1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4

Size: px
Start display at page:

Download "1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4"

Transcription

1 1.., M, M.,... : M. M?, RP 6, S 1 S 1 7 ( 1 ).,, RP, S 1 S 1 6, 7., : RP 6 S 1 S 1 7,., 19., RP 3 S 1 S 1 S 1., i., 10. h. h.,., h, h.,,,..

2 . (, )., i f i ( ). f 0 ( ), f 1 ( )., β i ( ; F) F H i ( ; F). ( ) M f min 0 (M) = min{f 0 ( ) : M }...1. M, f min 0 (M)..1..,., 1 RP S 1 S 1., RP 6, S 1 S 1 7,., Heawood.. (Heawood [He]). M v, ( ) v 3 (1) 3( χ(m))., χ(m) M... v f 1 ( ) + f ( ) = χ( ), f 1 ( ) = 3f ( )..,, 3., f 1 ( ) ( n ), f ( ) v χ(m) = 1 3 f 1( ) 1 ( ) v 3. v χ(m) 3( 1 v ) (, v 3 ) 3( χ(m)). Heawood RP, S 1 S 1. χ(rp ) = 1, χ(s 1 S 1 ) =,. ( ) f0 min (RP ) 3 3, f min 0 (RP ) 6. ( ) f0 min (S 1 S 1 ) 3 6, f min 0 (S 1 S 1 ) 7.., f0 min. S g = (S 1 S 1 ) #g g, N g = (RP ) #g g,, M #g M g., Heawood..3 (Jungerman and Ringel [Ri, JR] 1955, 1980). M S, N, N 3, (1) v M v.

3 , M,,.3., 1955 Ringel, 1980 Jungerman Ringel., Heawood Jungerman Ringel,, 1... M S, N, N 3, f0 min (M) = min { ( ) v 3 v N : 3( χ(m)) }., 3 S, N, N 3, f min 0 (S ) = 10, f min 0 (N ) = 8, f min 0 (B 3 ) = 9 (. )... ( )..,,,..,. M, f0 min (M). ( ) f0 min (M) ( ). ( ) f0 min (M) ( ). ( ), ( )., ( ),. ( ) ( ). ( ) Heawood, 3. ( ) 1987 Brehm Kühnel [BK1].. S n f0 min (S n ) = n +,,?..5 (Brehm Kühnel 1987). n f 0 ( ) 3 n + 3., RP, CP, HP, OP , n =,, 8, 16. ( f min 0 ). n =, RP 6. n =,, CP 9 [KB]. 1..,. link PL. PL. 3, [EK] combinatorial manifold.

4 n = 8, , HP Brehm Kühnel,..7 (Brehm Kühnel 1987). M n, i < n H i(m) 0, f min 0 (M) n + i..8. i = n., n i = n 3 n +, 3 n S i S j. f0 min (S i S j ) i + j + (, i j ),. f0 min (S 3 S ) = 1. f0 min (S 3 S 3 ) = 13. f0 min (S S ) = 11. f0 min (S d 1 S 1 ) d d + 3, d d +. f0 min (S d 1 S 1 ) d d + 3, d d +., S d 1 S 1 S 1 S d 1 5. S S i + j +, 10 S S [KL] 11., S d 1 S 1, S d 1 S 1 ( ) [BD, CSS]. (i, j), f0 min (S i S j ). ([KN], i + j +.),.5.7, Heawood. (.10.).10 (Kühnel [Kü] 1990). M v ( ) v 10(χ(M) ) ,. (S S ) # 1, K3 16, χ((s S ) # ) = 6, χ(k3) =. f0 min ((S S ) # ) = 1. f0 min (K3) =. 3 HP.,. Pontrjagin? 5 S 1 S d 1 [Ste].

5 .3. ( )..,.7.., F..1 (Novik Swartz [NS3], M [Mu] 6 ). k M v ( ) ( ) v k k + 1 β k (M; F). k + 1 k + 1, F = Z/Z, k = 1 Heawood, k = Kühnel., f0 min...13 (Novik Swartz [NS1], Bagchi [Ba], Datta-M [DM], M [Mu] 7 ). n 3. n M v ( ) ( ) v n 1 n + β 1 (M; F). M (S n 1 S 1 ) #β 1( ) (S n 1 S 1 ) #β 1( )., H 1 (M) 0 f min 0 (M) d + 3,.7 i = 1..1., S 1 S n 1., Lutz Slanke Swartz [LSS] f0 min (S S 1 ) #b f0 min (S S 1 ) #b. b =,..., 8, 10, 11, 1 (. [LSS, Table 1].).13 tight,,. [DS] f0 min ((S n 1 S 1 ) #n +5n+6 ) = n + 5n + 5 (d: ). [DS] f0 min ((S n 1 S 1 ) #n +5n+6 ) = n + 5n + 5 (d: ). [BDSS] f0 min ((S S 1 ) #99 ) = 9, f0 min ((S S 1 ) #08 ) = 69, f0 min ((S S 1 ) #357 ) = 89, f0 min ((S S 1 ) #56 ) = 109, f0 min ((S 3 S 1 ) #13 ) = 71, f0 min ((S 3 S 1 ) #3 ) = 101, f0 min ((S S 1 ) #390 ) = 97., n ( ).13 ( )..13 i 1.15 (Kühnel). 1 r < n. n M v, ( ) ( ) v n + r n + β r (M; F). r + 1 r [NS3]. [Mu]. 7 [NS1]. 3 [Ba, DM], [Mu].

6 . Lutz [Lu] h.1.13,, h. h,. h,, n, f( ) = (f 0 ( ), f 1 ( ),..., f n ( )) f., f. f Dehn Sommerville... M, f 0 ( ) f 1 ( ) + f ( ) = χ(m) 3f 1 ( ) = f ( ). ( ). f 1, f f 0, f( ) = ( f 0 ( ), 3(f 0 ( ) χ(m)), (f 0 ( ) χ(m)) )., f( ) , f( ) f 0 ( ), f 1 ( ), f ( ), f 3 ( ), f 0 ( ) f 1 ( ) + f ( ) f 3 ( ) = 0 f ( ) = f 3 ( ), f( ) = ( f 0 ( ), f 1 ( ), f 1 ( ) f 0 ( ), f 1 ( ) ), f( ) f 0 f 1.,, 3,? f, f,., h. (n 1), h h( ) = (h 0 ( ), h 1 ( ),..., h n ( )) Z n+1 h i ( ) = i j=0 ( 1) i j ( n j i j ) f j 1 ( ) ( f 1 ( ) = 1 )., f i 1 ( ) = i ( n j ) j=0 hj ( ), i j f( ) h( ). 8 f min 0 (RP 3 ) = 11, f0 min (RP ) = 16 f0 min (RP 5 ).. 0 (S 1 S 1 S 1 ) f min

7 , f, f,. 3.1 (Dehn Sommerville [Kl]). (n 1),. ( ) n h i ( ) = h n i ( ) + ( 1) n i (χ( ) χ(s n 1 )) (i = 0, 1,..., n). i 3... S, f( ) = (6, 1, 8). h h( ) = (1, 3, 3, 1) h i ( ) = h 3 i ( ) Dehn Sommerville.,.. F, V, S = F[x v : v V ]., 1., I I = (x v1 x v x vk : {v 1,..., v k } V, {v 1,..., v k } ) S. F[ ] = S/I ( F ). (n 1), F[ ] Krull n., F, n θ 1,..., θ n, F[ ]/(θ 1,..., θ n )F[ ] ( 0 ). θ 1,..., θ n F[ ] (linear system of parameters) , F[ ] = F[x 1, x,..., x 6 ]/(x 1 x, x 3 x, x 5 x 6 ).. x 1 x, x 3 x, x 5 x 6 F[ ]., F[ ]/(x 1 x, x 3 x, x 5 x 6 ) = F[x 1, x 3, x 5 ]/(x 1, x 3, x 5). ( R, R = R 0 R 1 R R 3, dim F R 0 = 1, dim F R 1 = 3, dim F R = 3, dim F R 3 = 1.),. n S n, Dehn Sommerville h i ( ) = h n i ( ). 10 R = s i=0 R i ( s ) (Poincaré duality algebra), R s = F, R i R s i R s i = 0, 1,..., s perfect pairing 11, R i R i. R R i = Rs i R i Hom F (R s i, R s )

8 , Dehn Sommerville ([Sta] ). 3. ( ( )). (n 1), Θ = θ 1,..., θ n F[ ].. (1) dim F (F[ ]/ΘF[ ]) k = h k ( ) for k = 0, 1,..., n. () F[ ]/ΘF[ ] n.,. 3., Cohen-Macaulay,,.,. (n 1), h - h ( ) = (h 0( ), h 1( ),..., h n( )) 1. { h i ( ) = h i ( ) ( n i) ( i j=1 β j 1( ; F)), (i n ) h n ( ) ( ) n i ( n 1 j=1 β j 1( ; F)), (i = n ). (, h n( ) = β n ( ; F) ), S 1 S 1 7 f( ) = (7, 1, 1), h( ) = (1,, 10, 1). β 1 (S 1 S 1 ) = h ( ) = h( ) (0, 0, 3, 1) = (1,,, 1). (!) ( 3.1 ). 3.6 (h - Dehn Sommerville [No]). (n 1),. h i ( ) = h n i( ) (i = 0, 1,..., n). Krull n S- W Θ = θ 1,..., θ n, W Σ(Θ; W ) 13. n Σ(Θ; W ) = ΘW + (θ 1,..., ˆθ i,..., θ n )W : W θ i. i=1, W W S f, W : W f = {m W : fm W }. Buchsbaum [Go].,, 3. ΘF[ ] Σ(Θ, F[ ]),. 1 h. h i = h i + ( n i) βi 1 (i n), h n = h n. 13 ΘW + n. 5 1

9 3.7 ( ( ) [NS1, NS]). (n 1) M, Θ = θ 1,..., θ n F[ ]. (1) dim F (F[ ]/Σ(Θ; F[ ])) k = h k ( ) for k = 0, 1,..., n. () M char(f) = (F[ ]/Σ(Θ; F[ ])) n. 3.8.,. F = Z/Z, RP 6. ( ) x1 x I = x 3, x 1 x x 5, x 1 x 3 x 6, x 1 x x 5, x 1 x x 6 x x 3 x, x x x 6, x x 5 x 6, x 3 x x 5, x 3 x 5 x 6, Θ = (x 1 + x 3 + x 5, x + x 3 + x 5, x + x 5 + x 6 ) 1 F[ ]. Σ(Θ, R) I Θ, x 1 x 3 + x x 5 + x 3 x 5 + x 1 x 6 + x 3 x 6 + x 5 x 6, X = x 1 x + x 3 x 5 + x 1 x 6 + x 3 x 6 + x 5 x 6,. x x + x x 5 + x 3 x 5 + x x 6 + x 3 x 6 + x x 6 + x 5 x ( ) F[x 1,..., x 6 ]/(I + (Θ) + (X)) = F[x, y, z]/(x + xy + yz, y + xz + yz, z + xy + xz) M, M. Γ, f i (, Γ) Γ i, β i (, Γ; F) = dim F Hi (, Γ; F)., h(, Γ), h (, Γ). 3.9 (Dehn Sommerville [MN] (essentially [Gr])). (n 1) h i ( ) = h n i(, ) (i = 0, 1,..., n)., Γ F[, Γ]. F[, Γ] = I Γ /I 3.10 ([MNY]). (n 1), R = F[ ], W = F[, ], Θ = θ 1,..., θ n R. M char(f) =,. (1) dim F (R/Σ(Θ; R)) k = h k ( ) for k = 0, 1,..., n. () dim F (W/Σ(Θ; W )) k = h k (, ) for k = 0, 1,..., n. (3), (R/Σ(Θ; R)) i (W/Σ(Θ; W )) n i (W/Σ(Θ; W )) n perfect pairing

10 , (W/Σ(Θ; W )) n = F, R/Σ(Θ; R) W/Σ(Θ; W ) W/Σ(Θ; W ) well-defined [MNY]. 3..?,., M k. M v, ( ) ( v k k+1 k+1 ) βk (M; F). R = F[ ], Θ R k+1,. (1) dim F (R/ΘR) i dim F (R/Σ(Θ, R)) i = ( ) k+1 βi 1 (M; F), i () f f Σ(Θ, R) = 0., R/ΘR w, () (R/(Θ, w)r) k+1 dim F (R/ΘR) k+1 dim F (R/Σ(Θ, R)) k, (R/Σ(Θ, R)) k = (R/Σ(Θ, R))k+1 (1)., F[ ] n, Θ, w F k + ( n k k + 1 ) = dim F (F[x 1,..., x n k ]) k+1 dim F (R/(Θ, w)r) k+1 ( ) k + 1 β k (M; F). k + 1 (.1 k + 1 F-.).13.,. 3.1 ([NS1, Ba, DM, Mu]). n 3. n M v,. ( ) n + f 1 ( ) (n + 1)v + (β 1 (M; F) 1)., M (S n 1 S 1 ) #β 1( ) (S n 1 S 1 ) #β 1( ).,.,,, f 1 ( ) f 1 ( ) ( v ) , M. R = F[ ]. Θ = θ 1,..., θ n+1 w w : (R/ΘR) n (R/ΘR) n 1 [Sw]., (1), () ( ) n + 1 dim F (R/(Σ(Θ; R))) n 1 + β n 1 (M; F) dim F R/(Σ(Θ; R))) n 1, h 1 h. f.

11 3.5.., [KN, Sw]., 3 [LSS] 1., h. [Mu1]. References [Ba] B. Bagchi, The mu vector, Morse inequalities and a generalized lower bound theorem for locally tame combinatorial manifolds, European J. Combin. 51 (016), [BD] B. Bagchi and B. Datta, Minimal triangulations of sphere bundles over the circle, J. Combin. Theory, Ser. A 115 (008), [BK1] U. Brehm and W. Kühnel, Combinatorial manifolds with few vertices, Topology 6 (1987), [BK] U. Brehm and W. Kühnel, 15-vertex triangulations of an 8-manifold, Math. Ann. 9 (199), [BDSS] B.A. Burton, B. Datta, N. Singh and J. Spreer, A construction principle for tight and minimal triangulations of manifolds, arxiv: [CK] M. Casella and W. Kühnel, A triangulated K3 surface with the minimum number of vertices, Topology 0 (001), [CSS] J. Chestnut, J. Sapir and E. Swartz, Enumerative properties of triangulations of spherical bundles over S 1, European J. Combin. 9 (008), [DM] B. Datta and S. Murai, On stacked triangulated manifolds, arxiv: [DS] B. Datta and N. Singh, An infinite family of tight triangulations of manifolds, J. Combin. Theory, Ser. A 10 (013), [EK] J. Eells and N.H. Kuiper, Manifolds which are like projective planes, Publ. Math. I.H.E.S. 1 (196), 181. [Go] S. Goto, On the associated graded rings of parameter ideals in Buchsbaum rings, J. Alg. 85 (1983), [Gr] H-G. Gräbe, Generalized Dehn-Sommerville equations and an upper bound theorem, Beiträge Algebra Geom., 5 (1987), [He] P.J. Heawood, Map-color theorem, Quart. J. Pure Apple. Math. (1890), [JR] M. Jungerman and G. Ringel, Minimal triangulations on orientable surfaces, Acta. Math. 15 (1980), [Kü1] W. Kühnel, Higher dimensional analogues of Császár s torus, Results. Math. 9 (1986), [Kü] W. Kühnel, Triangulations of manifolds with few vertices, In: Advances in Differential Geometry and Topology (F. Tricerri, ed.), 59 11, World Scientific, [KB] W. Kühnel and T.F. Banchoff, The 9-vertex complex projective plane. Math. Intelligencer 5 (1983),11. [KL] W. Kühnel, and G. Lassmann, The unique 3-neighborly -manifold with fewvertices, J. Combin. Theory, Series A 35 (1983), [KN] S. Klee and I. Novik, Face enumeration on simplicial complexes, arxiv: , 015. [Kl] V. Klee, A combinatorial analogue of Poincaré s duality theorem, Canad. J. Math. 16 (196), [Lu] F. Lutz, Triangulated Manifolds with Few Vertices: Combinatorial Manifolds, arxiv:math/ [LSS] F. Lutz, T. Sulanke and E. Swartz, f-vectors of 3-manifolds, Electron. J. Combin. 16 (009), Research Paper 13, 33 pp. [Mu1],, 56. [Mu] S. Murai, Tight combinatorial manifolds and graded Betti numbers, Collect. Math. 66 (015), Tight triangulation.

12 [MN] S. Murai and I. Novik, Face numbers of manifolds with boundary, Int. Math. Res. Not., to appear, arxiv: [MNY] S. Murai, I. Novik and K. Yoshida, A duality in Buchsbaum rings and triangulated manifolds, arxiv: [No] I. Novik, Upper bound theorems for homology manifolds, Israel J. Math. 108 (1998), 5 8. [NS1] I. Novik and E. Swartz, Socles of Buchsbaum modules, complexes and posets, Adv. Math. (009), [NS] I. Novik and E. Swartz, Gorenstein rings through face rings of manifolds, Compos. Math. 15 (009), [NS3] I. Novik and E. Swartz, Applications of Klee s Dehn-Sommerville relations, Discrete Comput. Geom. (009), [Ri] G. Ringel, Wie man die geschlossenen nichtorientierbaren Flächen in möglichst wenig Dreiecke zerlegen kann, Math. Ann. 130 (1955), [Sc] P. Schenzel, On the number of faces of simplicial complexes and the purity of Frobenius, Math. Z. 178 (1981), [Sta] R.P. Stanley, Combinatorics and commutative algebra, Second edition, Progr. Math., vol. 1, Birkhäuser, Boston, [Ste] N.E. Steenrod, The classification of sphere bundles, Ann. of Math. 5 (19) [Sw1] E. Swartz, Face enumeration: from spheres to manifolds, J. Eur. Math. Soc. 11 (009), 9 85 [Sw] E. Swartz, Thirty-five years and counting, arxiv , 01. Satoshi Murai, Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, , Japan

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G Semi-unmixed 1 K S K n K[X 1,..., X n ] G G G 2 G V (G) E(G) S G V (G) = {1,..., n} I(G) G S square-free I(G) = (X i X j {i, j} E(G)) I(G) G (edge ideal) 1990 Villarreal [11] S/I(G) Cohen Macaulay G 2005

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University 1 Erdös-Rényi Erdös-Rényi 1959 Erdös-Rényi [4] 2006 Linial-Meshulam [14] 2000

Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University 1 Erdös-Rényi Erdös-Rényi 1959 Erdös-Rényi [4] 2006 Linial-Meshulam [14] 2000 Tomoyuki Shirai Istitute of Mathematics for Idustry, Kyushu Uiversity Erdös-Réyi Erdös-Réyi 959 Erdös-Réyi [] 6 Liial-Meshulam [] (cf. [, 7,, 8]) Kruskal-Katoa Erdös- Réyi ( ) Liial-Meshulam ( ) [8]. Kruskal

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

kokyuroku.dvi

kokyuroku.dvi On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]).

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]). 3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S 3 1 1 (CMC 1), 1 ( [AA]) 3 H 3 CMC 1 Bryant ([B, UY1]) H 3 CMC 1, Bryant ([CHR, RUY1, RUY2, UY1, UY2, UY3,

More information

eng10june10.dvi

eng10june10.dvi The Gauss-Bonnet type formulas for surfaces with singular points Masaaki Umehara Osaka University 1 2 1. Gaussian curvature K Figure 1. (Surfaces of K0 L p (r) =the length of the geod. circle of

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

2016

2016 2016 1 G x x G d G (x) 1 ( ) G d G (x) = 2 E(G). x V (G) 2 ( ) 1.1 1: n m on-off ( 1 ) off on 1: on-off ( on ) G v v N(v) on-off G S V (G) N(v) S { 3 G v S v S G G = 1 OK ( ) G 2 3.1 u S u u u 1 G u S

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0) D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C

A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0) D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0)D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C Thomas [22] Bridgeland K3 2 Harder- Narasimhan 2.1 2.1.

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

1 1. R 2n non-kähler complex structure n = 2 n = 1 complex curve Kähler No n 3 Calabi Eckmann Yes 1953 2 complex structure 2 Hopf h p : S 2p+1 CP p, h

1 1. R 2n non-kähler complex structure n = 2 n = 1 complex curve Kähler No n 3 Calabi Eckmann Yes 1953 2 complex structure 2 Hopf h p : S 2p+1 CP p, h Non-Kähler complex structures on R 4 ( ) 1. Antonio J. Di Scala (Politecnico di Torino), Daniele Zuddas (KIAS) [1] R 4 non-kähler complex surfaces Kähler 1. (M, J) complex manifold M complex structure

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box

., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box White-Box Takayuki Kunihiro Graduate School of Pure and Applied Sciences, University of Tsukuba Hidenao Iwane ( ) / Fujitsu Laboratories Ltd. / National Institute of Informatics. Yumi Wada Graduate School

More information

kb-HP.dvi

kb-HP.dvi Recent developments in the log minimal model program II II Birkar-Cascini-Hacon-McKernan 1 2 2 3 3 5 4 8 4.1.................. 9 4.2.......................... 10 5 11 464-8602, e-mail: fujino@math.nagoya-u.ac.jp

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Quasi-categories of comodules and Landweber exactness quasi-category comodule complex cobordism MU coalgebra MU MU comodule Hovey-Strickland Landweber

Quasi-categories of comodules and Landweber exactness quasi-category comodule complex cobordism MU coalgebra MU MU comodule Hovey-Strickland Landweber Quasi-categories of comodules and Landweber exactness quasi-category comodule complex cobordism MU coalgebra MU MU comodule Hovey-Strickland Landweber exact MU-algebra comodule quasi-category smooth Schlichting

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] =

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] = Schwarz 1, x z = z(x) {z; x} {z; x} = z z 1 2 z z, = d/dx (1) a 0, b {az; x} = {z; x}, {z + b; x} = {z; x} {1/z; x} = {z; x} (2) ad bc 0 a, b, c, d 2 { az + b cz + d ; x } = {z; x} (3) z(x) = (ax + b)/(cx

More information

D 1 l θ lsinθ y L D 2 2: D 1 y l sin θ (1.2) θ y (1.1) D 1 (1.2) (θ, y) π 0 π l sin θdθ π [0, π] 3 sin cos π l sin θdθ = l π 0 0 π Ldθ = L Ldθ sin θdθ

D 1 l θ lsinθ y L D 2 2: D 1 y l sin θ (1.2) θ y (1.1) D 1 (1.2) (θ, y) π 0 π l sin θdθ π [0, π] 3 sin cos π l sin θdθ = l π 0 0 π Ldθ = L Ldθ sin θdθ 1 1 (Buffon) 1 l L l < L 1: 2 D 1 D 2 D 1 P 1 2 θ D 1 y θ y π θ π; 0 y L (1.1) 1 Georges Louis Leclerc Comte de Buffon Born: 7 Sept 1707 in Montbard, Cōte d Or, France Died: 16 April 1788 in Paris, France

More information

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a Page 1 of 6 B (The World of Mathematics) November 0, 006 Final Exam 006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (a) (Decide whether the following holds by completing the truth

More information

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1 vertex edge 1(a) 1(b) 1(c) 1(d) 2 (a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1: Zachary [11] [12] [13] World-Wide

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag 2004 RGB A STUDY OF RGB COLOR INFORMATION AND ITS APPLICATION 03R3237 Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One

More information

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv ( ) 1 ([SU] ): F K k Z p - (cf [Iw2] [Iw3] [Iw6]) K F F/K Z p - k /k Weil K K F F p- ( 41) Z p - Weil Weil F F projective smooth C C Jac(C)/F ( ) : 2 3 4 5 Tate Weil 6 7 Z p - 2 [Iw1] 2 21 K k k 1 k K

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf 1,a) 2,b) 4,c) 3,d) 4,e) Web A Review Supporting System for Whiteboard Logging Movies Based on Notes Timeline Taniguchi Yoshihide 1,a) Horiguchi Satoshi 2,b) Inoue Akifumi 4,c) Igaki Hiroshi 3,d) Hoshi

More information

Perturbation method for determining the group of invariance of hierarchical models

Perturbation method for determining the group of invariance of hierarchical models Perturbation method for determining the group of invariance of hierarchical models 1 2 1 1 2 2009/11/27 ( ) 2009/11/27 1 / 31 2 3 p 11 p 12 p 13 p 21 p 22 p 23 (p ij 0, i;j p ij = 1). p ij = a i b j log

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ, A spectral theory of linear operators on Gelfand triplets MI (Institute of Mathematics for Industry, Kyushu University) (Hayato CHIBA) chiba@imi.kyushu-u.ac.jp Dec 2, 20 du dt = Tu. (.) u X T X X T 0 X

More information

TF-IDF TDF-IDF TDF-IDF Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Sat

TF-IDF TDF-IDF TDF-IDF Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Sat 1 1 2 1. TF-IDF TDF-IDF TDF-IDF. 3 18 6 Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Satoshi Date, 1 Teruaki Kitasuka, 1 Tsuyoshi Itokawa 2

More information

NP 1 ( ) Ehrgott [3] ( ) (Ehrgott [3] ) Ulungu & Teghem [8] Zitzler, Laumanns & Bleuler [11] Papadimitriou & Yannakakis [7] Zaroliagis [10] 2 1

NP 1 ( ) Ehrgott [3] ( ) (Ehrgott [3] ) Ulungu & Teghem [8] Zitzler, Laumanns & Bleuler [11] Papadimitriou & Yannakakis [7] Zaroliagis [10] 2 1 NP 1 ( ) Ehrgott [3] 2 1 1 ( ) (Ehrgott [3] ) Ulungu & Teghem [8] Zitzler, Laumanns & Bleuler [11] Papadimitriou & Yannakakis [7] Zaroliagis [10] 2 1 1 1 Avis & Fukuda [1] 2 NP (Ehrgott [3] ) ( ) 3 NP

More information

a m 1 mod p a km 1 mod p k<s 1.6. n > 1 n 1= s m, (m, = 1 a n n a m 1 mod n a km 1 mod n k<sn a 1.7. n > 1 n 1= s m, (m, = 1 r n ν = min ord (p 1 (1 B

a m 1 mod p a km 1 mod p k<s 1.6. n > 1 n 1= s m, (m, = 1 a n n a m 1 mod n a km 1 mod n k<sn a 1.7. n > 1 n 1= s m, (m, = 1 r n ν = min ord (p 1 (1 B 10 004 Journal of the Institute of Science and Engineering. Chuo University Euler n > 1 p n p ord p n n n 1= s m (m B psp = {a (Z/nZ ; a n 1 =1}, B epsp = { ( a (Z/nZ ; a n 1 a }, = n B spsp = { a (Z/nZ

More information

š ( š ) (6) 11,310, (3) 34,146, (2) 3,284, (1) 1,583, (1) 6,924, (1) 1,549, (3) 15,2

š ( š ) (6) 11,310, (3) 34,146, (2) 3,284, (1) 1,583, (1) 6,924, (1) 1,549, (3) 15,2 š ( š ) ( ) J lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ¾ 13 14. 3.29 23,586,164,307 6,369,173,468 17,216,990,839 17,557,554,780 (352,062) 1,095,615,450 11,297,761,775 8,547,169,269

More information

2018 : msjmeeting-2018sep-11i001 WKB ( ) Eynard-Orantin WKB.,, Schrödinger WKB Voros, Painlevé (τ- ). 1. WKB,, WKB Voros WKB, Painlevé WKB. WKB, [ ],.

2018 : msjmeeting-2018sep-11i001 WKB ( ) Eynard-Orantin WKB.,, Schrödinger WKB Voros, Painlevé (τ- ). 1. WKB,, WKB Voros WKB, Painlevé WKB. WKB, [ ],. 018 : msjmeeting-018sep-11i001 WKB ( Eynard-Orantin WKB.,, Schrödinger WKB Voros, Painlevé (τ-. 1. WKB,, WKB Voros WKB, Painlevé WKB. WKB, [ ],. 1.1. WKB Voros Voros ([V] WKB (exact WKB analysis, ( 1 Schrödinger

More information

Journal of the Ceramic Society of Japan 103 [2] (1995) Paper Sintering and Grain Growth Rates of Two Spheres with Different Radii Hidehiko TAN

Journal of the Ceramic Society of Japan 103 [2] (1995) Paper Sintering and Grain Growth Rates of Two Spheres with Different Radii Hidehiko TAN Journal of the Ceramic Society of Japan 103 [2] 138-143 (1995) Paper Sintering and Grain Growth Rates of Two Spheres with Different Radii Hidehiko TANAKA National Institute for Research in Inorganic Materials,

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t ( ) 1 ( ) [6],[7] 1. 1928 J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t 6 7 7 : 1 5t +9t 2 5t 3 + t 4 ( :25400086) 2010 Mathematics Subject Classification: 57M25,

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp

More information

Akbulut-Karakurt diagram L = K 1 K 2 in S 3 Stein corks W = W (L). W the Mazur manifold K 1, K 2 are unknotted lk(k 1, K 2 ) = ±1 Involution τ : K 1 K

Akbulut-Karakurt diagram L = K 1 K 2 in S 3 Stein corks W = W (L). W the Mazur manifold K 1, K 2 are unknotted lk(k 1, K 2 ) = ±1 Involution τ : K 1 K Akbulut-Karakurt diagram L = K 1 K 2 in S 3 Stein corks W = W (L) W the Mazur manifold K 1, K 2 are unknotted lk(k 1, K 2 ) = ±1 Involution τ : K 1 K 2 admits a Stein diagram h 0 h 1 h 2 h 2 is attached

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate School of Economics and Institute of Economic Research

More information

Lecture 12. Properties of Expanders

Lecture 12. Properties of Expanders Lecture 12. Properties of Expanders M2 Mitsuru Kusumoto Kyoto University 2013/10/29 Preliminalies G = (V, E) L G : A G : 0 = λ 1 λ 2 λ n : L G ψ 1,..., ψ n : L G µ 1 µ 2 µ n : A G ϕ 1,..., ϕ n : A G (Lecture

More information

bosai-2002.dvi

bosai-2002.dvi 45 B-2 14 4 Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 45 B-2, 22 5 m 5 m :,,, 1. 2. 2.1 27 km 2 187 km 2 14 % 77 % 47 7, 9 2, 54 6 7, 9 16, 57 8 1, 9 47 2 1 57 5 2.2 45 2 Fig. 1 2 2.3 Fig. 2

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon Recovery Theorem Forward Looking Recovery Theorem Ross [2015] forward looking Audrino et al. [2015] Tikhonov Tikhonov 1. Tikhonov 2. Tikhonov 3. 3 1 forward looking *1 Recovery Theorem Ross [2015] forward

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

日本数学会・2011年度年会(早稲田大学)・総合講演

日本数学会・2011年度年会(早稲田大学)・総合講演 日本数学会 2011 年度年会 ( 早稲田大学 ) 総合講演 2011 年度日本数学会春季賞受賞記念講演 MSJMEETING-2011-0 ( ) 1. p>0 p C ( ) p p 0 smooth l (l p ) p p André, Christol, Mebkhout, Kedlaya K 0 O K K k O K k p>0 K K : K R 0 p = p 1 Γ := K k

More information

I II

I II I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen Hamming (Hamming codes) c 1 # of the lines in F q c through the origin n = qc 1 q 1 Choose a direction vector h i for each line. No two vectors are colinear. A linearly dependent system of h i s consists

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

Ÿ Ÿ ( ) Ÿ , , , , , , ,000 39,120 31,050 30,000 1,050 52,649, ,932,131 16,182,115 94,75

Ÿ Ÿ ( ) Ÿ , , , , , , ,000 39,120 31,050 30,000 1,050 52,649, ,932,131 16,182,115 94,75 Ÿ ( ) Ÿ 100,000 200,000 60,000 60,000 600,000 100,000 120,000 60,000 120,000 60,000 120,000 120,000 120,000 120,000 120,000 1,200,000 240,000 60,000 60,000 240,000 60,000 120,000 60,000 300,000 120,000

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

A RÉSUMÉ: KOSZUL RYOTA OKAZAKI Abstract.. 1. Koszul Rings, Koszul,., Koszul, [5, 7, 11, 13, 14]. Convention 1.1.,, 1., k ( ),. graded k-algebra A,,, (

A RÉSUMÉ: KOSZUL RYOTA OKAZAKI Abstract.. 1. Koszul Rings, Koszul,., Koszul, [5, 7, 11, 13, 14]. Convention 1.1.,, 1., k ( ),. graded k-algebra A,,, ( A RÉSUMÉ: KOSZUL RYOTA OKAZAKI Abstract. 1. Koszul Rings, Koszul,, Koszul, [5, 7, 11, 13, 14] Convention 1.1.,, 1, k ( ), graded k-algebra A,,, (1) A k-, A := iz A i ; (2) A i A j A i+ j for all i, j;

More information

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1 1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp.218 223 ) 1 2 ) (i) (ii) / (iii) ( ) (i ii) 1 2 1 ( ) 3 ( ) 2, 3 Dunning(1979) ( ) 1 2 ( ) ( ) ( ) (,p.218) (

More information

(1) PQ (2) () 2 PR = PR P : P = R : R (2) () = P = P R M = XM : = M : M (1) (2) = N = N X M 161 (1) (2) F F = F F F EF = F E

(1) PQ (2) () 2 PR = PR P : P = R : R (2) () = P = P R M = XM : = M : M (1) (2) = N = N X M 161 (1) (2) F F = F F F EF = F E 5 1 1 1.1 2 159 O O PQ RS OR P = PQ P O M MQ O (1) M P (2) P : P R : R () PR P 160 > M : = M : M X (1) N = N M // N X M (2) M 161 (1) E = 8 = 4 = = E = (2) : = 2 : = E = E F 5 F EF F E 5 1 159 (1) PQ (2)

More information

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osaka University , Schoof Algorithmic Number Theory, MSRI

More information

The Plasma Boundary of Magnetic Fusion Devices

The Plasma Boundary of Magnetic Fusion Devices ASAKURA Nobuyuki, Japan Atomic Energy Research Institute, Naka, Ibaraki 311-0193, Japan e-mail: asakuran@fusion.naka.jaeri.go.jp The Plasma Boundary of Magnetic Fusion Devices Naka Fusion Research Establishment,

More information

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ .3.2 3.3.2 Spherical Coorinates.5: Laplace 2 V = r 2 r 2 x = r cos φ sin θ, y = r sin φ sin θ, z = r cos θ.93 r 2 sin θ sin θ θ θ r 2 sin 2 θ 2 V =.94 2.94 z V φ Laplace r 2 r 2 r 2 sin θ.96.95 V r 2 R

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

数理解析研究所講究録 第1908巻

数理解析研究所講究録 第1908巻 1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$

More information