( ) FAS87 FAS FAS87 v = 1 i 1 + i

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "( ) FAS87 FAS FAS87 v = 1 i 1 + i"

Transcription

1 ( ) ( 7 6 )

2 ( ) FAS87 FAS FAS87 v = 1 i 1 + i

3 N (m) N L m a N (m) L m a N m a (m) N

4

5

6

7

8 1,000 1, , , , A 1,000 A a ,000 A a - 7 -

9 a , ,000, ,

10 2,000,000 a , ,000 a a

11 2.0 1, a

12 r 1 r Dy y= e 1 / P e 1 1 Dy r 1 l r y y y= e v 1 / P e 1 1 l y y v r y= D a l e r a v = r D a l e a v r r r r S 1 S G G / N / N r r r

13 167 3 r 1 r 1 l l B = B B N = B N = = = = r 1 r 1 r r L L α ( b l ) b l α ( b l ) b l = N ( ) = N = N ( ) B n ( P ) B n ( P ) P = P = B an B an r P = n < n < P L = + PS ( ) ( + ) = P = ( ) = N

14 = ( ) 3 B n P = B a n = P B a n P B = P B an 1 +1 ( 1+ i) + 1 ( 1 + i) + 1 = P n a n ( 1+ i) P a 1 ( ) = P 1+ i

15 + 1 = ( 1+ i) P ( 1+ i) B r P = r 1 +1 ( 1+ i) P ( i) + 1 =

16 P = B a n n m n > m m P = B am P P P 1 +1 ( ) ( 1 + i) P ( i) 1 = P P B 1 ( + i) n

17 ( ) + w ( w) 2 d v b a d v b a 2 0 = ( + ) 0 L 1 0 = B j ( + ) 0 L 1 B j 0 lb 0 l b

Microsoft Word - ランチョンプレゼンテーション詳細.doc

Microsoft Word - ランチョンプレゼンテーション詳細.doc PS1-1-1 PS1-1-2 PS1-1-3 PS1-1-4 PS1-1-5 PS1-1-6 PS1-1-7 PS1-1-8 PS1-1-9 1 25 12:4514:18 25 12:4513:15 B PS1-1-10 PS1-2-1 PS1-2-2 PS1-2-3 PS1-2-4 PS1-2-5 PS1-2-6 25 13:1513:36 B PS1-2-7 PS1-3-1 PS1-3-2

More information

DVR-DS8000 1 2 3 4 5 6 7 1 2 3 4 4 4 4 5 6 7 7 8 9 9 10 11 1 2 3 4 5 6 7 1 1 1 1 2 2 3 4 5 5 6 7 1 2 3 4 5 6 7 8 9 10 11 1 2 2 2 2 2 3 3 4 4 4 4 4 5 5 6 7 7 7 7 7 8 8 8 8 8 9 9 10 11 11 TEL

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

16 16 16 1 16 2 16 3 24 4 24 5 25 6 33 7 33 33 1 33 2 34 3 34 34 34 34 34 34 4 34-1 - 5 34 34 34 1 34 34 35 36 36 2 38 38 41 46 47 48 1 48 48 48-2 - 49 50 51 2 52 52 53 53 1 54 2 54 54 54 56 57 57 58 59

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

:010_ :3/24/2005 3:27 PM :05/03/28 14:39

:010_ :3/24/2005 3:27 PM :05/03/28 14:39 :010_896300101703 :3/24/2005 3:27 PM :05/03/28 14:39 :010_896300101703 :3/24/2005 3:27 PM :05/03/28 14:39 :010_896300101703 :3/24/2005 3:27 PM :05/03/28 14:39 :010_896300101703 :3/24/2005 3:27 PM :05/03/28

More information

さくらの個別指導 ( さくら教育研究所 ) a a n n A m n 1 a m a n = a m+n 2 (a m ) n = a mn 3 (ab) n = a n b n a n n = = 3 2, = 3 2+

さくらの個別指導 ( さくら教育研究所 ) a a n n A m n 1 a m a n = a m+n 2 (a m ) n = a mn 3 (ab) n = a n b n a n n = = 3 2, = 3 2+ 5 5. 5.. a a n n A m n a m a n = a m+n (a m ) n = a mn 3 (ab) n = a n b n a n n 0 3 3 0 = 3 +0 = 3, 3 3 = 3 +( ) = 3 0 3 0 3 3 0 = 3 3 =, 3 = 30 3 = 3 0 a 0 a`n a 0 n a 0 = a`n = a n a` = a 83 84 5 5.

More information

E4230JD_ qx4j

E4230JD_ qx4j 1 2 3 4 5 6 7 8 9 10/0 11 12 NB304 DVR-16HD DVR-16HD DVR-16HD 2 ALL Point Point VR Video Point DVR-16HD CD CD DVD-V DVD-V VR Video Point DVR-16HD 1 2 3 4 5 6 7 8 9 10/0 11 12 16HD NB304 Point

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

h1_h4.ai

h1_h4.ai 01 02 03 04 05 PS RC RC CSR CSR CSR 10 11 14 15 400 350 300 250 200 150 100 50 0 2011/12 2012/02 2012/04 2012/06 2012/08 2012/10 2012/12 2013/02 2013/04 2013/06 2013/08 2013/10 2013/12 2014/02 2014/04

More information

untitled

untitled -1- -2- -3- AED -4- 2-5- -6- -7- -8-6-1-28 048-833-1231 2-1-1 048-261-3119 4389-1 048-556-3005 1-13-11 04-2924-1311 2097-1 048-738-3111 1172 04-2953-7111 990-1 048-565-1919 537 048-775-1311 2-2-2 048-924-2111

More information

clover-375.pdf

clover-375.pdf 8:4511:00 9:0012:30 9:0016:3003-5986-3188 AM PM AM PM AM PM AM PM AM PM AM PM - - - - - - 1 2 3 5 6 7 8:4515:00 9:0016:30 AM PM AM PM AM PM AM PM AM PM AM PM - - - - - - - - - () - - - - - - - 8 10 12

More information

09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y

09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y 09 II 09/12/21 1 1 7 1.1 I 2D II 3D f() = 3 6 2 + 9 2 f(, y) = 2 2 + 2y + y 2 6 4y f(1) = 1 3 6 1 2 9 1 2 = 2 y = f() f(3, 2) = 2 3 2 + 2 3 2 + 2 2 6 3 4 2 = 8 z = f(, y) y 2 1 z 8 3 2 y 1 ( y ) 1 (0,

More information

DV-DT1 取扱説明書

DV-DT1 取扱説明書 2 ALL Point Point VR Video DVD-R Point VCR VCR VCR CD CD CD DVD-V DVD-V DVD-R DVD-R VR Video Point Point [ 7 6 5 4 3 2 1 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 11 10 98 6 5 4 3 2 1 12 1110

More information

KHP.trials.Nov2006

KHP.trials.Nov2006 Translation 1 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Translation 2 Page 7 Page 8 Page 9 Page 10 Translation 3 Page 11 Page 12 Page 13 Page 14 Translation 4 46 Page 15 Page 16 Page 17 Translation 5 Page

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

加速度センサを用いた図形入力

加速度センサを用いた図形入力 ( ) 2/Sep 09 1 2 1. : ( ) 2. : 2 1. 2. 2 t a 0, a 1,..., a ( ) v 0 t v 0, v 1,..., v n ( ) p 0 t p 0, p 1,..., p n+1 3 Kentaro Yamaguchi@bandainamcogames.co.jp 1 ( ) a i g a i g v 1,..., v n v 0 v i+1

More information

Chap10.dvi

Chap10.dvi =0. f = 2 +3 { 2 +3 0 2 f = 1 =0 { sin 0 3 f = 1 =0 2 sin 1 0 4 f = 0 =0 { 1 0 5 f = 0 =0 f 3 2 lim = lim 0 0 0 =0 =0. f 0 = 0. 2 =0. 3 4 f 1 lim 0 0 = lim 0 sin 2 cos 1 = lim 0 2 sin = lim =0 0 2 =0.

More information

) Binary Cubic Forms / 25

) Binary Cubic Forms / 25 2016 5 2 ) Binary Cubic Forms 2016 5 2 1 / 25 1 2 2 2 3 2 3 ) Binary Cubic Forms 2016 5 2 2 / 25 1.1 ( ) 4 2 12 = 5+7, 16 = 5+11, 36 = 7+29, 1.2 ( ) p p+2 3 5 5 7 11 13 17 19, 29 31 41 43 ) Binary Cubic

More information

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 2010 II 6 10.11.15/ 10.11.11 1 1 5.6 1.1 1. y = e x y = log x = log e x 2. e x ) = e x 3. ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 log a 1 a 1 log a a a r+s log a M + log a N 1 0 a 1 a r

More information

1. 2. 3. 4. 5. 1. 2. 3. 4. 5. 6. 3 DI 1 2 3 4 5 6 1 2 FAS n=65 n=54 n=68 n=41 49/60 49/56 30/31 30/31 61/66 ITT 61/64 PP RAC 1 3 RAC-1 RAC-2 FAS 2 87/93 86/92 8/19 8/14 4 2 3 1 パッケージ見本 ラベキュアパック400 800

More information

りそなホールディングス2005年3月期半期報告書

りそなホールディングス2005年3月期半期報告書 :000_3_0889500501612 :12/28/2004 10:23 AM:04/12/28 10:44 :000_4_0889500501612 :12/28/2004 10:24 AM:04/12/28 10:47 :000_header_0889500501612 :12/28/2004 10:24 AM:04/12/28 10:47 :010_0889500501612 :12/28/2004

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

21 1 1 1 2 2 5 7 9 11 13 13 14 18 18 20 28 28 29 31 31 34 35 35 36 37 37 38 39 40 56 66 74 89 99 - ------ ------ -------------- ---------------- 1 10 2-2 8 5 26 ( ) 15 3 4 19 62 2,000 26 26 5 3 30 1 13

More information

2

2 DVR-HE850 DVR-HE650 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 HDD DVD -R W CD PL TTL BS TRK CHP REMO POWER AUTO XP SP LP EP DUBBING 2 CS CH PM H M S DVD HDD DVD HDD DVD HDD HDD DVD 20 21 22 1 2 3 1

More information

dy = sin cos y cos () y () 1 y = sin 1 + c 1 e sin (3) y() () y() y( 0 ) = y 0 y 1 1. (1) d (1) y = f(, y) (4) i y y i+1 y i+1 = y( i + ) = y i

dy = sin cos y cos () y () 1 y = sin 1 + c 1 e sin (3) y() () y() y( 0 ) = y 0 y 1 1. (1) d (1) y = f(, y) (4) i y y i+1 y i+1 = y( i + ) = y i 007 8 8 4 1 1.1 ( ) (partial differential equation) (ordinary differential equation) 1 dy = f(, y) (1) 1 1 y() (1) y() (, y) 1 dy = sin cos y cos () y () 1 y = sin 1 + c 1 e sin (3) 1 1 5 y() () y() y(

More information

住まい・まちづくり活動事例集

住まい・まちづくり活動事例集 3 H15 1982 1988 5 H16.31 1 1 1 246 26 3 2003 11 21,417/ 65 17.91% 16.62%1.29 246 2 1 12 1246 5008026 30080 3 200803 120060 2 20013 1 1 21 11 19821988 199112003 13 1988 1 1991 28 3 1991 1993 1992 1 1995

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

PageScope Box Operator Ver. 3.2 Box Operator !. - - 2! - - 2 - 2 - - - - - - - - - - - - - 2 2-2 2-2 - - - 1 2 3 4 2 - 2 - - - - - - - - - - 2 - - - - - - - - - 2 0 - - 2 0 - - 2 0 - -

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

Ⅱ 防災計画の概要

Ⅱ 防災計画の概要 12 ( 10 304 3 16 14 25 3 ) ( ) 1 3 1 18 12 2 ( ) ( ) 18 12 ( ) ( ( ) ( ) ( ) ( ) 1 ( ) 3 ( ) ( ) ( ) 4 5 1 2 3 ( ) 4 1 1 6 7 3 3 2 3 3 ( ) 1 AM PM 8 9 8 30 8 50 8 50 9 00 9 00 9 50 10 00 11 00 11 00 12

More information

CISPR11 AM J55001(H22)

CISPR11 AM J55001(H22) J55011H27 CISPR 11 5 (2009), Amd.1(2010) J55001(H22) 3 a) CISPR11 26 3 CISPR11 J55011 b) CISPR11 CISPR11 2 CISPR11 CISPR11 CISPR11 CISPR11 CISPR11 c) CISPR11 CISPR11 CISPR11 CISPR11 AM J55001(H22) 1 2

More information

東大阪地域活性化支援機構活動レポート2015 _061620

東大阪地域活性化支援機構活動レポート2015 _061620 !1 NPO 2015 2016 5 16 NPO !2 DIGEST NEWS 2015 2015.04.05 3 10 1 6 2015.08.29 AM 1 1 AM 4 6 IC !3 2015.09.02 AM AM 1 8 29 4 6 AM NPO 1 2003 53 2 65000 13 2015.09.07 AM AM 9/7 12 15 18 22 9/12 9/13 !4 2015.11.24

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

DV-RV7000取扱説明書

DV-RV7000取扱説明書 65 mm d Recordable ReWritable PROTECT PROTECT ALL 4 Recordable ReWritable 4:3 6:9 LB 6:9 PS 5 3 4 5 6 7 8 B C D E F 9 : ; < = >? 3 4 5 6 7 8 9 /0 0 G H I J K L c @ 0 /0 v A M z N x b zb /0 5 0 5

More information

chapter11.PDF

chapter11.PDF 11. 11.1. 11.1.1. 98 7 15 12 20 158 7/15 12/20 99 11 10 2000 3 31 11/10 3/31 2000 1 141 + 1 = 142 142 2000 3 27 99 12 10 451 344 = 107 2000 1 107 + 1 = 108 108 2000 6 27 98 12 20 98/12/20 99/12/20 2000/6/27

More information

(1) 1 y = 2 = = b (2) 2 y = 2 = 2 = 2 + h B h h h< h 2 h

(1) 1 y = 2 = = b (2) 2 y = 2 = 2 = 2 + h B h h h< h 2 h 6 6.1 6.1.1 O y A y y = f() y = f() b f(b) B y f(b) f() = b f(b) f() f() = = b A f() b AB O b 6.1 2 y = 2 = 1 = 1 + h (1 + h) 2 1 2 (1 + h) 1 2h + h2 = h h(2 + h) = h = 2 + h y (1 + h) 2 1 2 O y = 2 1

More information

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an

More information

A

A A05-132 2010 2 11 1 1 3 1.1.......................................... 3 1.2..................................... 3 1.3..................................... 3 2 4 2.1............................... 4 2.2

More information

( ) X x, y x y x y X x X x [x] ( ) x X y x y [x] = [y] ( ) x X y y x ( ˆX) X ˆX X x x z x X x ˆX [z x ] X ˆX X ˆX ( ˆX ) (0) X x, y d(x(1), y(1)), d(x

( ) X x, y x y x y X x X x [x] ( ) x X y x y [x] = [y] ( ) x X y y x ( ˆX) X ˆX X x x z x X x ˆX [z x ] X ˆX X ˆX ( ˆX ) (0) X x, y d(x(1), y(1)), d(x Z Z Ẑ 1 1.1 (X, d) X x 1, x 2,, x n, x x n x(n) ( ) X x x ε N N i, j i, j d(x(i), x(j)) < ε ( ) X x x n N N i i d(x(n), x(i)) < 1 n ( ) X x lim n x(n) X x X () X x, y lim n d(x(n), y(n)) = 0 x y x y 1

More information

234 50cm

234 50cm 234 50cm () 1 10 2 3 4 1 5 6 2 2 1 7 ( ー ) っ ー っ 8 1 2 10 10 2m 4m 6m 15m 457-2472 585-1154 9 10 2 60 2 100 RC SRC 30 80 500 1 500 500 ) 10 B b A 2 A B 2m 457-2473 585-1154 11 20m a 2m 3 3 1m 75cm 120cm

More information

1 2 2/17

1 2 2/17 1/17 1 2 2/17 ROM ROM 2 CD-ROM CD CD ROM LSI ROM CD-ROM 3/17 3 http://www.pc-view.net/special/000411/ 4/17 4 http://www.pc-view.net/special/000411/page2.html 5 5/17 6/17 7/17 2PS2 6 8/17 7 9/17 8 10/17

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e x 3) x. ) {a } a a 2 a 3...) a b b {a } α : lim a = α b) ) [] 2 ) f x) = + x ) 4) x > 0 {f x)} x > 0,

2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e x 3) x. ) {a } a a 2 a 3...) a b b {a } α : lim a = α b) ) [] 2 ) f x) = + x ) 4) x > 0 {f x)} x > 0, . 207 02 02 a x x ) a x x a x x a x x ) a x x [] 3 3 sup) if) [3] 3 [4] 5.4 ) e x e x = lim + x ) ) e x e x log x = log e x) a > 0) x a x = e x log a 2) 2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e

More information

WECPNL = LA +10log10 N 27 N = N 2 + 3N3 + 10( N1 + N 4) L A N N N N N 1 2 3 4 Lden Lden Lden Lden LAE L pa pa 2 a /10 LpA = 20 log 10 ( pa = p 10 ) n na p0 p na n an n p0 2 Lp p L p

More information

HDV-909DT.indb

HDV-909DT.indb B6-9-/ (J) --6 6 6 8 9 6 8 9 6 6 6 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 6 6 6 6 6 6 6 66 6 68 69 6 8 9 8 8 8 6 8 9 6 6 6 6 6 66 6 68 69 6 6 6 6 6 6 66 6 68 69 6 6 6 6 6 6

More information

Super perfect numbers and Mersenne perefect numbers /2/22 1 m, , 31 8 P = , P =

Super perfect numbers and Mersenne perefect numbers /2/22 1 m, , 31 8 P = , P = Super perfect numbers and Mersenne perefect numbers 3 2019/2/22 1 m, 2 2 5 3 5 4 18 5 20 6 25 7, 31 8 P = 5 35 9, 38 10 P = 5 39 1 1 m, 1: m = 28 m = 28 m = 10 height48 2 4 3 A 40 2 3 5 A 2002 2 7 11 13

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

坊っちゃん

坊っちゃん might is right I am glad to see you 1992 4 1 20 1 2 1987 62 10 27 1 5-86 1999

More information

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE

More information

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) ( B 4 4 4 52 4/ 9/ 3/3 6 9.. y = x 2 x x = (, ) (, ) S = 2 = 2 4 4 [, ] 4 4 4 ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, 4 4 4 4 4 k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) 2 2 + ( ) 3 2 + ( 4 4 4 4 4 4 4 4 4 ( (

More information

200 2 6 2............................... 2.2.............................. 2.3.............................. 3 2 3 2...................................... 3 2.2.................................. 4 2.3

More information

平成13年度日本分析センター年報

平成13年度日本分析センター年報 200 150 70 234 Bq m 3 1 148 Bq m -3 100 0 550 0 11/1 0:00 am 11/2 0:00 am 11/3 0:00 am 25 20 15 10 11/1 0:00 am 11/2 0:00 am 11/3 0:00 am 39.2 Bq m -3 11/4 0:00 am 30 990 19.3 Bq m -3 60 15.8 Bq m -3 14.1

More information

(search: ) [1] ( ) 2 (linear search) (sequential search) 1

(search: ) [1] ( ) 2 (linear search) (sequential search) 1 2005 11 14 1 1.1 2 1.2 (search:) [1] () 2 (linear search) (sequential search) 1 2.1 2.1.1 List 2-1(p.37) 1 1 13 n

More information

( )

( ) ) ( ( ) 3 15m t / 1.9 3 m t / 0.64 3 m ( ) ( ) 3 15m 3 1.9m / t 0.64m 3 / t ) ( β1 β 2 β 3 y ( ) = αx1 X 2 X 3 ( ) ) ( ( ) 3 15m t / 1.9 3 m 3 90m t / 0.64 3 m ( ) : r : ) 30 ( 10 0.0164

More information

12 1384342 12 24462 1.

12 1384342 12 24462 1. 1 2 1 2 12 1384342 12 24462 1. 1. 1 1.1 1.1.1 38 1.1.2 39 2 1.1.3 40 1.2 41 1.3 431432, 433, 1.4 432433 1.5 431,433 1.6 431,,433,, 2. 2.1 44 2.2 45 2.3 46 2.4 47 2.5 48 2.6 49 2.7 50 2.8 51 2.9 52 2.10

More information

16

16 15 16 3-1 3-2 3-3 3-3-1 2 2-1 2 3-3-2 3 3-1 17 ) 3-3-3 115 115 8 10 3-2 3-2 1 1573 24 617 47 322 70 193 93 107 2 1441 25 600 48 313 71 192 94 106 3 884 26 592 49 262 72 189 95 98 4 883 27 571 50 304 73

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

P4 1. P P6 : TM-1139 : 7 17:45 :

P4 1. P P6 : TM-1139 : 7 17:45 : P1 5 1960 61 723. 1 JA 712 P2 723. 1 JA 712 1961 1960-1961 C1 0004 07 0001 0231 : 1960.10.25-61.5.15 1960 61 1 0004-1 1960.11.7 0005-2 1960.11.14 0015-3 1960.11.25 0025-4 1960.12.5 0038-5 1960.12.12 0049-6

More information