untitled

Size: px
Start display at page:

Download "untitled"

Transcription

1 2 1

2 ) ( ) ( ( )

3 () ADR

4 7 8 4

5 5 9 10

6

7

8

9

10

11

12

13

14

15

16 α

17 33 17

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

13,825,228 3,707,995 26.8 4.9 25 3 8 9 1 50,000 0.29 1.59 70,000 0.29 1.74 12,500 0.39 1.69 12,500 0.55 10,000 20,000 0.13 1.58 30,000 0.00 1.26 5,000 0.13 1.58 25,000 40,000 0.13 1.58 50,000 0.00 1.26

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

( ) FAS87 FAS FAS87 v = 1 i 1 + i

( ) FAS87 FAS FAS87 v = 1 i 1 + i ( ) ( 7 6 ) ( ) 1 6 1 18 FAS87 FAS87 7 1 FAS87 v = 1 i 1 + i 10 14 6 6-1 - 7 73 2 N (m) N L m a N (m) L m a N m a (m) N 73 9 99 18 4-2 - 4 143 2 145 3 37 4 37 4 40 6 40 6 41 10 41 10 13 10 14 4 24 3 145

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

16

16 15 16 3-1 3-2 3-3 3-3-1 2 2-1 2 3-3-2 3 3-1 17 ) 3-3-3 115 115 8 10 3-2 3-2 1 1573 24 617 47 322 70 193 93 107 2 1441 25 600 48 313 71 192 94 106 3 884 26 592 49 262 72 189 95 98 4 883 27 571 50 304 73

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

- 1-250

- 1-250 ... 1... 2... 5... 5... 7... 10.. 10... 12... 16... 16... 19... 21... 23... 23... 25 (1)... 25 (2)... 27... 30 (1)... 30... 30... 32 (2)... 35... 35... 38... 40... 45-1 - - 1-250 500 12 115 12 22 20 22

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

ALM

ALM ALM 4 60025480 1 1.1 1.1.1 1.1.2 1.2 ALM 2. 2.11 2.1.1 2.1.2 2.2 2.3 3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.2 3.2.1 3.2.2 4. 4.1 4.1.1 4.1.2 4.1.3 4.2 4.2.1 4.2.2 4.2.3 5. 5.1 5.1.1 5.1.2 5.2 2 6. 6.1 6.2 6.1.1

More information

88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

指数関数的進化企業に及ぼす弱い連携の影響 日産自動車, 富士フイルム, 川崎重工業のイノベーションの源泉 1 115 12 13 14 15 16 2 21 22 23 24 25 3 31 32 321 322 323 332 4 41 42 43 5-17 - 18 1 115 4 5 9 1 5 5 2 152045 2 3 12015 22015 1000111000 100111200 112

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

Japan Research Review 1998年7月号

Japan Research Review 1998年7月号 Japan Research Review 1998.7 Perspectives ****************************************************************************************** - 1 - Japan Research Review 1998.7-2 - Japan Research Review 1998.7-3

More information

研修コーナー

研修コーナー l l l l l l l Department of Obstetrics and Gynecology, Fukui Medical University, Fukui l l l l l l µ l β β l α l µ µ l l l l Department of Obstetrics and Gynecology, Gifu University School of Medicine,

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク 2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,

More information

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m 2009 IA I 22, 23, 24, 25, 26, 27 4 21 1 1 2 1! 4, 5 1? 50 1 2 1 1 2 1 4 2 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k, l m, n k, l m, n kn > ml...? 2 m, n n m 3 2

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

ID POS F

ID POS F 01D8101011L 2005 3 ID POS 2 2 1 F 1... 1 2 ID POS... 2 3... 4 3.1...4 3.2...4 3.3...5 3.4 F...5 3.5...6 3.6 2...6 4... 8 4.1...8 4.2...8 4.3...8 4.4...9 4.5...10 5... 12 5.1...12 5.2...13 5.3...15 5.4...17

More information

NL09

NL09 Information September, 2005 1 2 Japanese Association for Molecular Target Therapy of Cancer News Letter No.9 September, 2005 3 2005 4 Japanese Association for Molecular Target Therapy of Cancer News Letter

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y

09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y 09 II 09/12/21 1 1 7 1.1 I 2D II 3D f() = 3 6 2 + 9 2 f(, y) = 2 2 + 2y + y 2 6 4y f(1) = 1 3 6 1 2 9 1 2 = 2 y = f() f(3, 2) = 2 3 2 + 2 3 2 + 2 2 6 3 4 2 = 8 z = f(, y) y 2 1 z 8 3 2 y 1 ( y ) 1 (0,

More information

( ) ( ) ( ) i (i = 1, 2,, n) x( ) log(a i x + 1) a i > 0 t i (> 0) T i x i z n z = log(a i x i + 1) i=1 i t i ( ) x i t i (i = 1, 2, n) T n x i T i=1 z = n log(a i x i + 1) i=1 x i t i (i = 1, 2,, n) n

More information

Annual Report 2015 アリアンツ生命保険の現状

Annual Report 2015 アリアンツ生命保険の現状 Annual Report 215 [21441215331] Annual Report 215 Content 1 2 214 3 4 214 6 6 1 13 14 5 17 18 32 52 56 64 Annual Report 215 189125 78,5 284 2157 1 Annual Report 215 2153 URL Allianz Life Insurance Japan

More information

2 ID POS 1... 1 2... 2 2.1 ID POS... 2 2.2... 3 3... 5 3.1... 5 3.2... 6 3.2.1... 6 3.2.2... 7 3.3... 7 3.3.1... 7 3.3.2... 8 3.3.3... 8 3.4... 9 4... 11 4.1... 11 4.2... 15 4.3... 27 5... 35... 36...

More information

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1 t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.

More information

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an

More information

FAX780CL_chap-first.fm

FAX780CL_chap-first.fm FAX-780CL ABCDEFGHIα 01041115:10 :01 FAX-780CL α 1 1 2 3 1 2 f k b a FAX-780CL α n p q 09,. v m t w FAX-780CL A BC B C D E F G H I c i c s s i 0 9 V X Q ( < N > O P Z R Q: W Y M S T U V i c i k

More information

untitled

untitled 1 th 1 th Dec.2006 1 1 th 1 th Dec.2006 103 1 2 EITC 2 1 th 1 th Dec.2006 3 1 th 1 th Dec.2006 2006 4 1 th 1 th Dec.2006 5 1 th 1 th Dec.2006 2 6 1 th 1 th Dec.2006 7 1 th 1 th Dec.2006 3 8 1 th 1 th Dec.2006

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

FAX780TA_chap-first.fm

FAX780TA_chap-first.fm FAX-780TA ABCDEFGHIα 01041115:10 :01 FAX-780CL α 1 1 2 3 1 2 f k b a FAX-780TA α n p q 09,. v m t w FAX-780TA A BC B C D E F G H I c i c s s i 0 9 i c i k o o o t c 0 9 - = C t C B t - = 1 2 3

More information

202

202 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 DS =+α log (Spread )+ β DSRate +γlend +δ DEx DS t Spread t 1 DSRate t Lend t DEx DS DEx Spread DS

More information