Ö ÓÒ Ù Ø Ø Ø Ö ÕÙ Ø Ò ÖÚ Ø ÖÚ Ö ÑÓÚ ÓÖ Ø Ý Ò Ø Ö ÓÒº Ì Ò Ð ÖÚ Ö Ò ÓÓ Ò Ö ØÖ ÖÝ ÔÓ ÒØ Ò Ø Ö ÓÒ Ò ÓÖ Ö ØÓ Ö Ù Ø ØÓØ Ð ØÖ Ú Ð Ø Ò º Æ ØÙÖ Ð ÔÔÐ Ø ÓÒ ÒÐÙ ÐÐÓ Ø ÓÒ Ó Ö Ð Ý ÖÓ Ø Ò Ö ØÓ ÓÐÐÓÛ ÙÔ ÓÒ ÙØ Ú Ò ÒØ Ò Ø Ø Ó Ø Ü Ò Ò ÓÐ ØÝ Û Ø Ú Ö ØÖ Æ Ö ØÖ Ø ÓÒ º Ö Ñ Ò Ò Ä Ò Ð Ö Ø ØÙ Ø ÔÖÓ Ð Ñ Ò ÔÖÓÚ Ø Ø Ø Ö Ü Ø ÓÑÔ Ø Ø Ú ÓÒÐ Ò Ð ÓÖ Ø Ñ ÓÖ Ø ÓÒÐ Ò Ò ÔÖÓ Ð Ñ ÓÖ ÒÝ ÓÒÚ Ü Ö ÓÒ ¾ º Ì Ý Ò Û Ø Ð Ò Ò Ò ÜØ Ò Ø Ò ÐÝ ØÓ Ð ÔÐ Ò Ò Ò Ö Ð ÓÒÚ Ü Ó º ÀÓÛ Ú Ö Ø Ý Û Ö ÒÓØ ÒØ Ö Ø Ò ÒÝ Ô Ô Ó Ø Ö ÓÒ ÓÖ Ô Ú ÐÙ Ó Ø ÓÑÔ Ø Ø Ú Ö Ø Óº Ì ÔÖÓ Ð Ñ ÒÓØ ÔÔ Ö Ò Ø Ð Ø Ö ØÙÖ Ò Ø Òº ÁÒ Ø ÓÒÐ Ò Ò ÔÖÓ Ð Ñ Ö ÕÙ Ø Ê Ü Ý µ Ú Ò ÓÑ Û Ö ÓÒ Ø ÜݹÔÐ Ò Ø Ø Ñ Ø Ô ½ ¾ Ѻ Ì Ò Ò ÓÒÐ Ò Ð ÓÖ Ø Ñ Ð Ø Ø ÓÐ ÖÚ Ö ÓÒ ÔÓ ÒØ Ò Ö ÓÒ Ø Ø Ó Ø Û Ø Ê º ÓÖ Ò ÒÔÙØ ÕÙ Ò Ê ½ Ê ¾ Ê Ñ µ Ø Ó Ø Ó Ð Ò Ä µ Ë ½ ÈÑ ¾ ½ Û Ö Ë Ø Ò Ø Ð ÐÓ Ø ÓÒ Ó Ø ÖÚ Ö Ò ½ ÒÓØ Ø ÙÐ Ò Ø Ò ØÛ Ò ½ Ò º ÁÒ Ø Ô Ô Ö Û Ð Ø Ö ÓÒ Ø ÙÒ ÓÒ Ó Ö ÙÐ Ö ÔÓÐÝ ÓÒ Û Ø ÒØÖÓ Ê Ò Ø ÒØ Ö ÓÖº Ì ÔÓÐÝ ÓÒ Ó ÒÓØ ÖÓØ Ø Ò Ø Ö ÓÖ Û Ò ÙÑ Û Ø ÓÙØ ÐÓ Ó Ò Ö Ð ØÝ Ø Ø Ø ÓØØÓÑ ÐÛ Ý Ô Ö ÐÐ Ð ØÓ Ø Ü¹ Ü º ÐØ ÓÙ ÓÖ ÓÒÚ Ò Ò Ó Ø Ò ÐÝ Û Ø Ø Ð Ò Ø Ó Ò Ø ÔÓÐÝ ÓÒ ÓÒ Ø Þ Ó Ø ÔÓÐÝ ÓÒ Ó ÒÓØ Ñ ØØ Ö ØÓ Ø ÓÒÐ Ò ÓÑÔ Ø Ø Ú Ò º ÓÐÐÓÛ Ò ½ Û Ý Ø Ø Ø ÓÑÔ Ø Ø Ú Ö Ø Ó Ó Ò ÓÒÐ Ò Ð ÓÖ Ø Ñ Ð Ø Ö Ü Ø ÓÒ Ø ÒØ Ù Ø Ø ÓÖ ÐÐ ÒÔÙØ ÕÙ Ò Ä µ ÇÈÌ µ Û Ö ÓÔØ Ò ÓÔØ Ñ Ð Ó Ò Ð ÓÖ Ø Ñº ¾ Ö Ý Ð ÓÖ Ø Ñ Ì Ö Ý Ð ÓÖ Ø Ñ ÓÖ Ø ÓÒÐ Ò Ò ÔÖÓ Ð Ñ Ò ÐÓÛº ÓÖ Ö ÙÐ Ö ÔÓÐÝ ÓÒ ÓÒ Ò ÐÝ Ø Ø Ø Ö Ö ØÛÓ ØÝÔ ÓÒ Ø ÖÚ Ö³ Ú ÓÖ Ì ÖÚ Ö ÖÖ Ú ÓÒ ÓÒ Ó Ø Ø Ö Ú ÖØ Ð ÑÓÚ Ñ ÒØ Ò Ø Ø Ø ÓÖ ÓÒ ÓÒ Ó Ø Ú ÖØ º Ð ÓÖ Ø Ñ Ö ÓÖ Ö ÕÙ Ø µ Ø ÖÚ Ö³ ÔÖ Ú ÓÙ ÔÓ Ø ÓÒ ½ ÒÓØ Ò Ø Ò ÑÓÚ Ø ÖÚ Ö ØÓ ¾ Ù Ø Ø Ñ Ò Ñ Þ ½ º µ ÇØ ÖÛ Ó ÒÓØ ÑÓÚ Ø ÖÚ Öº ½

24 ½ Ð Ë ÓÔØ ¾ ÙÖ ½ ÇÒÐ Ò Ò ÓÖ À Ü ÓÒº Ò ½¼ ÓÑÔ Ø Ø Ú Ö Ø Ó ¾º¼¼ ½º ½ º¾ ¾º¼¼ º ¾º ½ º º¾ Ì Ð ½ ÓÑÔ Ø Ø Ú Ö Ø Ó Ó Ö ÓÖ Ö ÙÐ Ö Ò¹ ÓÒ º Ì ÓÖ Ñ ½º ÓÖ Ø ÓÒÐ Ò Ò ÔÖÓ Ð Ñ Ø Ø Ø ÓÑÔ Ø Ø Ú Ö Ø Ó Ó Ø Ö Ý Ð ÓÖ Ø Ñ ½ Ò ¾Ò ÓÖ Ó Ò Ò ½ Ò ÓÖ Ú Ò Ò Ø Ö ÕÙ Ø Ö ÓÒ Ö ÙÐ Ö Ò¹ ÓÒ Ò µº Ò Ë Ø Ó ÔÖÓÓ º Ì ÙÔÔ Ö ÓÙÒ ÔÖÓÚ Ò Ý Ò ÑÓÖØ Þ Ò ÐÝ º ÓÖ Ú Ò ÒÔÙØ ÕÙ Ò Û ÒÚ Ø Ø ÓÛ Ö Ò Ò Ó Ò Ð ÓÖ Ø Ñ Ó ÑÓÚ Ø ÖÚ Ö ÓÖ Ö Õ٠غ Ï Ù ÔÓØ ÒØ Ð ÙÒØ ÓÒ Ó Ü Ýµ È Ò ½ ¼ Ü Ò ¾ ¾ Ý Ó Ò Ò Û Ö Ü Ýµ Ø ÔÐ Ñ ÒØ Ó ØÛÓ ÖÚ Ö Ñ Ò Ý Ö Ò Ó º Ì ÙÒØ ÓÒ Ò Ö Ö Ò ÜØ Ò ÓÒ Ó Ø Å Ò ØØ Ò Ø Ò ØÛ Ò Ø ÖÚ Ö º ÌÓ ÓÛ Ø Ø ØÒ Û Ú Ò ÒÔÙØ ÕÙ Ò ÓÒ Ø Ò Ó Ö Ô Ø Ø ÓÒ Ó ØÛÓ ÔÓÐÝ ÓÒ ÇÒ Ü Ò Ø ÓØ Ö Ð ØÐÝ Ð Ò º Ï Ð Ø ÓÔØ Ñ Ð Ó ØÓ Ó Ö ØÐÝ ØÓ Ø ÒØ Ö Ø ÓÒ Ø ÖÚ Ö Ó Ö Ó Ð ØÓ Ø Þ Þ ØÛ Ò ØÛÓ Ê Ö Ò ½ º ÓÖÓ Ò Ò Êº й Ò Úº ÇÒÐ Ò ÓÑÔÙØ Ø ÓÒ Ò ÓÑÔ Ø Ø Ú Ò ÐÝ º Ñ Ö ÍÒ ¹ Ú Ö ØÝ ÈÖ ½ º ¾ º Ö Ñ Ò Ò Æº Ä Ò Ðº ÇÒ ÓÒÚ Ü Ó Ý Ò º Ö Ø ² ÓÑÔÙØ Ø ÓÒ Ð ÓÑ ØÖÝ ¾ ß ¾½ ½ º ź ˺ Å Ò Äº º Å Ó Ò º º ËÐ ØÓÖº ÓÑÔ Ø Ø Ú Ð ÓÖ Ø Ñ ÓÖ ÖÚ Ö ÔÖÓ Ð Ñ º º Ð ÓÖ Ø Ñ ½½ ¾µ ¾¼ ß¾ ¼ ½ ¼º º ËÐ ØÓÖ Ò Êº º Ì Ö Òº ÑÓÖØ Þ Æ ÒÝ Ó Ð Ø ÙÔ Ø Ò Ô Ò ÖÙÐ º ÁÒ ÓÑÑÙ¹ Ò Ø ÓÒ Ó Ø Å ÚÓÐÙÑ ¾ Ô ¾¼¾ß¾¼ ½ º ¾

25 µ = (µ µ 2 ) l m. µ, a µ,l m/l l (i,j)=(i l+i,j) µ. i (j + µ k, j + k= i i+ µ k, j + µ k,..., j + k= k= i+l Example. µ = (2, 2, 2,,, ), a µ,3 = (, 3, 5)(2, 4, 6)(7, 8, 9)., standard tableaux, l,, a µ,l : k= µ k ) (, 3, 5)(2, 4, 6)(7, 8, 9). Young subgroup S µ = S {,...,µ } S { µ +,...,µ +µ 2 } l C l = a µ,l H µ (l) = S µ C l., Z µ (k; l) H µ (l) C ; S µ σ, C l a µ,l ζ k l ( ζ k l = exp(2πk /l)), M µ (k; l) m S m Z µ (k; l) S m H µ (l)., cycle type ρ σ S m, M µ (k; l) l k=0 ζ ik l Char(M µ (k; l))(σ)., Young diagram D µ, (marked (ρ, l)-tableux on µ) (, ). Char(M µ (k; l))(σ) (marked (ρ, l)-tableux on µ)., (ρ, l)-tableux on µ., l k=0 ζik l

26 2 NUMATA, YASUHIDE Definition 2. µ Young diagram D µ = { (i, j) N 2 j µ i } m ρ = (ρ ρ 2 ), T (ρ, l)-tableaux on µ : T D µ N., Young diagram D µ. k, T ({ k }) = ρ k., ρ k k. k, n, i, j, T ({ k }) = { (i + i, j + j ) (i, j ) D (n l ) }., k l n. j k (i, j), (i, k) D µ, T (i, j) T (i, k).,,. Example 3., ((6, 3, 3, 3), 3)-tableaux on (3, 3, 3, 2, 2, 2): 2 2 2, , , , marked (ρ, l)-tableaux on µ. Definition 4. (T, c) marked (ρ, l)-tableau on µ : T (ρ, l)-tableau on µ, c { i ρ i 0 } Z/lZ. c c : { i ρ i 0 } {,..., l },,. Theorem 5. l m µ cycle type ρ σ S m, l ζl ik Char(M µ (k; l))(σ) = { marked (ρ, l)-tableaux on µ }. k=0, µ Young subgroup,. address: nu@math.sci.hokudai.ac.jp

27 COLORED HOOK FORMULA FOR A GENERALIZED YOUNG DIAGRAM KENTO NAKADA INTRODUCTION Let λ be a partition of d, and χ λ the corresponding irreducible character of the symmetric group S d. As is well-known (e.g. [8]), the degree χ λ () of χ λ is given by the hook formula: d! (0.) χ λ () =, v Y λ h v where Y λ is the Young (or Ferrers) diagram of shape λ, and h v is the hooklength at a cell v of Y λ. Since the left hand side of (0.) is equal to the number #STab(Y λ ) of standard tableaux of shape λ, the formula (0.) can be rewritten as: d! (0.2) #STab(Y λ ) =. v Y λ h v The purpose of our talk is to introduce a generalization of (0.2), the colored hook formula, for a generalized Young diagram in the sense of D. Peterson and R. A. Proctor (see [][5]). We stress that the colored hook formula is new even for a Young diagram. Let Π = {α i i I} be the set of simple roots of a Kac-Moody Lie algebra g, and Φ + the set of real positive roots. Then we have the colored hook formula [2]: (0.3) (β,,β l ) Path(λ) l 0 β β + β 2 β + + β l = β D(λ) ( + β where λ is a finite pre-dominant integral weight of g, D(λ) is the diagram of λ, and Path(λ) is a set of sequences in Φ + with certain conditions. In our talk, we shall explain the unexplained notions above and furthur details. And we shall give an example of the colored hook formula in the case of the 2 2 Young diagram. Taking the lowest degree part of (0.3), we have: (0.4) (α i,,α id ) MPath(λ) = α i α i + α i2 α i + + α id where MPath(λ) is the set of elements of maximal length in Path(λ). Taking the specialization α i (i I) of (0.4), we furthur get: #MPath(λ) d! = ht(β), equivalently, (0.5) #MPath(λ) = where ht(β) is the height of β. β D(λ) d! β D(λ) ht(β), β D(λ) ), β,

28 2 KENTO NAKADA According to [], around 989, D. Peterson proved: l(w)! (0.6) #Red(w) = β Φ(w) ht(β) for a minuscule element [] [5] w of the Weyl group of g, where Φ(w) = {β Φ + w (β) < 0} and #Red(w) is the number of reduced decompostions of w. Peterson s formula (0.6) is equivalent to our reduced formula (0.5). The colored hook formula (0.3), in the simply-laced case, was conjectured by N. Kawanaka and S. Okamura in their study [9] [] of game-theoretical aspects of Coxeter groups. We also point out that another proof of Peterson s formula (0.6) has been obtained by S. Okamura [0] using a probabilistic argument. Although Okamura s proof was an original motivation behind the colored hook formula (0.3), our proof of (0.3) is entirely algebraic. We have also succeeded in generalizing the q-hook length formula ( R. Stanley [2] ) to minuscule elements. The proof will be given in a forthcoming paper [3]. REFERENCES [] J. B. Carrell, Vector fields, flag varieties and Schubert calculus, Proc. Hyderbad Conference on Algebraic Groups (ed. S.Ramanan), Manoj Prakashan, Madras, 99. [2] R. P. Stanley, Ordered Structures and Partitions, Ph.D thesis, Harvard University, 97. [3] V. G. Kac, Infinite Dimentional Lie Algebras, Cambridge Univ. Press, Cambridge, UK, 990. [4] R. V. Moody and A. Pianzola, Lie Algebras With Triangular Decompositions, Canadian Mathematical Society Series of Monograph and Advanced Text, 995. [5] R. A. Proctor, Minuscule elements of Weyl groups, the numbers games, and d-complete posets, J.Algebra 23 (999), [6] R. A. Proctor, Dynkin diagram classification of λ-minuscule Bruhat lattices and of d-complete posets, J.Algebraic Combin. 9 (999), [7] J. R. Stembridge, Minuscule elements of Weyl groups, J.Algebra 235(200), [8] B. E. Sagan, The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions, Springer, New York, 200. [9] N. Kawanaka, Coxeter groups and Nakayama algorithm, to appear. [0] S. Okamura, An algorithm which generates a random standard tableau on a generalized Young diagram( in Japanese ), master s thesis, Osaka university, [] S. Okamura, to appear. [2] K. Nakada, Colored hook formula for a generalized Young diagrams, submitted to Osaka J. Math. [3] K. Nakada, q-hook formula for a generalized Young diagrams, to appear. GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY, OSAKA UNIVERSITY, TOYONAKA, OSAKA , JAPAN.

29 A WILD CONFIGURATION CHASE ( ) R d d + 2 d + x x2 d = d = d = 2 d 4 [2, 5] 3 Theorem. R 3 Theorem 2 (Grace[3, 4]). 3 2 a,...,a 6 ;b,...,b 6 Schläfli double six i j a i b j 2 Grace double six Lie d =,3 d R d d + 3 d + 2 [5] [] REFERENCES [] L. Babai and P. Frankl, Linear algebra methods in combinatorics (Preliminary version 2), Department of Computer Science, The University of Chicago (992). [2] K. Bezdek, Z. Lángi, M. Naszódi, P. Papez, Ball-polyhedra, 2006, preprint. [3] J. H. Grace. Circles, spheres and linear complexes, Transactions of the Cambridge Philosophical Society, Volume XVI:53 90, 898. [4] J. H. Grace. Tetrahedra in relation to spheres and quadrics. Proceedings of the London Mathematical Society, Volume S2-7:259 27, 98. [5] H. Maehara, N. Tokushige. On a special arrangement of spheres. Ryukyu Math. J., 9:5 24, Date: August 20, 2007, 02:32pm.

30 Homotopy type of the box complexes of graphs without 4-cycles (Akira Kamibeppu) V V E G = (V, E) graph, graph G,, V (G), E(G)., graph. graph., graph box complex.,. G graph, U V (G). u U, uv E(G) v V (G) U common neighbor. U V (G) common neighbor CN G (U)., CN G (φ) = V (G). u V (G), CN G (u) G u neighbor. U U 2 = φ U, U 2 V (G), V = U U 2, E = {u u 2 u U, u 2 U 2, u u 2 E(G)} G bipartite subgraph (V, E) G[U, U 2 ]. G[U, U 2 ] complete, u U, u 2 U 2, u u 2 E(G)., G[ φ, U 2 ] G[U, φ ] complete. U, U 2 V (G), U U 2 := (U {}) (U 2 {2}) ( V (G) {, 2})., graph G, V (G) {, 2}, V (G) {, 2} B(G) = {U U 2 U, U 2 V (G), U U 2 = φ, G[U, U 2 ] : complete, CN G (U ) φ CN G (U 2 ) } G box complex., ν : V (B(G)) V (B(G)) ; u φ φ u φ u u φ, ν ν = id ( Z 2 -action ) B(G). B(G), Z 2 -action., Z 2 -action. X, Y, Z 2 -action ν X, ν Y., f ν X = ν Y f f : X Y X Y Z 2 -map. graph G χ(g). [3], J. Matoušek G. M. Ziegler,. () graph G, ind Z2 ( B(G) ) := min{ n Z 2 -map f : B(G) S n }, χ(g) 2 ( )., n S n = { x R n+ x = }, a : x x Z 2 -action. (2) graph G 4-cycle, sd B(G) sd B(G) L Z 2 -retraction. Z 2 -index, ind Z2 ( B(G) )., χ(g) 2 ind Z2 ( B(G) ),. graph box complex. graph G, G := { u φ, v φ, φ u, φ v, u v, v u uv E(G)}, B(G), B(G) Z 2 -action G Z 2 -action. X A, f t : X X Z 2 -map X A deformaton retraction {f t : X X} t [0,] X A Z 2 -deformation retraction. 3-cycle, 4-cycle graph box complex,.

31 Theorem ([], Theorem 4.3 ). G 3-cycle, 4-cycle graph., t [0, ] B B 2 B(G), f t (B B 2 ) B B 2 B(G) G Z 2 -deformation retraction {f t } t [0,]. Theorem 2 ([], Theorem 4.4 ). G graph k induced cycle. () G cycle, G k S k S. (2) G, cycle, G 2k S. graph G G uv, graph G uv, G 2 x u, x v 2 ux v, vx u graph G uv. B(G uv ) x, y B(G uv ), x = y x y t [0, ], x = ( t) u φ + t φ x v, y = ( t) x u φ + t φ v t [0, ], x = ( t) v φ + t φ x u, y = ( t) x v φ + t φ u. Proposition 3 ([2], Proposition 4.5 ). G uv G 4-cycle, B(G uv ) / B(G). Remark 4 (for Proposition 3). G uv, G 4-cycle, B(G uv ) / B(G)., G 4-cycle C 4, uv. G uv 5 path P 5. box complex, B(C 4 ) 2 3-disk, B(P 5 ) 2 2-disk.,, B(P 5 ) / B(C 4 ). C 4 P 5 u v u x v x u v B(C 4 ) B(P 5 ) φ v φ u φ x v φ v φ x u φ u u φ v φ u φ x u φ v φ x v φ Proposition 3, 4-cycle graph box complex. Theorem 5 ([2], Theorem 4.7 ). graph G 4-cycle, G B(G) Z 2 -deformation retract. J. Matoušek G. M. Ziegler (2) sd B(G) L,, L sd G., L = sd G = G. Theorem 5, graph G 4-cycle, L B(G) Z 2 -deformation retract., Theorem 5. References [] A. Kamibeppu. The box complex of graphs without 3 and 4-cycles, preprint. [2] A. Kamibeppu. Homotopy type of the box complexes of graphs without 4-cycles, preprint. [3] J. Matoušek and G. M. Ziegler. Topological lower bounds for the chromatic number: A hierarchy. Jahresbericht der Deutschen Mathematiker-Vereinigung, 06 (2004), no.2,

32 ALGEBRAIC SHIFTING OF STRONGLY EDGE DECOMPOSABLE SPHERES ( ) face vector 970 Stanley, face vector., ( ) face vector McMullen g-condition ( (A), (B) ).,. face vector. [n] = {, 2,..., n} Γ [n] (i), (ii) : (i) {i} Γ for i =, 2,..., n. (ii) F Γ G F G Γ. Γ Γ face, face facet. k, f k (Γ) Γ F F = k (, F F ). Γ dim Γ = max{k : f k (Γ) 0}. Γ (d ), f(γ) = (f 0 (Γ),..., f d (Γ)) Γ f-vector (face vector). f-vector, f-vector h-vector. Γ (d ), Γ h-vector h(γ) = (h 0 (Γ),..., h d (Γ)) : h i (Γ) = i ( ) d j ( ) i j f j (Γ) and f i (Γ) = d i j=0 i j=0 ( ) d j h j (Γ) d i f (Γ) =., f-vector h-vector. 97 McMullen d h-vector. (A) h i = h d i for i = 0,,..., d; (B) (h 0, h h 0,..., h d 2 h d 2 ) M-vector, multicomplex face vector., multicomplex Σ, F Σ G F G Σ., (A) Dehn Sommerville equation, ( ). McMullen 980 Stanley [6], Billera Lee []. Stanley, h-vector. strongly edge decomposable h-vector (A), (B). strongly edge decomposable. Γ. Γ pure Γ facet. Γ F [n] link, lk Γ (F ) = {G [n] \ F : G F Γ}. i < j n, Γ i, j contraction i j [n] \ {i} C Γ (ij) = {F Γ : i F } {(G \ {i}) {j} : i G Γ}. Γ {i, j} [n] Link condition () lk Γ (i) lk Γ (j) = lk Γ (ij). ( lk Γ (i) = lk Γ ({i}), lk Γ (ij) = lk Γ ({i, j}).) The author is supported by JSPS Research Fellowships for Young Scientists.

33 . [n] pure Γ strongly edge decomposable (i) Γ = { } Γ simplex boundary; (ii) Γ {i, j} [n] Link condition, C Γ (ij) lk Γ (ij) strongly edge decomposable., strongly edge decomposable. strongly edge decomposable. (, Nevo [5] Γ PL- {i, j} Link condition C Γ (ij) PL- ).,,. (I) strongly edge decomposable h-vector (A) (B). (II) strongly edge decomposable.,. (I)., (II) Kalai squeezed sphere [3] strongly edge decomposable (squeezed (d )-sphere, d 5, d )., strongly edge decomposable., strongly edge decomposable ([2, 7]). strongly edge decomposable, (I). ( (A), (B). (B).), (I).., strong Lefschetz, (exterior) algebraic shifting. Lefschetz (strongly edge decomposable strong Lefschetz ), algebraic shifting. algebraic shifting,, Γ shifted (Γ). ( [4]. f(γ) = f( (Γ)).) Kalai Sarkaria, Γ [n] (d ) (2) (Γ) (C(n, d)). ( C(n, d) n cyclic d-polytope. (C(n, d)).) Γ (2) h-vector (A), (B). strongly edge decomposable (2),.. (i) Γ [n] (d ) strongly edge decomposable, (Γ) pure, i = 0,,..., d h i (Γ) = h d i (Γ), (Γ) (C(n, d)). (ii), Σ pure shifted (d ) i = 0,,..., d h i (Σ) = h d i (Σ) Σ s (C(n, d)), strongly edge decomposable Γ (Γ) = Σ. strongly edge decomposable ( ) algebraic shifting., Γ, (Γ) pure h-vector (A), Kalai Sarkaria, algebraic shifting. References [] L.J. Billera and C.W. Lee, A proof of the sufficiency of McMullen s conditions for f-vectors of simplicial convex polytopes, J. Combin. Theory Ser. A 3 (98), [2] T.K. Dey, H. Edelsbrunner, S. Guha and D.V. Nekhayev, Topology preserving edge contraction, Publ. Inst. Math. (Beograd) (N.S.) 66(80) (999), [3] G. Kalai, Many triangulated spheres, Discrete Comput. Geom. 3 (988), 4. [4] G. Kalai, Algebraic shifting, in: T. Hibi (Ed.), Computational Commutative Algebra and Combinatorics, Adv. Stud. Pure Math., Vol. 33, 2002, [5] E. Nevo, Higher minors and Van Kampen s obstruction, arxive:math.co/060253, Math. Scand., to appear. [6] R.P. Stanley, The number of faces of a simplicial convex polytope, Adv. Math. 35 (980),

34 "!$#&% '"(*)$+&)$+&,.-&/0*243"5$ : ;=<?>@;BADCFEHGJILKBEHMNGOMOP=<QIR<S>TIRUWV X$Y[Z4\"Y[] ^"_`badc"ebfhg*ij )9khlnm&o.prqs.thuwvhx azyz{&`b o.p}q~sbt & yz{&` nƒ_ 4 m} ˆ Š F i* b u _. & wi*a4 $ m š œ & dx$y \&Y l. žu Ÿ. `._. & u ]4 & *y X$Y Z \"Y $ $. zª «D F ²±²Œ³ «±Žµ ib b u}¹ a o.p}q~s.t œ»º ib. ¼º ½ ¾ ah ¹ X"Y*i* b ÁÀ a ½  ¹ a4 žãåäæ»çéèn bi* b 9Ê[ k ÌË º Í& khî$ï \$Y žãñðò»çqi*a µó žãñôb»ç u Æ]ÖÕ µø 9 dù k \"Y*i.a4Ú&Û9ÜÝ.i. d µøµó žãßþà»ç ¹á Õ µø šbœh & dù k \"Y.i9a Ú&Û9ÜzÝ.i* 4 m}â  yã uzä az ¹ Ú&Û*ÜzÝ*ib u _Ì å Šæ"ç $* ^ Ê xèo p}qs.têé ]&f ƒ4`$ëzì[z$] kní `*_. "î$ï Y[ ðzñ"ò Ï9ó i* rô" ] ¹ a Ú"Û*ÜÝõÈ öõ ¹ø$l9À ø Y u[ùqúhûàü u _ý } u þìÿ `&^ ¾ a ½  a4ë 9 ø"l ^ Ê x"ø Y[ hðzñ"ò Ï&ó*¹ Ú&Û9ÜzÝ9i b u _ý m _b u a 9 ø$l ^nê x 9 ø Y[ dô$ ] ¹ a [Ê[ ] _ " u i ä 4 9 ø"l ½h ¹ * ø Y ð$ñ"ò Ï9ó Ú&Û*Ü Ý.i. u}¹ a X&Y i. À a ½h ¹ a m Ë º ø Y udûàübk Î"Ï \&Y ] Ï9ó i ä a ÿ x Ú&Û9ÜzÝ*ib b $ u i* 4 Ê ¾ _ u ƒà`*a S Ø Fµ ص ± b à ÆX YbZd\"Y "!$#&%'%)(+*,%)# i. * ur¹ aà o pwqs t œjº i ¼º ½¾ az ¹ X&Y.ib À a ½  ¹ az žãtä4»ç È [i. *Ê k n Ë º Í* kzî$ï \$Y žã ÐÒ»Ç i*a µó žã ¹ Õ µø 9 dù k \"Y*i.a -S Ø = i* 4 z»ç ¹ Õ µø 9 dx"y*ib b 4 µøµó žãßþà»ç ¹á Õ µø šbœh & dù k \"Y.i* 4 m}â  y u4m _Ì. ¹ a/. dú&û&üý 0 æ9ç ] ^"_z`*a4»ç ¹ X&Y Òobpwqès.t œ º i. b u _ 243 mhº65 `*_[ 4 87:9&]"a -S Ø = È ö Ú&Û9ÜzÝ[azi* 4 <;=S FµØ صرž¹ a ohpåq szt?>a@qã Ð-@ Ç ÐCBCBCB@Ð-@ED i&agfih/jbë à ÄLCLCL ÄM@$NPO à ÞM@QN Õ µ š.œ 9 iù[a u _ý Ê ] æ$çsr $ u î _ a T khæ&ç ib b 4 & ø$lvuåø Y[ ð ñ ò Ï"ó -S FµØ صر ^ Ê x Ú&Û&Ü Ý0b]$fbƒd`*a W œyxtu W Ë X i ¹ æ6z m?[ ƒ  \ ] ^+_ W œyx " ø"l`ú ø Y hðzñ$ò Ï$ó -S Ø a F i9 b ac œ " dfe )g hujinm lk  Î$Ï. ]m4kn ½ Âo xip ½  ¹rqtsu} wv ] Knƒ `.aëxlzy 'v {} 'v Û~.y  ƒza O 'vz ß¹Iv m Ú9Û9y i é a y 'v ¹Iv é i* 4 \ ]ƒ _ W Ë X & ø"lvuáø Y[ hð$ñ ò Ï&ó Ú"Û9ÜzÝ*i. b a œ 9 dfe )gh uji m k  Î$Ï. ]m4kn ½ Âo xip ½  ¹rqtsu} wv ] Knƒ `.aëxlzy 'v {} 'v Û~.y  ƒza O 'vz ß¹Iv m Ú9Û9y i é a y 'v ¹Iv é i* 4

35 o x p / é*¹ a/y 'v È œ uhä 7 9 k o x p i* ¾ a ) ä k Æ\ k o x p ] k í `*_ o xapàm ðzñ$ò Ï"ó œ & de ]è ô$ a i$é m î í  \ k d à t.[ æ6z [ ƒà`*_* Ë L y 'vz { 'v.u _ ¹ a ÿ  énm*º o x p}m ~  k"] l3$_ º i é o x p Î Ï ] ] k d À mt[ ƒ `*_[ u " u i ä 4 a. Ë º æz ] ¹ ahð ñ ò Ï"ó "! ]$#% º _ `*_b & '#% k _ ô ¹( o xrp ¹ i i *)bi ä bƒ À ƒ a -S Ø =,+ Ú9Û*Ü Ý u _ -# % /. R `b_ z i.a& [ 0/ i"é k _ u o x p m k _ u _Ì 32 5 i [ "# % u ƒh` ¹ -S Ø a F Ê ¾ Ú&Û&ÜÝ 54 _" i*a æ6z Ëê æ Z œ Ê ¾ 76*8 R `&_ à $ƒ À ƒa ¹ 9 ÿ æ6z i :& ¹ -+ ŒŽ i. b 4 u _ ¹ a ;*<[ "=5> urk í  W X `*_[ Ú9Û@? m _. u a ( o x p4v ] Knƒd`.a 9 ø"l U ø Y - Ø F k ðñ ò Ï"ó i9a vám ËML y 'v BA i i œ " de ] 5)*y[ 9 Æ m $ u i ä À ÿ i. 4 m o x p C À ÿ ` ½ u k u a Ê k@d ] k 4 EF _ o xip4v GA i m í ` -S Ø = ½4 ¹ Ú9Û9Ü Ý k 9 ø$l U ø Y ð$ñ ò[ œ & dfeh ] m knji[ u i ä  k9 LKÏ # % ¹ aëlpy 'v M{ i. 4 R `ba i o xip -S F ½4 ¹ Ú9Û&Ü Ý k 9 ø&l U ø Y hð$ñ ò Ï"ó œ " 6dfe ]m k n k À À*¹4Ï&À í  a unm í `9_  afý i k _. u ] O*P5Q _  R b a"s. o x p ¹ ; u é ËÉi. 4 i*at i im k n Ib u ÜzÝ9i b bƒ À ƒzaw X 4Ú"Û? m ^ u y u a ý à 7U o xipdm m4knvi4ô Ê ¾ î o pwqs t m? Ìu y[.ê ] M 2 4 º ½ ¾ at 6 é Ê ¾ " n -W[ƒYXnƒ Go x p d\ R4m$ $ u ] Ê ¾ a o x pæm m k nzi ] bk o pwq~s t [ é m"$\ $ " u i ä zi ¹ k _ ÀÌu:M* 4 o x pdm œ 9 d6e ]m4knhi  k&] *bk o pwqs t [ é \ ¾ ]*fbƒ4` ¹ a ] µø _^ W T X ] ^9_`baf & ø&l ` ðzñ"ò Ï&ó œ * 6d e ] o xip vˆm m4k n I  k"] *k obprqès.tžéba}¹ y 'v dc Ë Ãfehgjilk mwâ  y u _Ì w u [ R `9_b 9ƒ À ƒa[ ¹À*k ¾nm _ B D F Õ ib b d À ÿ Ÿ*  _@o$p u ƒ4`.a éìu i é ]$q `.a º o xip d\ R mr y 5s m q a o x p}m & ø"l -S Ø a F ½Æ ¹ Ú&Û"ÜhÝ Ák ðzñzò Ï&ó œ & de ] m knji" h] *kbo*p qès*téé "S3 m " u i äæk _ À a u _Ì Æ udmt u ƒ4` v  _z R b a: é Ë i. * o x p ]$f*ƒd` ¹ýŒ ±Žµ D +W =±-W _^D ] Êz r ƒ b zi.a m _h`5w T*i ädk _ Zx Àzy {} ~,ƒ: ˆ Š ŒŽB š œn Ÿž ŽB G j ª «l ± ³² µ ² ¹ ºl» n µ¼7² ¼ œ µ¼ º ½ ¾lÀ Á ÂBÃ Ä Ã Å Á Æ Ç ÈÊÉšË ÌÍÁ ÀhÈÏÎhÐ ÑšÑYÒÔÓ Õ Õ ˆ Öh lølù Ú ÍØ Ûµˆ Ž ÓŠ ž Ž G j µ Ü ÞÝ Ž ß à áâ µ lãä œ å æ µ¼n ± ³² µ ² å ¹» ç _ÄlÃÜèéÉÜÁÌnêšëµìjÁÀhíéîGË Æ-ÈÊï ð ÎjË̪ÈÏÁÉ Ð ñlò ÒÔÓ Õ Õ Ø Öh lóôù ó ó õ ó Ž ó Š ž Ž G j ö ø Ž ž Žúùš œ»» úûg ç ¹š ² µ n üâ µ ý µ¼ f¹ µ» ná ² à ² µ f² œ: ü üþ»á ç¼lœ ç Üÿ Ë ÌÊëµÃ ÃÜѵò YÒÔÓ Õ Õ ÕôÖh ܈çÚ Û jˆ Ùlˆ Ž Ø Šß_Ž éž Ýd œ± lã n f å üä² œ ý ² µ â f ¹µ¹± f² œ -œ àü ìjáæãêµájâ Á à YÒªÓ Õ Õ ˆçÖ ôó Û Íó Û õ Ž

µ ½ ½ ¾¼¼¼ ½¼ Ì Ò ½ µ ¾ ½ ½ ½ ¾¼¼¼ ½ ½ ¼ ½ ½ ½ ¾¼¼¼ ¾ ¼ µ ½¼ ½ ½ ¾¼¼ Ñ ½ µ ½ µ Ì Ò ½ µ ½ ½ ¼ ½¼ ½ ˼ µ ½ µ ½ ½ ½ ˽ Ë Ì Ò ½ µ µ µ ½ µ ½ µ

µ ½ ½ ¾¼¼¼ ½¼ Ì Ò ½ µ ¾ ½ ½ ½ ¾¼¼¼ ½ ½ ¼ ½ ½ ½ ¾¼¼¼ ¾ ¼ µ ½¼ ½ ½ ¾¼¼ Ñ ½ µ ½ µ Ì Ò ½ µ ½ ½ ¼ ½¼ ½ ˼ µ ½ µ ½ ½ ½ ˽ Ë Ì Ò ½ µ µ µ ½ µ ½ µ Ì ÖÑÓÑ Ò Ø Ò Ò Ø Ñ Ò Ñ Ó Ó Æ ÚÓÐ ÒÓ Û ÒÚ Ø Ø Ù Ò Ó¹ Ñ Ò Ø Ò Ó ÖÚ Ò ½ ¼¹¾¼¼¼ Ò Ö Ø Ø Ú Ö Ø Ö Û Ø Ô Ð ØØ ÒØ ÓÒ ØÓ Ø Ø Ù Ø Ó ÓØ ÖÑ Ð Ý Ø Ñ ÒÐÙ Ò Ø Ö Ø Ö Ð º Ì Ø Ò Ò ÓÓÐ Ò Ö Ø ÐÓÛ Ø Ö Ø Ö Û Ø ¹ Ñ Ø ÓÒ Ø Ø

More information

untitled

untitled ½ Ź ÖÝ ËÃ È Ö ÓÖÑ Ò Ó Å¹ ÖÝ ËÃ Û Ø À ÓÑÔ Ø ÓÒ Ö ÕÙ ÒݹËÐÓØ ÖÖ Ò Ñ ÒØ ½¼ ¼ ½¼ ¾¼¼ ¾ ¾ Ź ÖÝ Ëà Ź ÖÝ ËÃ Ö ÕÙ Òݹ Ø Ý Ò µ º º Å ÐÓ ¾ Å Ø º Ź Ëà Ź ËûÀ Å À ÓÑÔ Ø ÓÒ ÅÓ ÙÐ Ø ÓÒµ º Ź Ëà Ź Ëà º ʵ º Ź

More information

untitled

untitled ÎÓк ½ ÆÓº ½ ¾¼¼ ß½¼ ½ ½ ½ ¾¼¼ ¾ ½µ ½¾ ¾¼¼¼ ¾ ¾ ½ ¼ ½¾ ¾µ Á ½ ¼½¹¼½ ¾ ¹Å Ð ÝÙ ØÑÛº Û ¹Ñº º Ô Á ½¼ ËÅ ÁÎ ¾ ¾ ½ µ ½¼ ½ µ ½ ¾¼¼ ½ µ ½ µ ÖÙ Ð µ ¾ ¾ µ ½¼ ½ ± ÑÑÛ Ñ Ò À µ ½¼µ ½½µ ¾ ½¾µ ½ º½± º¼± ¾ ½ µ ½ ¼½ ½¾º

More information

untitled

untitled ÎÓк ½ ÆÓº ½ ¾¼¼ ß ½ ½ ¾ ¾¾¾ ½ ¼½ ¾½ ½º ± º ± ½ º ± ¾ ¾½º ±½½¼ º½± Ï ÐÐ¹Ò È Ò ½ ¾ ½ ÏÀÇ ÏÓÖÐ À ÖØ ÇÖ Ò Þ Ø ÓÒ ½µ ¾¼¼ ¾µ ݽµ ¾¼¼ ݾµ µ ½ ¼ ½ ¼ ½ ¼ µ ½ ¾ ¼½¹¼½ ½ ¹Å Ð ÓÝ Ù º Û ¹Ñº º Ô ¼ µ µ µ ÏÀÇÉÇÄ ËÊÈ

More information

CharacterSets.book Japanese

CharacterSets.book Japanese FRAMEMAKER 9 ADOBE i................................................. 2 1 2 1 2 3 4 ú þ ý! " # $ % & ( ) * +, -. / 0 1 2 3 4 5 5 6 7 8 9 : ; < = >? @ A B C D E F G H I J K L M N O P Q R S T U 6 V W X

More information

untitled

untitled ÎÓк ½ÆÓº ¾ ¾¼¼ ¼½ß ½ Á ½ ¾ ¾ ÍÒ Ú Ö ØÝ ËÓ Ð Ê ÔÓÒ ¹ Ð ØÝ ÍËÊ ½ Á Á ½ ½ ½µ ¾½ ËÊ ÓÖÔÓÖ Ø ËÓ Ð Ê ÔÓÒ Ð ØÝËÊ Ø ÓÐ Ö ËÊ ½ ¾ ¾µ ÍËÊ ÍÒ Ú Ö ØÝ ËÓ Ð Ê ÔÓÒ Ð ØÝ µ ¾¼¼ ½ ¾ ¼½¹¼½ ¾ ¹Å Ð Û ¼ ¼¼½ Ø º Û ¹Ñº º Ô ¼½

More information

2 5 * * *2 *2 7 'm arhi Szmiya from ast jnior high irst off 'm not interested in ordinary peope t if any of yo are aiens timetraveers or espers pease ome see me That is a i * * * *irosoft ffie 9 *5 *

More information

knakayama2.dvi

knakayama2.dvi ÎÓк½ ÆÓº ¾¼½¾ ½ ¾ Ò ÐÝ Ó Í Ö ³ ÚÓÖ Ø Ò Å Ø Ó Ó ÓÑÔÓ Ò ÚÓÖ Ø ÓÖ Í Ö ÃÓ ÆÝ Ñ ½ Ó Ó ÆÓÖ ÓÑ ¾ Ò Ç Ñ ØÖ Ø ß ÁÒ Ø Ô Ô Ö Û Ò ÐÝÞ Ò Ú Ù Ð ÔÖÖ Ò º Ö Ø Û Ü Ñ Ò Û Ø Ò Ó ÙØ Ó ÓÒ ØÖ ÔÖÖ Ò º Ì Û Ö Óѹ ÔÓ Ó Ù Ô ÖØ Ó

More information

main2.dvi

main2.dvi ¾¼¼ ¾½ ¾ ½ ½º½ ½º¾ ½º ½º ¾ ½º ½º ½º ¾ ½º º½ ½º ½¼ ½º ½¼ ½º½¼ ½½ ½º½½ ½¾ ¾ ½ ¾º½ ½ ¾º¾ ½ ¾º Ó ÐÓ ½ ¾º ½ ¾º Ó ÐÓ ½ ¾º º½ ½ ¾º º¾ ½ ¾º º ½ ¾º º ¾½ ¾º ¾ µ ¾ º½ ¾ º¾ ¾ º Ñ Ò ¾ º ¾ º ¾ º ¾ º ¼ º ½ º ½ º½¼ ½

More information

untitled

untitled ÎÓк ½ ÆÓº ¾ ¾¼¼ ¼ ß ½ ÆÈÇ ½ ÆÈÇ ½ ÆÈÇ ÆÈÇ ÆÈÇ ÆÈÇ ½ ÆÈÇ ÆÈÇ ÆÈÇ ¾ ÆÈÇ ÆÈÇ ¾ ¾ ÆÈÇ ÆÈÇ ÆÈÇ ÆÈÇ ÆÈÇ ÆÈÇ ÆÈÇ ½ ¼½¹¼½ ¾ ¹Å Ð Ø Ò Ñ ØÙÑÛº Û ¹Ñº º Ô ¼ ¼ ÆÈÇ ½ ½ ½ ½ ¾ ½ ½ ¾ ½ ½ ÆÈÇ ¼ ÆÈÇ ÆÈÇ ÆÈÇ ÆÈÇ ¾ ½ ¾ ¾

More information

ron0223.dvi

ron0223.dvi Ï Ú ÐÓÔÑ ÒØ Ó Ø Ð ÓÖ ØÓÖÝ ÕÙ ÔÑ ÒØ ÓÖ Û Ö Ð ØÝ ¼ ½¾¼¼½¼ ½ À ÖÓ Ë Ø ¾¼¼ ½ ½ ¾ ½º½ ¾ ½º¾ ½º¾º½ ½º¾º¾ ½¼ ½º¾º ½¾ ½º ½ ¾ ½ ¾º½ ÀÌÅÄ ½ ¾º¾ ËË ½ ¾º ½ ¾º º½ ËË ½ ¾º º¾ ËË ½ ¾º º ½ ¾º º ½ ¾º º ½ ¾ º½ ¾ º¾ ËË ¾

More information

dicomo_reika.dvi

dicomo_reika.dvi ØÙ Ý Ó Ò Ò ÔØ ÓÒ Ê ÑÓØ ËØÓÖ Ò ÐÝ Ó ÐÓ Ø ÓÒ Ä ÒÙÜ Ã ÖÒ Ð Ý ÓÑÔÐ Ü Ö ÖÐ ØÖÙØÙÖ Ë ËÁ ÓÚ Ö Ì È»ÁÈ ÓÚ Ö Ø ÖÒ Øº ÓÖ Ø ÔÙÖÔÓ Ó ØØ Ò Ø ØØ Ö Ô Ö ÓÖÑ Ò Ó ÓÔØ Ñ Þ ¹ Ì Ö ÓÖ Ø ÖÓÙ ÑÙÐØ ÔÐ Ð Ý Ö Ö ÕÙ Ö º ÁÒ ÓÙÖ ÔÖ Ú

More information

jsai06mixi_2nd.dvi

jsai06mixi_2nd.dvi ½ Ì Ò Ð È Ô Ö ËÆË ß Ñ Ü ß ÀÓÛ Ö Ð Ø ÓÒ ÖÙ ÐØ Û Ø Ò ËÆË ÛÓÖÐ ß Ó Ð Ò ØÛÓÖÒ ÐÝ ÓÒ Ñ Ü ß ÙØ Å Ø ÙÓ Ù Ù» Æ Ø ÓÒ Ð ÁÒ Ø ØÙØ Ó Ú Ò Ë ÒÒ Ì ÒÓÐÓ Ý» ËØ Ò ÓÖ ÍÒ Ú Ö ØÝ ÝºÑ Ø ÙÓ Øº Óº Ô ØØÔ»»ÝÑ Ø ÙÓºÓÑ» ÍÒ Ú Ö ØÝ

More information

jps03.dvi

jps03.dvi ¾ ØØÔ»» ÜºÔ Ý ºØÓ Ó Ùº º Ô ½ ¾º½ ½ ½µ ¾µ µ µ ½ ¾ ½¼¼ µ ѵ ¾ ¾ Ñ ¾ Ñ ½Ñ ½Ñ ½Ñ ½ÒÑ ½¼ ½Ñµ ¾º¾ ½ÑÑ ½ Ñ ½ÒÑ ¾ ØØÔ»»ÓÒØ ØºØ Ò Õ٠غ Öº Ô»ØÕ ¾¼¼½» ¼»ØÓÔº ØÑ ¾¼¼ µ µ µ ¾ ¾º ¾º º½ µ µ µ ¾¼¼ ¾º º¾ ½ÒÑ ½¼ ½Ñµ ½

More information

BSVbaProgramming.dvi

BSVbaProgramming.dvi Ü Ð Î ¾¼¼ ¾½ ½ Î Î ½º½ ½ ¾ ½ ½½ ½¾ ½ ½ ½ ÐØ ¹ ½ ½ Î Ü Ð ½º¾ Î Î ÐØ ¹ ½½ Î Î Ù Ð ØÓÖ ÅÓ ÙÐ ½ ÅÓ ÙÐ ½ Î Ù Ð Î Öº ÎÙ Ù Ð ÇÆ Í Ö ÅË ÇÆ Î Ù Ð Î Î Ù Ð ÓÖ ÔÔÐ Ø ÓÒµ ½µ Î ËÙ ÁÒÔÙØ Ø ÁÒØÓ ½ µ Ê Ò ½ µºî ÐÙ Ò ËÙ

More information

総研大「大学共同利用機関の歴史とアーカイブズ」プロジェクト全体会(2008年度)

総研大「大学共同利用機関の歴史とアーカイブズ」プロジェクト全体会(2008年度) ß ½º ½ ¼ ½ ÁÁ ½ ¾ ½ ½ ½ ¼ ¾ ½ ½ ¾ ¾º ½ ½¼ ¾¼¼ ¼¼ ½ ÁÁ º ½ ¼¼ ½ ½ ½ ¾º ½¾ ½ ½ Ñ ½¼ ½ ÁÁ ½ ½ ¼ ½¼ ½ ½ ÁÁ ¾¼¼ ½½ ½½ ½ ½¾ ½½ ½¾ ½½ ¾¼¼ º ¹½½ ½ ½¾ ¾¼¼ º½¼ ½ ¾ º º½º ½ ½ ¼¼ ¾¼¼ Ñ ½ ¾ ½ ½¼¼ È ÐÓ ÓÔ Ð ÌÖ Ò Ø ÓÒ

More information

untitled

untitled ¾¼½¼ ß À ÐØ Ý Ä ËÙÔÔÓÖØ ÓÖ Ð ÖÐÝ Ä Ú Ò Ò Ð ËØ ÖÓÑ ÆÙÖ Ò È Ö Ô Ø Ú ½ Ã Ó Ì Ã ½ ½¼¼ ½µ ¾µ ½ ¼½¹¼½ ¾ ¹Å Ð Ø ÑÛº Û ¹Ñº º Ô ¾ ¾ ½ ½ ½ ¾ ¼ ¼ ¾¼ ¾ ½ ¾ µ ½ ½ µ ½ Ô½ ½º¾ ¾ ¾ ½ ½ ¼ µ µ ½ ½ µ ½ ¾ ½ µ µ ¾ µ ½ ¼ ¾

More information

ÊÆ ½ Ì Î ÄÀ ¾¼¼ ÌÄ Ë ÄÀ À Ì Ò Ô Ñ Ö Ì ÌÄ Ë Ì ½¼¼¼ Ì Ã Ã Ì

ÊÆ ½ Ì Î ÄÀ ¾¼¼ ÌÄ Ë ÄÀ À Ì Ò Ô Ñ Ö Ì ÌÄ Ë Ì ½¼¼¼ Ì Ã Ã Ì ÌÄ Ë Ì ½ ¾ ÊÆ ½ Ì Î ÄÀ ¾¼¼ ÌÄ Ë ÄÀ À Ì Ò Ô Ñ Ö Ì ÌÄ Ë Ì ½¼¼¼ Ì Ã Ã Ì ½ ÁÒØÖÓ ÙØ ÓÒ ¾ ÌÄ Ë ¾º½ ÄÀ ¾º¾ ÄÀ ¾º ÌÄ Ë ¾º ½¼ ½ º½ ½ º¾ ½ º¾º½ ½ º¾º¾ Ö Ø ½ º ÕÙ ÒØÙÖ ¾¼ º Ö Ø ¾ Ì Ò Ô Ñ Ö Ì µ ¾ º½ Ì ¾ ¾ º½ Ì ¾

More information

ÅÅ˵ ÒØÖ Ð Þ Ñ Ö Ø ½º ¾º à ÝÏÓÖ

ÅÅ˵ ÒØÖ Ð Þ Ñ Ö Ø ½º ¾º à ÝÏÓÖ ¾¼¼¼ ¼ ¼¹½¾¹¼¼¾ ¾¼¼¾ ½ ÅÅ˵ ÒØÖ Ð Þ Ñ Ö Ø ½º ¾º à ÝÏÓÖ ½ ½ ¾ ¾ ¾º½ ¾º¾ ½¼ º½ ½¼ º¾ ½½ ÅÅË ½ º½ ÅÅË ½ º¾ ½ º ¾½ º ÅÅË ¾ ÅÅË ¾ º½ ¾ º¾ º ¾ ½ ½ ¼ ½¼ ¼ ½ ½¾ ÀÈ ÒØ ÖÑ ÖÝ Ñ Ð Ñ Òµ ÁÌ ¾ ÁÌ ÁÌ ½ ÅÅ˵ ÒØÖ Ð Þ Ñ

More information

Ç ÆÌÌ

Ç ÆÌÌ Ç ØØÔ»»ÛÛÛº ØºÓ ¹Ùº º Ô» ÐÓ Ð Ç»µ ¾¼ ¾½ Ç Ç ÆÌÌ ½º ¾º ÈÁ ß ß Ê µ ß ß ß ÏÓÖ ¹ Ò¹ÈÖÓ Ö ß ß µ ß ß ÈÊÁÍ˵ ß ß ß ÈÁ º º º ¾¼ ¾½ 1. 拠 点 形 成 計 画 と 概 要 ½ ÑÒص ½¼ ½¼ ½ ½¾ Ç ½¼ ¾½ Ç ½ ¾½ ÈÁ ÈÖ Ò Ô Ð ÁÒÚ ØØÓÖµ ÈÁ

More information

128号新

128号新 155 662-0834 10-22 0798-67-4691 FAX 0798-63-4044 Email koudou@gamma.ocn.ne.jp http://koudou.jp/ 01170-3-4901 _ ³ Ü A Ü ½ Ä ª Á Ä «Ü µ ½ B - ú µ Ì ÅŠ é A â ½ Æ ÌŒb Ý ðš Ó ½ µ Ü B @ @ µ µ A ŠE Ì l X

More information

may-fest.dvi

may-fest.dvi ½ ¾½ ¾¼¼½ ¾¼¼½ ¾ ¾ Á ½ ½ ½º½ ½º¾ ½º ¾ Ž ¾º½ ¾º½º½ ¾º½º¾ ¾º½º ¾º¾ ½¼ ¾º¾º½ ½¼ ¾º¾º¾ ½¼ ¾º¾º ½¼ ¾º¾º ½½ ¾º¾º ½½ ¾º¾º ½½ ¾º¾º ½¾ ¾º¾º ½¾ ¾º¾º ½¾ ¾º¾º½¼» ½¾ ¾º¾º½½ ½ ¾º ½ ž ½ ¾½ º½ ¾½ º¾ ¾½ º ¾¾ º ¾¾ º

More information

¾ Ã

¾ Ã ½ ½ ½ ½½ ½ ½¼ ½ ¼¼¼ ¼¼¼ ¼¼¼ ¼¼¼ ¼¼¼ ¼¼¼ ¾ ½ Æ ¾ ½ ½½ ½ ½ ¾¼ ½ ¼¼ ½¼ ½ ¾ ¾¹ ¹ ¹ ÌÌ ¾ Ã ¾ ½ ½ ½ ¼ ½ ¼¼ ½¼ ½ ¼ ¾¼ ½¾ ½ ¾¼ ¾¼ ½ Ä ÐÓÒ Ð ÖÒ Ò Ä ÐÓÒ Ù Ø ÓÒ ½ ¼ ÍÒ Ú Ö ØÝ ÓÙÒ Ð ½ ¾ ½ ½ ¾ ½ ½ ½ ½ ½¾ ½ ½ ¾ ¼ ¼

More information

csj-report.pdf

csj-report.pdf 23 2 *1 CSJ 3302 661 CSJ 2.1 2.2 CSJ 2.6 2.7 XML XML 8 2.1 1 CSJ CSJ CSJ 661 4 50 *1 24 2 2.1.1 CSJ 2.1.2 2.1.1 CSJ CSJ 0.2 0.2 3302 20 CSJ 5 3 0.2 0.05 2.1 25 2.2 CSJ FEP 2.3 CSJ 1.7.2 2004a 2002 26 2

More information

nl61.dvi

nl61.dvi ÆÓº ½ ¾¼¼ ½¾ ¾ ºººººººººººººººººººººººººººººººººººººººººººººººººº µ ººººººººººººººººººººººººººººººººººººººººººººººººººººººººººººººººººº µ Ï µ ºººººººººº µ ººººººººººººººººººººººººººººººººººººººººººº µ

More information

½ ¾ ½ ¾º½ ½ ¾º¾ ¾º¾º½ ¾º¾º¾ ½¾ ¾º¾º ½ ¾º¾º ½ ¾º ¾¼ ¾º º½ ¾½ ¾º º¾ ¾ ¾º ¾ ¾

½ ¾ ½ ¾º½ ½ ¾º¾ ¾º¾º½ ¾º¾º¾ ½¾ ¾º¾º ½ ¾º¾º ½ ¾º ¾¼ ¾º º½ ¾½ ¾º º¾ ¾ ¾º ¾ ¾ ¾ Ï ØØÔ»»ÛÛÛºÑÔÐܺ ºÒ ÓÝ ¹Ùº º Ô» ÙÖÙ» Ù Ø ÓÒ»ËØ Ø Ø ÅÙÐØ Ú Ö Ø» Ò Üº ØÑÐ ½ ¾ ½ ¾º½ ½ ¾º¾ ¾º¾º½ ¾º¾º¾ ½¾ ¾º¾º ½ ¾º¾º ½ ¾º ¾¼ ¾º º½ ¾½ ¾º º¾ ¾ ¾º ¾ ¾ ½ ¾ ¾º½ ¾º½ Ê Æ µ ºÜРܵ Ê Æ µ ¾º½ Å ÖÓ Ó Ø Ü Ð ¾¼¼

More information

2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi +

2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi + ( ) : ( ) n, n., = 2+2+,, = 2 + 2 + = 2 + + 2 = + 2 + 2,,,. ( composition.), λ = (2, 2, )... n (partition), λ = (λ, λ 2,..., λ r ), λ λ 2 λ r > 0, r λ i = n i=. r λ, l(λ)., r λ i = n i=, λ, λ., n P n,

More information

ブロック体A

ブロック体A 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U W X Y Z! $ % & ( ) *, -. / ; : < >? [ ] ` å Å ß Æ Ø æ ø ƒ Œ œ fi fl ı ˆ ˇ Â Î Ô ª º 0 1

More information

± ± ± ¾ ½ Ö Ò µ ± ¾ ± ± Ã ½ Ë Û Ò ¼µ Ã Ã ½¼ ½¾µ ½ Þ Ò µ ¾ ± ¾¾± ½ ± ± ½ ¾ µ ± ½ ÀÓÛ ÐÐ µ ½ ½ ¾½µ ¾µ ÅÊÁ ÅÊÁ Ì ¾ Ì ¾ ¾½ ¾¾µ ¾¼ ¾½µ ½ µ ¾ ½ µ ¾¼ ¾½µ Ã ¼

± ± ± ¾ ½ Ö Ò µ ± ¾ ± ± à ½ Ë Û Ò ¼µ à à ½¼ ½¾µ ½ Þ Ò µ ¾ ± ¾¾± ½ ± ± ½ ¾ µ ± ½ ÀÓÛ ÐÐ µ ½ ½ ¾½µ ¾µ ÅÊÁ ÅÊÁ Ì ¾ Ì ¾ ¾½ ¾¾µ ¾¼ ¾½µ ½ µ ¾ ½ µ ¾¼ ¾½µ à ¼ ÎÓк ½ ÆÓº ¾ ¾¼¼ ß ¾ ½ ¾ ¾ Ð Ý ÇÒ Ø ÅÙ Ð ËÓÖ Ò ÇÅË ¾ ¾½ ¾ µ Ü Ö ¹ÁÒ Ù ÅÙ Ð Ñ ÁÅ Ê Ò Ó ÅÓØ ÓÒ ÊÇÅ Ö Ø Ò Ã Ò Ã Ì¾ ½ ½ µ ½ µ Å Ð Ò Ð Ý ÇÒ Ø ÅÙ Ð ËÓÖ Ò ÇÅË Ü Ö ¹ÁÒ Ù ÅÙ Ð Ñ ÒØÖ Æ ÅÙ Ð Ñ ¾ ¾ ¾± Ð ÓÑ Ø Ö ÓÐÓÖ

More information

J. JAPANESE ASSOC. PETROL. TECHNOL. Vol. 62, No. 2 (1997)

J. JAPANESE ASSOC. PETROL. TECHNOL. Vol. 62, No. 2 (1997) JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 62, NO. 2 (March, 1997) (Received January, 22, 1997; accepted March 26, 1997) Niigata-Sendai natural gas pipeline project Takashi Egawa

More information

¾ ¾¼½ ¾ º½ ¾ ÖÜ Ì Ü Ä Ù Å Ù Ü Ì Æ Þµ Þµ Þ ÞµÈ Ç ½ ¾ Ü Ì Ü Ì Þµ Ù Ö Ü Þ Ì Æ Þµ Þµ ÙÅ ÔÐÒØ Ü Ä Ü Ì Ç º½ ¾

¾ ¾¼½ ¾ º½ ¾ ÖÜ Ì Ü Ä Ù Å Ù Ü Ì Æ Þµ Þµ Þ ÞµÈ Ç ½ ¾ Ü Ì Ü Ì Þµ Ù Ö Ü Þ Ì Æ Þµ Þµ ÙÅ ÔÐÒØ Ü Ä Ü Ì Ç º½ ¾ Title 転 がり 案 内 を 有 する 位 置 決 め 機 構 に 対 する 摩 擦 モデリン グと 補 償 Author(s) 前 田, 佳 弘 Citation Issue Date 211-3-16 URL http://repo.lib.nitech.ac.jp/handle Rights Type Thesis or Dissertation Textversion author 名

More information

00−ìfic„h-flO“Z.ec6

00−ìfic„h-flO“Z.ec6 Rokuzan and a church in Koishikawa Kei KIDA On January 22, 1993. with the permission of the Rokuzan Museum, I took some photographs of Rokuzan s sculptures, drawings and his diary observations. After ward,

More information

Mechanics110223.dvi

Mechanics110223.dvi ÍÔØ ÖÙÖÝ ¾ ¾¼ ͺ ÅÝÑÓØÓ ÙÑÔºÑÝÑÓØÓÑкÓÑ ØÖØ ¹¾ ÓÒØÒØ º ËÁ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º¾ º º º º º º º º º º º º º º º º º º º º º

More information

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a Page 1 of 6 B (The World of Mathematics) November 0, 006 Final Exam 006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (a) (Decide whether the following holds by completing the truth

More information

ÙÖ ¾ Ç̽ Ç̾ ½º º¾ ½º º ¾ º¾ Ç̽ Ç̾ ½µ ¾µ µ µ ¼º ¼º µ ½ Ç̽ Ç̾ Ç̽ Ç̾ º¾ Ç̽ Ç̾ Ç̽ Ç̽ Ç̾ º¾ ¾ ¼½¾¼ º½¼ Ç̽ º½¼ Ç̽ е оµ нµ

ÙÖ ¾ Ç̽ Ç̾ ½º º¾ ½º º ¾ º¾ Ç̽ Ç̾ ½µ ¾µ µ µ ¼º ¼º µ ½ Ç̽ Ç̾ Ç̽ Ç̾ º¾ Ç̽ Ç̾ Ç̽ Ç̽ Ç̾ º¾ ¾ ¼½¾¼ º½¼ Ç̽ º½¼ Ç̽ е оµ нµ ÄÖÒÒ ÊÓÓØ ÖÑÛÓÖ Ó ÔØÚ ÓÒØÖÓÐ Ù Ò ÊÒÓÖÑÒØ ÄÖÒÒ ËÝ ØÑ ÀÑ ÃÑÙÖ ËÒÓÙ ÃÓÝ ÁÒØÖ ÔÐÒÖÝ ÖÙØ ËÓÓÐ Ó ËÒ Ò Òº ÌÓÝÓ ÁÒ ØØÙØ Ó ÌÒÓÐÓÝ ØÖØ ÁÒ Ø ÔÔÖ Û ÒØÖÓÙ ÒÛ ÔØÚ ÓÒØÖÓÐ ÖÑÛÓÖ ÓÑÔÓ Ó ÖÒÓÖÑÒØ ÐÖÒÒ Êĵº Ì ÊÄ ÓÒ¹ÐÒ ÐÖÒÒ

More information

(a) S D 1 D 2 (b) barrier 1 barrier 2 barrier 3 emitter well 1 well 2 collector z z ½¼ µ ¾ µ ¾ µ ÖÖÖ ½ ÖÖÖ ¾ ÛÐÐ ½ ¾ ¾ ½¼ µ ÖÖÖ ½ ÖÖÖ ¾ ½ µ ÛÐÐ ½ Þ ÛÐ

(a) S D 1 D 2 (b) barrier 1 barrier 2 barrier 3 emitter well 1 well 2 collector z z ½¼ µ ¾ µ ¾ µ ÖÖÖ ½ ÖÖÖ ¾ ÛÐÐ ½ ¾ ¾ ½¼ µ ÖÖÖ ½ ÖÖÖ ¾ ½ µ ÛÐÐ ½ Þ ÛÐ µ Ü Ü Ê Ö ÐÙ Ü º½ µ º½ ¾ µ Ì ½ ¾ ½¼ µµ º¾ ½¼ µ ¾ Þ µ ÜÝ Ü Ý Þ ½ (a) S D 1 D 2 (b) barrier 1 barrier 2 barrier 3 emitter well 1 well 2 collector z z ½¼ µ ¾ µ ¾ µ ÖÖÖ ½ ÖÖÖ ¾ ÛÐÐ ½ ¾ ¾ ½¼ µ ÖÖÖ ½ ÖÖÖ ¾ ½

More information

金融機関の資産取引ネットワーク

金融機関の資産取引ネットワーク 103-8660 30 2003 7 30 e-mail: inaoka@eri.u-tokyo.ac.jp e-mail: takuto.ninomiya@boj.or.jp e-mail: ken.taniguchi@boj.or.jp e-mail: tokiko.shimizu@boj.or.jp e-mail: takayasu@csl.sony.co.jp * 2 1 2 1 2 Barabási

More information

main.dvi

main.dvi ½ ½ ½º½ ½ ½º¾ ½ ½º ¾ ½º ½º ½º ¾ ¾º½ ¾º½º½ ¾º½º¾ ¾º¾ ½¼ ¾º¾º½ ÔÖ ÒØ ½¼ ¾º¾º¾ ½¼ ¾º ½½ ¾º º½ ½ ½½ ¾º º¾ ¾ ½ ¾º º ½ ¾º º ½ ¾º ½ ¾º º½ ½ ¾º º¾ ½ ¾º º ¾¼ ¾º ¾¼ ¾º º½ ¾¼ ¾º º¾ ¾½ ¾º º ÐØ Ù Ò ¾½ ¾ º½ ¾ º¾ ¾ º

More information

DMC-TZ57

DMC-TZ57 DMC-TZ57 & http://panasonic.jp/support/dsc/ SQW0168-1 F0215MR1025 & ### & ### ### ### & & È È AF > = 1 2 3 4 5 ( 1: 3È 2: 4# 3: 2ë 4: 1 6 7 8 9 10 11 1213 14 3421 4 4 ### 15 16 17 18 19 20 21 22 2324

More information

DMC-SZ3

DMC-SZ3 DMC-SZ3 & http://panasonic.jp/support/dsc/ VQT4S06-1 F1212KD1023 & & & & È AF > = 1 2 3 ( 4 8 9 5 6 7 10 11 12 1: 3 2: 4 3: 2 4: 1 3421 4 4 13 14 15 16 17 18 19 20 21 22 1 2 1 1 3 1 2 & 1 2 3 1

More information

Tabulation of the clasp number of prime knots with up to 10 crossings

Tabulation of the clasp number of prime knots  with up to 10 crossings . Tabulation of the clasp number of prime knots with up to 10 crossings... Kengo Kawamura (Osaka City University) joint work with Teruhisa Kadokami (East China Normal University).. VI December 20, 2013

More information

thesis2004-feb.dvi

thesis2004-feb.dvi ½ ÀÌÆ ¾¾½¼¼¼¼½¾ ¹½ ÊÙ Ì ÛÓÒÑ ¾¼¼ ¾ ½ À Ö Ö Ð Ì Æ ØÛÓÖ ÔÐ ÒÒ Ò ÀÌƵ ÀÌÆ ÀÌÆ ½ ½ ½º½ ½ ½º¾ ½ ½º ½ ¾ ¾º½ ¾º¾ ¾º ¾º º½ ÀÌÆ º¾ ÀÌÆ º Ü ÙØ Ð ØÝ ÓÒ Ø ÓÒ º ½¾ º½ ÀÌÆ ½¾ º¾ ÀÌÆ ½ º ¾ ¾ º½ ¾ º¾ ¾ ¾ ¾ º½ ÀÌÆ º¾ ÀÌÆ

More information

I 9 1 11 1.1..................................... 11 1.1.1 (linear transformation) (matrix) (vector)................................. 11 1.1.2 (column

I 9 1 11 1.1..................................... 11 1.1.1 (linear transformation) (matrix) (vector)................................. 11 1.1.2 (column I 9 1 11 1.1..................................... 11 1.1.1 (linear transformation) (matrix) (vector)................................. 11 1.1.2 (column vector) (row vector)....... 12 1.1.3..............................

More information

untitled

untitled ÁÆ Ä ÈÊÇ Ê Å ½ Ø ÒÒÙ Ð ÏÓÖ ÓÔ ËÏÓÈÈ ¾¼¼ ¾¼¼»» ¾¼¼ ÓÑÓÖ ËÙÑÑ Ö ÍÒ Ø ÏÓÖ ÓÔ ÓÒ È Ö ÐÐ Ð ØÖ ÙØ Ò ÓÓÔ Ö Ø Ú ÈÖÓ Ò ¾¼¼ ¼ µß ½ µ ¼ ¼¹¼ ½¾ ½¹ ¹½ ØØÔ»»ÛÛÛº Øݺ ÓÑÓÖ º ÓÑÓÖ º Ô» Ó Ó»»ÑÔ¼½ º ØÑÐ Á ÓÑÔÙØ Ö ËÓ ØÝ

More information

Ÿ š ( š ) 300,000,000 14. 3.22 116,500,963 40,185,547 76,315,416 81,749,456 76,275,801 965,801 63,510,000 11,800,000 39,615 39,615 3,227,059 3,227,059

Ÿ š ( š ) 300,000,000 14. 3.22 116,500,963 40,185,547 76,315,416 81,749,456 76,275,801 965,801 63,510,000 11,800,000 39,615 39,615 3,227,059 3,227,059 š ( š ) Ÿœ f 240,000 240,000 130,000 240,000 100,000 240,000 110,000 500,000 240,000 3 240,000 500,000 240,000 240,000 500,000 240,000 500,000 100,000 200,000 200,000 90,000 4,106,000 500,000 14. 4. 1

More information

新郷村ホームページ

新郷村ホームページ ò ò ò ò ò ò ò ò 022012 ò ò ò I½ ½ ò ò ò ò ò ò ò ò ò ò ò 022021 http://www.city.hirosaki.aomori.jp/ ò ò ò I½ ½ ò ò ò ò ò ò ò ò ò ò ò 022039 http://www.city.hachinohe.aomori.jp ò ò ò I½ ½ ò ò ò ò ò ò

More information

Î ¾¼¼ ½¾ ÀÞ ¾ ¼¼¼ ÀÞ ½¼¼ ÀÞ ½ ¾

Î ¾¼¼ ½¾ ÀÞ ¾ ¼¼¼ ÀÞ ½¼¼ ÀÞ ½ ¾ ¹ º½ ¾¾ ¼¼ ÀÞ º½ ½¼ Î ½¾¼ ¼ ¼¼¼ ÀÞ Î Î ¾¼¼ ½ Î ¾¼¼ ½¾ ÀÞ ¾ ¼¼¼ ÀÞ ½¼¼ ÀÞ ½ ¾ ¾¼ ¼ ¼ ÅÔ Ô ½º º¾ ½º ÅÔ ¼ Î º ÅÔ ÅÔ ÅÔ ÄÆ ÂÁÌ ½¾¼ ¼ ¼¼¼ ÀÞ ½¼ Ú ½ ¾ ¼ ½ ¾ ½ ¾¾ ¼¼ ÀÞ ½ Ú ¹»¹ 社 コロナ ½¼ Ú ½ º½ ½¼ ÌʹÈÖÓÑÓØÓÒ

More information

ÊÌÇË ¾¼¼

ÊÌÇË ¾¼¼ JAIST Reposi https://dspace.j Title 組 込 みプロセッサの 高 速 化 機 構 と 協 調 するRTOSの 実 装 に 関 する 研 究 Author(s) 島 田, 信 行 Citation Issue Date 2005-03 Type Thesis or Dissertation Text version author URL http://hdl.handle.net/10119/1924

More information

Ú ª π ª º Ω Û π º Ù π ª º Ë Ë Ë Ë Ë b Ë Ë Ë Ë Ë Î π Ë Ë Á Ë Á Î _ a ` _ a ` { _ ` a _ ` a _g _b _ c d Á f g ` a b _ ` a b _ _ ` Ú Ù Û Á π _ ` a ı ˆ π ª π 東 洋 電 機 株 式 会 社 氷 上 工 場 技 術 課 4 http://www.mitsubishielectric.co.jp/haisei

More information

( š ) Ÿ 4,086,376 76,423 3,702,178 307,775 165,305 7,075 800,000 150,000 397,000 300,000 3,342,945 16. 3.31 42,745,006 727,728 42,017,278 41,879,733 4

( š ) Ÿ 4,086,376 76,423 3,702,178 307,775 165,305 7,075 800,000 150,000 397,000 300,000 3,342,945 16. 3.31 42,745,006 727,728 42,017,278 41,879,733 4 Ÿ ( š ) 60,000 60,000 500,000 100,000 120,000 60,000 120,000 60,000 120,000 120,000 120,000 120,000 120,000 1,200,000 240,000 60,000 60,000 120,000 60,000 120,000 60,000 600,000 1,120,000 60,000 120,000

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

FinePix F460 使用説明書

FinePix F460 使用説明書 1 4 5 6 BL00504-101(1) e 007 006 004 00 005 0 0 1 1 1. AM A M NP-40N 4 N 1 5 6 1 B B e d * fi p û ü» Å w B Ò Ú p Ç Â Â Û B r 4 ã é ê 5 6 p w ë î Î ï ó 1 4 5 6 7 e y y y y y y y y y 8 x x x x x p x x NP-40N

More information

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen Hamming (Hamming codes) c 1 # of the lines in F q c through the origin n = qc 1 q 1 Choose a direction vector h i for each line. No two vectors are colinear. A linearly dependent system of h i s consists

More information

1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4

1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4 1.., M, M.,... : M. M?, RP 6, S 1 S 1 7 ( 1 ).,, RP, S 1 S 1 6, 7.,. 1 1 3 1 3 5 6 3 5 7 6 5 1 1 3 1 1: RP 6 S 1 S 1 7,., 19., RP 3 S 1 S 1 S 1., i., 10. h. h.,., h, h.,,,.. . (, )., i f i ( ). f 0 ( ),

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

untitled

untitled š ( ) œ I 100,000 100,000 100,000 100,000 100,000 100,000 I f 100,000 100,000 100,000 100,000 100,000 100,000 2,000,000 110,000 I 70,000 800,210 4,642,500 (1) 2,366,860 22.11.16 24. 3.15 0 0 24. 5.28 23,351,338

More information

cjnl22

cjnl22 '05/07/30 Vol. 33 CONTACT Japan - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - W Ò WŒã L Ã æ ± Ç d qƒ [ƒ ˆ Ä æ ID contactj@tty.gr.jp ƒ [ƒšƒ ƒoƒšƒxƒg o ^

More information

ðE (’Ó)

ðE (’Ó) The Iwakura Mission and the Audience of Russian Court BANNAI Tomoko The Iwakura Embassy was the first and last state embassy sent for the purpose of seeking a vision for future Japan. In the beginning,

More information

untitled

untitled Ÿ ( œ ) œ 26. 2.13 21,369,678 4,385,959 16,983,719 21,369,678 3,919,030 3,919,030 13,000,000 13,000,000 64,689 64,689 16,137,568 8,199,890 2,655 3,347,109 4,587,914 5,232,110 213,000 1,524,230 2,475,631

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

main.dvi

main.dvi ÌÄ Ë ¾ ¼ ½ ½ ½ ¾¼¼ ÊƵ ½ Ì Î ÄÀ µ ÄÀ ÌÄ Ë ÌÄ Ë ¼ÅÀÞ ½ ÀÞ ÌÄ Ë ½¼¼ÀÞ ÄÎĽ Ð Ú Ð ½µ ÀÞ ÄÎĽ Ì Ì Ò Ô Ñ Öµ ¾¼¼ Ì Ì ¾ Ò Ì ÄÎĽ Å Ì Ì Ì Ì ÄÎĽ Î ¾¼ Î ÙÐÐ ÑÙÐ Ø ÓÒ Òص Ì Î Ì ÔÌ ÔÌ ÄÓÓ ÙÔ Ø Ð ÔÌ Ø Ð Ì Ì Î ¾¼ Î

More information

3.4 con: 3.5 ws: 3.6 newpage: (TeX ) 3.7 clearpage: (TeX ) 4. 4.1 4.2 4.3 :QMath 1 1.1 XeX XML1.0 XML DTD (Document Type Definition, ) DTD XeX jarticl

3.4 con: 3.5 ws: 3.6 newpage: (TeX ) 3.7 clearpage: (TeX ) 4. 4.1 4.2 4.3 :QMath 1 1.1 XeX XML1.0 XML DTD (Document Type Definition, ) DTD XeX jarticl 2000-11-29 2005-04-20 XeX IMS:20001129001; NDC:021.4; keywords:, ; 1. 1.1 1.2 1.3 1.4 1.5 1.6 2. HTML 2.1 p: 2.2 br: 2.3 cite: 2.4 blockquote: 2.5 em: 2.6 strong: 2.7 sup: 2.8 sub: 2.9 ul: 2.10 ol: 2.11

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9.. 12 -- 2 1 2009 5,,.,.,.. 1, 2, 3,., 4),, 4, 5),. 4, 6, 7).,, R A B, 8, (a) A, B 9), (b) {a (a, b) R b B }, {b (a, b) R a A } 10, 11, 12) 2. (a). 11, 13, R S {(a, c) (a, b) R, (b, c) S } (c) R S 14), 1,

More information

( š ) 4,000,000 i 200,000,000 300,000 1,697,600,000 14.12.17 3,316.63fl 306,200,000 14.12.17 656.46fl 201,000,000 14.12.17 991.92fl 33,300,000 14.12.1

( š ) 4,000,000 i 200,000,000 300,000 1,697,600,000 14.12.17 3,316.63fl 306,200,000 14.12.17 656.46fl 201,000,000 14.12.17 991.92fl 33,300,000 14.12.1 ( š ) ( ) J lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ¾ 15 16. 3.30 24,991,213,640 7,582,598,663 17,408,614,977 17,387,622,157 (434,864) 1,304,592,530 204,300,000 4,000,000 200,300,000

More information

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q, (ver. 4:. 2005-07-27) 1 1.1 (mixed matrix) (layered mixed matrix, LM-matrix) m n A = Q T (2m) (m n) ( ) ( ) Q I m Q à = = (1) T diag [t 1,, t m ] T rank à = m rank A (2) 1.2 [ ] B rank [B C] rank B rank

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

CRA3689A

CRA3689A AVIC-DRZ90 AVIC-DRZ80 2 3 4 5 66 7 88 9 10 10 10 11 12 13 14 15 1 1 0 OPEN ANGLE REMOTE WIDE SET UP AVIC-DRZ90 SOURCE OFF AV CONTROL MIC 2 16 17 1 2 0 0 1 AVIC-DRZ90 2 3 4 OPEN ANGLE REMOTE SOURCE OFF

More information

FIT2010-minato.dvi

FIT2010-minato.dvi Á̾¼½¼ ËÒ ÒÒÖÒ ÖØ ÊÌÇ µ ÊÌÇ ÊÌÇ ¾¼¼ ½¼ ÂËÌ ÊÌÇ ÊÌÇ ÂËÌ ÊËÌ ÊÌÇ ÊÌÇ ½¼¼ ½¼ ½ ¾ ½¼½ ½¼½ ÊÌÇ ÂËÌ ½¼¼¼ ½¼ ¾ ÊÌÇ ÊÌÇ ÂËÌ ÊÌÇ ½ ¼ ÔÓÒ ¼½½¹¾¹¾¼ ÑÐ ÑÒØÓ ØºÓÙººÔ ÛÛÛ ØØÔ»»ÛÛÛ¹ÖØÓº غÓÙººÔ» ½ ½ º ¾ º» Û ½ ËÒÒÓһƻƽ

More information

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A ( ) (, ) arxiv: 1510.02269 hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a 1 + + N 0 a n Z A (β; p) = Au=β,u N n 0 A-. u! = n i=1 u i!, p u = n i=1 pu i i. Z = Z A Au

More information

ポケモンフォントのグリフ一覧

ポケモンフォントのグリフ一覧 ポケモンフォント Version 2.0 のグリフ 覧 (Unicode 順 ) は Version 1.0 と Version 2.0 とで 字 形 が 異 なるもの * は Version 2.0 で 新 たに 追 加 したもの * は Version 1.0 では Regular 版 のみに 収 録 していたが 新 たに Strict 版 にもグリフを 追 加 したもの コードポイント 字 Regular

More information

( ) œ 18,120,000 18,000,000 j 120,000 150,000 303,122,619 1,697,600,000 14.12.17 3,316.63fl 306,200,000 14.12.17 656.46fl 201,000,000 14.12.17 991.92f

( ) œ 18,120,000 18,000,000 j 120,000 150,000 303,122,619 1,697,600,000 14.12.17 3,316.63fl 306,200,000 14.12.17 656.46fl 201,000,000 14.12.17 991.92f ( ) ( ) œ J lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ¾ 14 15. 3.28 21,412,684,359 6,028,609,527 15,384,074,832 13,830,085,696 (367,937) 1,103,812,000 321,392,619 18,000,000 270,000

More information

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble 25 II 25 2 6 13:30 16:00 (1),. Do not open this problem boolet until the start of the examination is announced. (2) 3.. Answer the following 3 problems. Use the designated answer sheet for each problem.

More information

¾¼¼

¾¼¼ JAIST Reposi https://dspace.j Title ホームネットワークの 障 害 診 断 に 関 する 研 究 Author(s) 相 川, 恵 Citation Issue Date 2007-03 Type Thesis or Dissertation Text version author URL http://hdl.handle.net/10119/3591 Rights

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

š ( š ) Ÿ 1,681,268 100,000 16,519,700 (826) 1,661,677 17. 3.31 55,613,224 865,273 54,747,951 55,613,224 2,568,266 2,568,266 52,179,685 52,179,685 33,

š ( š ) Ÿ 1,681,268 100,000 16,519,700 (826) 1,661,677 17. 3.31 55,613,224 865,273 54,747,951 55,613,224 2,568,266 2,568,266 52,179,685 52,179,685 33, Ÿ š ( š ) 400,000 60,000 60,000 1,000,000 100,000 120,000 60,000 120,000 60,000 120,000 120,000 120,000 120,000 120,000 120,000 1,200,000 240,000 60,000 60,000 120,000 60,000 120,000 60,000 600,000 120,000

More information

untitled

untitled š š ( œ ) 1,000 23. 3.16 105,041,779 81,238,942 23,802,837 60,287,753 23,802,084 7,692,084 6,310,000 9,800,000 753 753 4,195,443 2,864,813 166,352 1,164,278 56,092,310 1,182,200 105,650 105,650 4,460 50,000,000

More information

Ÿ ( ) 360,000 700,000 240,000 480,000 320,000 220,000 20. 6. 6 0 0 52,649,855 20. 3.28 92,262,557 15,709,106 76,553,451 85,612,669 (24) 1,250,000 75,3

Ÿ ( ) 360,000 700,000 240,000 480,000 320,000 220,000 20. 6. 6 0 0 52,649,855 20. 3.28 92,262,557 15,709,106 76,553,451 85,612,669 (24) 1,250,000 75,3 ( ) g 60,000 120,000 1,200,000 120,000 100,000 60,000 60,000 120,000 721,052 60,000 10,000,000 120,000 120,000 120,000 90,000 60,000 600,000 146,396,863 2,000,000 2,500,000 1,000,000 200,000 10,000,000

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

Å Ö ÓÚ

Å Ö ÓÚ Å Ö ÓÚ µ ¾¼¼ ½ Å Ö ÓÚ ½ ½ ¾ ¾ ¾º½ ÏÏ ¾ ¾º½º½ ÓÄË ¾ ¾º½º¾ ÄË ¾º¾ ÄË ¾º¾º½ ËÎ Ë Ò Ù Ö Î Ù ÓÑÔÓ Ø ÓÒ ¾º¾º¾ ÄË ½½ º½ ÏÏ ½½ º½º½ ½½ º½º¾ ÏÏ Í ØÝ ÈÖÓ Ñ ½½ Å Ö ÓÚ ½ º½ Å Ö ÓÚ ½ º½º½ ½ º½º¾ Å Ö ÓÚ ½ º½º ½ º½º

More information

浜松医科大学紀要

浜松医科大学紀要 On the Statistical Bias Found in the Horse Racing Data (1) Akio NODA Mathematics Abstract: The purpose of the present paper is to report what type of statistical bias the author has found in the horse

More information

ÁÁ Ä Î ½ ½ ËÔÖ ËØ ½º½ ÜÐ ½º¾ ½º ½º ½º ½ºº½ ½ºº¾ ½º ½ºº½ ½ºº¾ ½º ½¼ ½ºº½ ½¼ ½ºº¾ ½¼ ½º ½½ ½ºº½ ½½ ½ºº¾ ½½ ½ºº ½½ ½ºº ½½ ½ºº ½¾ ½ºº ½¾ ½º ½ ½º½¼ ½ ½º½½ ½ ½º½¾ ½ ¾ Ä ½ ¾º½ ½ ¾º¾ ½ ¾º ½ ¾º ½ ¾º ¾¼ ¾º ÜÐ ¾½

More information

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2 CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for

More information

Test IV, March 22, 2016 6. Suppose that 2 n a n converges. Prove or disprove that a n converges. Proof. Method I: Let a n x n be a power series, which converges at x = 2 by the assumption. Applying Theorem

More information

000Dthesis.dvi

000Dthesis.dvi ½ ½ ½º½ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ º º º º º º º º º º ¾ ½º¾º½ º º º º º º º º º º º º º º º º º º º ½º¾º¾ º º º º º º º º º º º º º º º º º º

More information

Ú ½ ½ ½ ¾ ¾ µ µ ½ ½ ½ ½ µ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ¾½ ¾¾

Ú ½ ½ ½ ¾ ¾ µ µ ½ ½ ½ ½ µ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ¾½ ¾¾ ½ ¼ µ Ú ½ ½ ½ ¾ ¾ µ µ ½ ½ ½ ½ µ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ¾½ ¾¾ ¾¾ ¾ ¾ ¼ ¼ ¼ ½ ½ ½ ½ ¾ ¾ ¾ ¾ È ¼ ½ ¾ ¼ ½ ¾ ¾ ¼ ¼ ½ ½ ¾ ¾ Ú ¼ ½ ¾ ÊÈ ½ ½ ¼ µ Ú µ ÊÈ ÊÈ ºººººº º ÊÈ ½ ººº ½ ºººººººº ½ ½ ¾ ¾ È ºººººººº Å ººººººº

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

Graphs and Combinatorics (2006) 22: Digital Object Identifier (DOI) /s y Graphs and Combinatorics Springer-Verlag 2006 C4-

Graphs and Combinatorics (2006) 22: Digital Object Identifier (DOI) /s y Graphs and Combinatorics Springer-Verlag 2006 C4- Graphs and Combinatorics (2006) 22:515 525 Digital Object Identifier (DOI) 10.1007/s00373-006-0683-y Graphs and Combinatorics Springer-Verlag 2006 C4-Decompositions of D v \P and D v P where P is a 2-Regular

More information

0. Grover Grover positive support Grover Ihara weighted Grover Ihara [19] P GL(2, F ) (F : p- ) p- Selberg (Ihara-Selberg Ihara ) 1980 Serre [

0. Grover Grover positive support Grover Ihara weighted Grover Ihara [19] P GL(2, F ) (F : p- ) p- Selberg (Ihara-Selberg Ihara ) 1980 Serre [ Grover Grover positive support Grover Ihara weighted Grover 1 1966 Ihara [19 P GL(2, F ) (F : p- ) p- Selberg (Ihara-Selberg Ihara ) 198 Serre [32 Ihara 1986 Sunada [36,37 Ihara Ihara Hashimoto [16 1989

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

untitled

untitled ( œ ) ( ) œ J lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ¾ 24 25. 3.28 19,183,616,151 5,411,950,717 13,771,665,434 13,616,096,406 (449,383) 1,285,202,000 205,070,000 40,000 5,030,000

More information

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation

More information

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov

More information

å‰Łçı—訋çfl»æ³Łã†¨ã…Łã‡£ã…œã…−ã……ã…†æŁ°, ㆚ㆮ2æ¬¡è©Łä¾¡å‹ƒå›²ã•† ㅋㅪㅜã…−ã……ã…†æŁ°å‹Šã†«ã‡‹ã‡‰é•£ã†®ç¢ºç”⁄訋箊

å‰Łçı—訋çfl»æ³Łã†¨ã…Łã‡£ã…œã…−ã……ã…†æŁ°,   ㆚ㆮ2æ¬¡è©Łä¾¡å‹ƒå›²ã•† ㅋㅪㅜã…−ã……ã…†æŁ°å‹Šã†«ã‡‹ã‡‰é•£ã†®ç¢ºç”⁄訋箊 , 2 August 28 (Fri), 2016 August 28 (Fri), 2016 1 / 64 Outline 1 2 3 2 4 2 5 6 August 28 (Fri), 2016 2 / 64 fibonacci Lucas 2 August 28 (Fri), 2016 3 / 64 Dynamic Programming R.Bellman Bellman Continuum

More information

広報いるま平成19年12月15日号

広報いるま平成19年12月15日号 ª ª ª π ª ª ª ª ª π π π π π π π π ª π I ª π π π π ª ª ª π ª ú I π ª π ª ª ª πª ª ª ª ª ª π π ª ª π ª ª ªπ π ª π ªπ Q & A ï ï ï ï ï ï π ï ñ ñ ñ ñ ñ ï ñ ó ª ò ô ó ª ª ó ó ï ï ñ π π ñ π π π π ª ª ª ñ π

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information