指定難病にかかる診断基準及び重症度分類等の一部改正について(厚生労働省健康局疾病対策課:H27.2.5)

Size: px
Start display at page:

Download "指定難病にかかる診断基準及び重症度分類等の一部改正について(厚生労働省健康局疾病対策課:H27.2.5)"

Transcription

1

2

3

4 ,1. ;< φ'' 守,, 一口 :,,'.-,;.,;,''

5

6

7

8

9

10

11

12

13 全日本病院協会医療行政情報

14

15

- 1 - 2 ç 21,464 5.1% 7,743 112 11,260 2,349 36.1% 0.5% 52.5% 10.9% 1,039 0.2% 0 1 84 954 0.0% 0.1% 8.1% 91.8% 2,829 0.7% 1,274 1,035 496 24 45.0% 36.6% 17.5% 0.8% 24,886 5.9% 9,661 717 6,350 8,203 38.8%

More information

KAGA City Waterworks Vision 1.00 0.90 0.80 0.98 0.79 0.78 0.70 0.60 0.66 0.67 0.69 0.72 0.67 0.50 H21 H22 H23 H24 H25 14.0 12.0 10.0 8.0 6.0 4.0 11.7 11.8 11.8 11.9 10.0 7.7 6.8 5.2 H21 H22

More information

離散数学 第 4回 集合の記法 (1):外延的記法と内包的記法

離散数学 第 4回  集合の記法 (1):外延的記法と内包的記法 4 (1) [email protected] 2014 5 13 2014 5 12 09:28 ( ) (4) 2014 5 13 1 / 35 () 1 (1) (4 8 ) 2 (2) (4 15 ) 3 (3) (4 22 ) () (4 29 ) () (5 6 ) 4 (1) (5 13 ) 5 (2) (5 20 ) 6 (4) (5 27 ) 7 (1) (6 3 ) (6 10

More information

iæ~ れる 12~ 守 . Ili~~ ~~ ~H ~~ ij:~ r.~ ~n r~~ ø~ rn~ ~~ g~ ø~ IJ~ I,~ r,~ ~~ f,~ l:l~

More information

!!!!!!!!!!!!!!!!!!!!!!!!!!!!! FileMaker Security Guide v13.0.1 2

!!!!!!!!!!!!!!!!!!!!!!!!!!!!! FileMaker Security Guide v13.0.1 2 TECH BRIEF FileMaker セキュリティガイド ソリューションの 安 全 を 守 る 鍵 !!!!!!!!!!!!!!!!!!!!!!!!!!!!! FileMaker Security Guide v13.0.1 2 FileMaker Security Guide v13.0.1 3 FileMaker Security Guide v13.0.1 4 FileMaker Security

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m 2009 IA I 22, 23, 24, 25, 26, 27 4 21 1 1 2 1! 4, 5 1? 50 1 2 1 1 2 1 4 2 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k, l m, n k, l m, n kn > ml...? 2 m, n n m 3 2

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

ZNR ( ) 8/20 µs 8/20 µs (A) (V) ACrms (V) C (V) max.(v) Ip (A) /0 µs 2 ms ERZV ERZV

ZNR ( ) 8/20 µs 8/20 µs (A) (V) ACrms (V) C (V) max.(v) Ip (A) /0 µs 2 ms ERZV ERZV ZNR ( ) ZNR V E R Z V φ φ φ φ φ φ V φ E R Z V A E H φ φ φ φ φ V 00 Sep. 20 ZNR ( ) ERZV05 @ 8/20 µs (J) @ 8/20 µs (A) (V) ACrms (V) C (V) max.(v) Ip (A) /0 µs 2 ms 40 0.6 0.4 2 25 ERZV07 36 2.5. 0.9 0

More information

重力方向に基づくコントローラの向き決定方法

重力方向に基づくコントローラの向き決定方法 ( ) 2/Sep 09 1 ( ) ( ) 3 2 X w, Y w, Z w +X w = +Y w = +Z w = 1 X c, Y c, Z c X c, Y c, Z c X w, Y w, Z w Y c Z c X c 1: X c, Y c, Z c Kentaro [email protected] 1 M M v 0, v 1, v 2 v 0 v

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

MELSEC-QシリーズからMELSEC iQ-Rシリーズへの移行ガイド

MELSEC-QシリーズからMELSEC iQ-Rシリーズへの移行ガイド 鍵 鍵 (%) 100 90 80 AC120V 70 60 AC132V 50 40 0 10 20 30 40 50 55 ( C) Y 16 12 8 4 0 (35,16) (45,16) 0 10 20 30 40 50 55 X (55,13) (55,10) (%) 100 90 80 AC120V

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

(1) 1.1

(1) 1.1 1 1 1.1 1.1.1 1.1 ( ) ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) ( ) ( ) ( ) 2 1 1.1.2 (1) 1.1 1.1 3 (2) 1.2 4 1 (3) 1.3 ( ) ( ) (4) 1.1 5 (5) ( ) 1.4 6 1 (6) 1.5 (7) ( ) (8) 1.1 7 1.1.3

More information

Hirosaki University Repository Title 更 級 日 記 の 特 徴 的 表 現 について Author(s) 伊 藤, 守 幸 Citation 弘 前 大 学 国 語 国 文 学. 7, 1985, p.21-31 Issue Date 1985-03-20 URL http://hdl.handle.net/10129/4129 Rights Text version

More information

2

2 16 1050026 1050042 1 2 1 1.1 3 1.2 3 1.3 3 2 2.1 4 2.2 4 2.2.1 5 2.2.2 5 2.3 7 2.3.1 1Basic 7 2.3.2 2 8 2.3.3 3 9 2.3.4 4window size 10 2.3.5 5 11 3 3.1 12 3.2 CCF 1 13 3.3 14 3.4 2 15 3.5 3 17 20 20 20

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

Hirosaki University Repository 日 記 と 物 語 の 関 係 をめぐって : 更 級 日 記 を 中 心 Title に Author(s) 伊 藤, 守 幸 Citation 文 経 論 叢. 人 文 学 科 篇. 12, 1992, p.225-244 Issue Date 1992-03-19 URL http://hdl.handle.net/10129/4131

More information

untitled

untitled 8- My + Cy + Ky = f () t 8. C f () t ( t) = Ψq( t) () t = Ψq () t () t = Ψq () t = ( q q ) ; = [ ] y y y q Ψ φ φ φ = ( ϕ, ϕ, ϕ,3 ) 8. ψ Ψ MΨq + Ψ CΨq + Ψ KΨq = Ψ f ( t) Ψ MΨ = I; Ψ CΨ = C; Ψ KΨ = Λ; q

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

untitled

untitled Global Quantitative Research / -2- -3- -4- -5- 35 35 SPC SPC REIT REIT -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- 100m$110-18- Global Quantitative Research -19- -20- -21- -22- -23- -24- -25-

More information

振動工学に基礎

振動工学に基礎 Ky Words. ω. ω.3 osω snω.4 ω snω ω osω.5 .6 ω osω snω.7 ω ω ( sn( ω φ.7 ( ω os( ω φ.8 ω ( ω sn( ω φ.9 ω anφ / ω ω φ ω T ω T s π T π. ω Hz ω. T π π rad/s π ω π T. T ω φ 6. 6. 4. 4... -... -. -4. -4. -6.

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ 1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

untitled

untitled AT50339 ...9 Q1.1...9 Q1.2...9 Q1.3... 10 Q1.4... 10... 11 Q2.1... 11 Q2.2... 11 Q2.3 12 Q2.4ATC... 13... 14 Q3.1... 14 Q3.2... 15 Q3.3... 15 Q3.4... 15... 16 Q4.1... 16 Q4.2 16 Q4.3... 17 Q4.4... 18 Q4.5...

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

Life-do.Plus Catalog 2018 vol.1

Life-do.Plus Catalog 2018 vol.1 C ATALOG 2018 01 C O N T E N T S 03 06 07 15 16 17 17 18 19 21 W455 D300 H220mm / 6,950g LD-117 60 / 60 150 200mm W75 D45 H180mm / 110g W455 D300 H220mm / 6,950g 4589506150168 LD-113 60 / 60 150 200mm

More information

空軍側 ~U I 池

空軍側 ~U I 池 空軍側 ~U I 池 L~J と 障害をまたく l,~ 5~ I~. すことと光むこと

More information

NL10

NL10 Information September, 2006 1 2 Japanese Association for Molecular Target Therapy of Cancer News Letter No.10 September, 2006 3 2006 4 Japanese Association for Molecular Target Therapy of Cancer News Letter

More information

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n

More information

A&A Jツール 作図・編集キット

A&A Jツール 作図・編集キット i... 1... 2 10 N... 2 2 5 N... 3... 5 5 7 9 11 13... 5... 6... 6 2... 6... 7... 7... 8... 9 JIS... 10 JIS 12.7/1.6JIS 25.4/1.6JIS 31.8/1.2JIS 31.8/1.6... 10... 10... 11... 11... 12... 12... 13... 13 3

More information

(o ~ ~IT' ~

(o ~ ~IT' ~ I - 目 立 E.. rm 書 室 歪 E 呈 5 呈 書 室 三 "' 室 三 三 E 呈 =~:!~! 呈 ヨ 皇 室 E 呈 "' 呈 E 呈 Z 言 言 書 書 室 主 主 皇 室 主 冨 E (o ~ ~IT' ~ r 了 ~---r... 戸,,~ ~o G:l,/C 4- Thl~ ~on i.: i:.i~1.1 暗 ~ 一 一 一 守 一 一 一 一 一 一 一 一 一 一

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j )

1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j ) (Communication and Network) 1 1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j ) p i = P (X n = s i )

More information

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp + P (x)y = Q(x) (1) = P (x)y + Q(x) P (x), Q(x) y Q(x) 0 homogeneous = P (x)y 1 y = P (x) log y = P (x) + C y = C exp{ P (x) } = C e R P (x) 5.1 + P (x)y = 0 (2) y = C exp{ P (x) } = Ce R P (x) (3) αy

More information

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y 01 4 17 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy + r (, y) z = p + qy + r 1 y = + + 1 y = y = + 1 6 + + 1 ( = + 1 ) + 7 4 16 y y y + = O O O y = y

More information

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ 17 6 8.1 1: Bragg-Brenano x 1 Bragg-Brenano focal geomer 1 Bragg-Brenano α α 1 1 α < α < f B α 3 α α Barle 1. 4 α β θ 1 : α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ Θ θ θ Θ α, β θ Θ 5 a, a, a, b, b, b

More information

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) = ,, uvw,, Bernoull-Euler u v, w θ dv ( ) dw u (,, ) u( ) ω(, ) φ d d v (,, ) v( ) θ ( ) w (,, ) w( ) θ ( ) (11.1) ω φ φ dθ / dφ v v θ u w u w 11.1 θ θ θ 11. vw, (11.1) u du d v d w ε d d d u v ω γ φ w u

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

( ) x y f(x, y) = ax

( ) x y f(x, y) = ax 013 4 16 5 54 (03-5465-7040) [email protected] hp://lecure.ecc.u-okyo.ac.jp/~nkiyono/inde.hml 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy

More information

untitled

untitled Sb-lattice -l [I.nsara, N.Dpin, H..kas, and.sndan, J.lloys and Coponds, 7(997, 0-0] by T.Koyaa φ φ i i φ φ φ i= SER ref id ex x H (98.5K = + + ref id ex φ φ φ SER = x { H (98.5K} i= = RT x x φ φ φ φ, i

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f 208 3 28. f fd f Df 関数 接線 D f f 0 f f f 2 f f f f f 3 f lim f f df 0 d 4 f df d 3 f d f df d 5 d c 208 2 f f t t f df d 6 d t dt 7 f df df d d df dt lim f 0 t df d d dt d t 8 dt 9.2 f,, f 0 f 0 lim 0 lim

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 入門モーター工学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/074351 このサンプルページの内容は, 初版 1 刷発行当時のものです. 10 kw 21 20 50 2 20 IGBT IGBT IGBT 21 (1) 1 2 (2) (3) ii 20 2013 2 iii iv...

More information

遠藤周作『沈黙』の研究―日本的精神風土の象徴:井上筑後守について―

遠藤周作『沈黙』の研究―日本的精神風土の象徴:井上筑後守について― NAOSITE: Nagasaki University's Ac Title Author(s) 遠 藤 周 作 沈 黙 の 研 究 日 本 的 精 神 風 土 の 象 徴 : 井 上 筑 後 守 につ いて 陳, 華 Citation 文 化 環 境 研 究, 1, pp.15-26; 2007 Issue Date 2007-03-22 URL http://hdl.handle.net/10069/28641

More information