Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Size: px
Start display at page:

Download "Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e"

Transcription

1 7 -a 7 -a February 4,

2 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z (2) Jacobian J = r 2 sin θ dv = dxdydz = J drdθdφ = r 2 sin θdrdθdφ x 2 + y 2 = r 2 sin θ Gauss Q = r 3 sin 2 ddφ = r 3 dr sin 2 θdθ dφ = r4 4 ɛ 0 E ds = 4πɛr 2 E ( π ) 2π = π (2π + 1) r4 4 8 E = 2π ɛ 0 r 2 e r 2

3 A = G M e r 2 r r M e, R e A(r, θ, φ) = 1 r 2 (r 2 A r ) r + 1 (sin θa θ ) + 1 (A φ ) r sin θ θ r sin θ φ r M = (r/r e ) 3 M e A = G r 3 R 3 e M e r 2 e r = G rm e Re 3 e r A = GM e r 3 Rer 3 2 r = 3GM e Re 3 G = (4πτ) 1 3GM e R 3 e = 3M e 4πR 3 eτ = M e 4 3 πr3 eτ = ρ e τ ρ 0 τ ɛ 1 Gauss r = R e τ A ds = 4πτRe 2 M e 4πτRe 2 = M e 1 (graviton) 3

4 Ampère Ampère ( ) E B ds = µ 0 i + ɛ 0 ds t (1) (2)i. a ii. (1) xy x x z y = B(z) Ampère a ABCD{ AB CD y BC DA z AB CD 0 Ampère BC DA {B(z 1 ) B(z 2 )}a (B(z 1 ) B(z 2 ))a = 0 B(z 1 ) = B(z 2 ) = B i (B(z 1 ) B(z 2 ))a = µ 0 ia 2aB = µ 0 ia B = µ 0 i/2 (2)i. r r B(r) I Ampère 2πrB(r) = µ 0 I... B(r) = µ 0I 2πr { µ0i 2πr 0 B = e θ r a 0 r < a 2 ii. 0 I/r 2... B = { µ0 I 2πr e θ µ 0 I 2πr e 3 θ r a r < a 2 4

5 S h dq V dq h S V (1) (2) Q (3) (2) (1) K = dqv (2) E Gauss 3... E ds = ES = Q E = Q S e z Φ V Φ = E ds = Qh S = V... Q = SV h (3) q ( K = V qh ) dq S 3 5

6 q = Q U lost = Q 0 ( V qh ) dq = QV Q2 h S 2S = 1 2 QV W = QV U c U c = QV 1 2 QV = 1 2 QV = 1 2 CV C Q/V 6

7 a b(b > a) +q, q, a < r < b r, S E nda = 4πr 2 E, q V ρ ɛ 0 dv = q ɛ 0 2 4πr 2 E = q ɛ 0...E = q 4πr 2 ɛ 0,ab V, b, C V = = = V = b q a 4πr 2 dr ɛ 0 [ ] b q 1 4πɛ 0 r a ( q 1 4πɛ 0 a 1 ) b q 4πɛ 0 ( ) 1 a C = q V = 4πɛ 0 a 7

8 Q a ɛ C = 4πɛ 0 a C = 4πɛa U = Q2 2C, U = Q2 2C ( U U = Q2 2C Q2 2C = Q2 1 1 ) 8πa ɛ 0 ɛ 8

9 d S ±Q ɛ F = 1 2 ɛe2 S E = Q ɛs F = 1 2 ɛ ( Q ɛs ) 2 S = 1 Q 2 2 ɛs ɛ ɛ 0 F 0 ɛ > ɛ 0 F < F 0 Q 2 F 0 = 1 2 ɛ 0 S 9

10 [m] C = 4πɛ 0 a = 4π ( ) ( ) = [F] 10

11 ρ(r) a b c 4 3 πa3 ρ(r) 4πa e 0 k 3 ρ(r)e 0 0 4πa v B mcv B = k 3 e 0 0 ρ(r) 3c 2 πb 2 I = k 4πa 3 e 0 0 3c 2 4πa 3 e 0 v B = k 0 3mc 3 ρ(r) 3mc 3 e 0 πb 2 2πa = 2e2 0 k 0a 3 3πmab 2 c = 2e2 3 0 k 0a 2 3πmb 2 c 3 H = I 4πc 2 ds = I 2c = e2 0k 0 a 2 3πmb 2 c 4 e 2 0k 0 a 2 3πmb 2 c 4 I 11

12 r 1, r 2,..., r n 1 ɛ 1, ɛ 2,..., ɛ n a Q r ɛ i A a r D r i 1 < r < r i D(r) = E i = Q 4πr 2 Q 4πɛ i r 2 r V = Edr ( r = E i dr + r i = Q ( 1 4πɛ i r 1 r i ri E i+1 dr + + r i+1 ( 1 1 r i r i+1 ) + Q 4πɛ i+1 rn 1 E n dr ) ) + + Q 4πɛ n 1 ( 1 1 ) + Q 1 r n 1 r n 4πɛ n r n 12

13 a a b ɛ 0 Q O r(> a) E D = Q 4πr 2 E = D (b < r) D (a < r < b) ɛ 0 ɛ V D D V = dr + ɛ 0 ɛ sdr = Q ( 1 4πɛ 0 b + s ( 1 ɛ a 1 )) b C C = Q V = 4πɛ ( 0 1 a ) 1 b 1 b + s ɛ = 4πsɛ 0 ɛ ab (1 ɛs) b a 13

14 z ν a n xy V 0 B 0 Φ Φ nb(πa 2 ) B = B 0 sin 2πνt V i V i = dφ dt = 2nπ2 a 2 νb 0 cos 2πνt V 0 V 0 = 2nπ 2 a 2 νb 0 B 0 = V 0 2nπ 2 a 2 ν 14

15 ρ A A B A B c r E A ρ B ρ B r B r r = c + r A r E A B r E B E A = 1 4 4πɛ 0 3 π r 3 ρ r r 3 = ρ r 3ɛ 0 r E E A = 1 4πɛ π r 3 ( ρ) r r 3 = ρ 3ɛ 0 r E = E A + E B = ρ 3ɛ 0 (r r ) = ρ 3ɛ 0 c 15

16 q (1) E = 4πɛ 0 r 2 E(r, θ, z) (2) (1) ( ) (1) z E E = cos θ = λ z 4πɛ 0 (r 2 + z 2 ) r r, sin θ = z 2 +z 2 r 2 +z 2 rλ z E r = E cos θ = 4πɛ 0 (r 2 + z 2 ) 3 2 zλ z E z = E sin θ = 4πɛ 0 (r 2 + z 2 ) 3 2 E r = λ 4πɛ 0 A B r (r 2 + z 2 ) 3 2 dz, E z = λ 4πɛ 0 A B z dz (r 2 + z 2 ) 3 2 z = r tan θ OA = r tan α, OB = r tan β r 2 + z 2 = r 2 (1 + tan 2 θ) = r2 cos 2, dz = r θ cos 2 θ dθ E r = λ α r 4πɛ 0 β ( r 2 cos 2 θ ) 3 2 r cos 2 θ dθ = λ 1 4πɛ 0 r 16 α β cos θdθ

17 E z = λ 4πɛ 0 α β = λ 1 (sin α sin β) 4πɛ 0 r r tan θ ( r2 cos 2 θ ) 3 2 r cos 2 θ dθ = = λ 1 (cos β cos α) 4πɛ 0 r α π 2, β π 2 λ 1 4πɛ 0 r α β sin θdθ E r λ 2πɛ 0 r, E z 0 E = λ 2πɛ 0 r e r (2) ɛ 0 E ds = λ 1 S E//S E(r) ds = λ S ɛ 0 E(r) 2πr = λ ɛ 0 E(r) = E = λ 2πɛ 0 r λ 2πɛ 0 r e r 17

18 -e -e exωb E i : A B ee i = exωb E i = xωb V = = = C 0 i ds l 0 l 0 i dx xωbdx ( x 2 = ωb 2 = 1 2 Bl2 ω ) l 0 18

19 2 ( j) 2 d l a B dr = µ 0 jl C 2lB = µ 0 jl B = µ 0j 2 2 B = µ 0 j F = B Il = B jal = 1 2 µ 0jS ( )(S = al) t d V V = dφ dt = Bl d t (E = B d x ) j j a El = jes t d ( ) (B = µ 0 j) u = 1 2 µ 0 B 2 U = jes t 1 2 BjS d = (jb 12 ) Bj S d = 1 2 BjS d = 1 2 µ 0j 2 S d = 1 B 2 S d 2 µ 0 19

20 1[m] 1. 5[m] 1 +20[C] 1 20[C] 2. 40[m] 4 1[C/m] [V/m] 2. a = 20[m] λ h = 1[m] R y x[m] dx[m] λx[c] de y = λdx cos θ 4πɛ 0 (x 2 + R 2 ) tan θ = x R x2 + R 2 = R 2 sec 2 θ[m] dx = R sec 2 θdθ E = E y = λ θ0 cos θdθ = λ sin θ 0 4πɛ 0 R θ 0 2πɛ 0 R = R = h 2 + a 2 4 E all = 1 πɛ 0 200[V/m] 2ahλ (h 2 + a 2 ) h 2 + 2a 2 λ ah 2πɛ 0 R R2 + a 2 20

21 3 m q 3 3 a t = 0 t = 3 v a = d W 3q 2 4πɛ 0 d q2 4πɛ 0d 1 2 mv2 = v = q 2 4πɛ 0 3a q 2 3πɛ0 am 5 21

22 r A, r B 2 A, B q A, q B 1. A, B 2. AB E A, E B 1. ρ A, ρ B ρ A = q A 4, ρ B = q B 3 πr3 4 A 3 πr3 B E A, E B ɛ 0 ɛ 0 E A ds = ɛ 0 E A E B ds = ɛ 0 E B ɛ 0 E A ds = ρ A 4 3 πr3 A ds ds ɛ 0 E A 4πr 2 A = ρ A 4 3 πr3 A V A = r A q A E A = 4πɛ 0 ra 2 q B E B = 4πɛ 0 rb 2 E A ds = E A dr = q A r A 4πɛ 0 r A q B V B = 4πɛ 0 r B 2. AB A, B q A 4πɛ 0 r A = q B 4πɛ 0 r B q A, q B q A, q B q A + q B = q A + q B r A q A = (q A + q B ) r A + r B q B r B = (q A + q B ) r A + r B 22

23 E A = q A q A + q B = 4πɛ 0 r A 4πɛ 0 r A (r A + r B ) E B = q B q A + q B = 4πɛ 0 r B 4πɛ 0 r B (r A + r B ) 23

24 ρ EdS = Q E ds A ɛ 0 EdS = 2EA = Q ɛ 0 2EA = Aρ ɛ 0 E = ρ 2ɛ 0 24

25 Q a x ds dq P de 1 E y 0 x dq de = 4πɛ 0 (x 2 + a 2 ), cos θ = x x2 + a 2 xdq de x = de cos θ = 4πɛ 0 (x 2 + a 2 ) 3 2 E x = = 1 4πɛ 0 1 xdq 4πɛ 0 (x 2 + a 2 ) 3 2 xq (x 2 + a 2 )

26 a[m] n 1 l[m] n 2 L 1, L 2 L 1 I = I 0 sin ωt L 2 L 1 I = I 0 sin ωt Φ n2 = B ds L 1 L 1 Φ n1 = CDEF B ds = = B CD D C B ds + DE ds = µ 0 n 1 l I 2πa2 B ds + B ds + B ds EF F C CD 1 L 1 Φ n1 = 2πa2 µ 0 n 1 I 0 sin ωt l L 2 1 L 2 Φ n1 V (i) 2 = Φ n 2 t = 2πa2 µ 0 n 1 n 2 I 0 sin ωt l = 2πωa2 µ 0 n 1 n 2 I 0 cos ωt l 2πωa 2 µ 0 n 1 n 2 I 0 l 26

27 2450MHz 141V( 50Hz) S = E H ( ) 2 = 1.41 V V max ω V = V max sin ωt ω = 2πf V = V max sin 2πft D V = D 0 Edx = ED ( ) E = V D = V max sin 2πft D C ( ) E H ds = j + ɛ 0 ds t (j: ) E H ds = ɛ 0 t ds C H = Sɛ 0V max 2πf cos 2πft D C dmathbfs S = E H C = E H( E H) = V max sin 2πft D S = πfɛ 0SV 2 max sin 4πft D 2 C ds S = 1 2 πfɛ 0 SV 2 max D 2 C ds = [J/s m 2 ] S Sɛ 0V max 2πf cos 2πft D C ds 27

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

あさひ indd

あさひ indd 2006. 0. 2 2006. 0. 4 30 8 70 2 65 65 40 65 62 300 2006. 0. 3 7 702 22 7 62802 7 385 50 7 385 50 8 385 50 0 2 390 526 4 2006. 0. 0 0 0 62 55 57 68 0 80 5000 24600 37200 0 70 267000 500000 600 2 70 70 267000

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

untitled

untitled .. 3. 3 3. 3 4 3. 5 6 3 7 3.3 9 4. 9 0 6 3 7 0705 φ c d φ d., φ cd, φd. ) O x s + b l cos s s c l / q taφ / q taφ / c l / X + X E + C l w q B s E q q ul q q ul w w q q E E + E E + ul X X + (a) (b) (c)

More information

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A 7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N

More information

案内(最終2).indd

案内(最終2).indd 1 2 3 4 5 6 7 8 9 Y01a K01a Q01a T01a N01a S01a Y02b - Y04b K02a Q02a T02a N02a S02a Y05b - Y07b K03a Q03a T03a N03a S03a A01r Y10a Y11a K04a K05a Q04a Q05a T04b - T06b T08a N04a N05a S04a S05a Y12b -

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

1

1 1 2 3 4 5 6 7 8 9 10 A I A I d d d+a 11 12 57 c 1 NIHONN 2 i 3 c 13 14 < 15 16 < 17 18 NS-TB2N NS-TBR1D 19 -21BR -70-21 -70-22 20 21 22 23 24 d+ a 25 26 w qa e a a 27 28 -21 29 w w q q q w 30 r w q!5 y

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ : (Dated: February 5, 2016), (Ch), (Oblique Helicoidal) (Ch H ), Twist-bend (N T B ) I. (chiral: ) (achiral) (n) (Ch) (N ) 1996 [1] [2] 2013 (N T B ) [3] 2014 [4] (oblique helicoid) 2016 1 29 Electronic

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

untitled

untitled Web - - - - - - - - - - - - - - - - () () () sin θ,cosθ, tanθ () 3 5 () 4 () 12 5 r y 13 x x = r cosθ () y = r sinθ y = x tanθ P P () () A C 2,24 C -9- -10- -11- -12- 9 9 10 10-13- 4 4 4 1 0.5 4 10 30

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

......1201-P1.`5

......1201-P1.`5 2009. No356 2/ 5 6 a b b 7 d d 6 ca b dd a c b b d d c c a c b - a b G A bb - c a - d b c b c c d b F F G & 7 B C C E D B C F C B E B a ca b b c c d d c c d b c c d b c c d b d d d d - d d d b b c c b

More information

, ,279 w

, ,279 w No.482 DEC. 200315 14 1754,406 100.0 2160,279 w 100 90 80 70 60 50 40 30 20 10 28.9 23.8 25.0 19.3 30.4 25.0 29.5 80.7 75.0 75.0 70.5 71.1 69.6 76.2 7 8 9 10 11 12 13 23.2 76.8 14 14 1751,189 100.0 2156,574

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

現代物理化学 1-1(4)16.ppt

現代物理化学 1-1(4)16.ppt (pdf) pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a. 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

合併後の交付税について

合併後の交付税について (1) (2) 1 0.9 0.7 0.5 0.3 0.1 2 3 (1) (a), 4 (b) (a), (c) (a) 0.9 0.7 0.5 0.3 0.1 (b) (d),(e) (f) (g) (h) (a) (i) (g) (h) (j) (i) 5 (2) 6 (3) (A) (B) (A)+(B) n 1,000 1,000 2,000 n+1 970 970 1,940 3.0%

More information

1 6 2011 3 2011 3 7 1 2 1.1....................................... 2 1.2................................. 3 1.3............................................. 4 6 2.1................................................

More information

234 50cm

234 50cm 234 50cm () 1 10 2 3 4 1 5 6 2 2 1 7 ( ー ) っ ー っ 8 1 2 10 10 2m 4m 6m 15m 457-2472 585-1154 9 10 2 60 2 100 RC SRC 30 80 500 1 500 500 ) 10 B b A 2 A B 2m 457-2473 585-1154 11 20m a 2m 3 3 1m 75cm 120cm

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

200608094-101

200608094-101 94 A O D 1 A 1 A A 1 AO 1 95 A OA 1 a r A A 1 r A R 1 A R 1 A R 1 a a A OA R 1 96 F AO 1 A O 1 A 1 A O 1 A 1 O A 1 97 b O AO 1 O AO 1 A 1 A OA 1 AO 1 AA 1 98 A AO 1 A AO 1 b b 1 b b B B A 1 Q 1 rr 1 99

More information

PX-047A Series

PX-047A Series B K L & L & A B C D E F A B A B C A B C A B A B A B C D E F G P BB H I y y & & K L L & & K L L L L & & & & L d L & & & & L L & & & L & & & & L & & & & & & & & L L L L L L & & & A B C D E F G

More information

PII S (96)

PII S (96) C C R ( 1 Rvw C d m d M.F. Pllps *, P.S. Hp I q G U W C M H P C C f R 5 J 1 6 J 1 A C d w m d u w b b m C d m d T b s b s w b d m d s b s C g u T p d l v w b s d m b b v b b d s d A f b s s s T f p s s

More information

4 3 1 Introduction 3 2 7 2.1.................................. 7 2.1.1..................... 8 2.1.2............................. 8 2.1.3.......................... 10 2.2...............................

More information

A&A Jツール 作図・編集キット

A&A Jツール 作図・編集キット i... 1... 2 10 N... 2 2 5 N... 3... 5 5 7 9 11 13... 5... 6... 6 2... 6... 7... 7... 8... 9 JIS... 10 JIS 12.7/1.6JIS 25.4/1.6JIS 31.8/1.2JIS 31.8/1.6... 10... 10... 11... 11... 12... 12... 13... 13 3

More information

PSCHG000.PS

PSCHG000.PS a b c a ac bc ab bc a b c a c a b bc a b c a ac bc ab bc a b c a ac bc ab bc a b c a ac bc ab bc de df d d d d df d d d d d d d a a b c a b b a b c a b c b a a a a b a b a

More information

36.fx82MS_Dtype_J-c_SA0311C.p65

36.fx82MS_Dtype_J-c_SA0311C.p65 P fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms J http://www.casio.co.jp/edu/ AB2Mode =... COMP... Deg... Norm 1... a b /c... Dot 1 2...1...2 1 2 u u u 3 5 fx-82ms... 23 fx-83ms85ms270ms300ms 350MS...

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

untitled

untitled 1 th 1 th Dec.2006 1 1 th 1 th Dec.2006 103 1 2 EITC 2 1 th 1 th Dec.2006 3 1 th 1 th Dec.2006 2006 4 1 th 1 th Dec.2006 5 1 th 1 th Dec.2006 2 6 1 th 1 th Dec.2006 7 1 th 1 th Dec.2006 3 8 1 th 1 th Dec.2006

More information

1122 1015 1 Voices 11 11 1 1 1 1 1 1 7 3 4 3 4 3 4 1 1 1 1 1 e 1 f dd 1 d 1 1 1 1 de 1 f 1 d b b bb ef f bb 1 1 882-1111 882-1160 1 1 a 6 1 1 1 f 1 1 c 1 f 1 1 f 1 cf 1 bf 1 1 1 1 a 1 g 1 g 1 af g 1 11

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

esba.dvi

esba.dvi Ehrenberg-Siday-Bohm-Aharonov 1. Aharonov Bohm 1) 0 A 0 A A = 0 Z ϕ = e A(r) dr C R C e I ϕ 1 ϕ 2 = e A dr = eφ H Φ Φ 1 Aharonov-Bohm Aharonov Bohm 10 Ehrenberg Siday 2) Ehrenberg-Siday-Bohm-Aharonov ESBA(

More information

取扱説明書 [F-02F]

取扱説明書 [F-02F] F-02F 4. 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 a b c d a b c d a b cd 9 e a b c d e 20 2 22 ab a b 23 a b 24 c d e 25 26 o a b c p q r s t u v w d h i j k l e f g d m n a b c d e f g h i j k l m n x 27 o

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

高速データ変換

高速データ変換 Application Report JAJA206 V+ R 5 V BIAS Q 6 Q R R 2 Q 2 Q 4 R 4 R 3 Q 3 V BIAS2 Q 5 R 6 V Ω Q V GS + R Q 4 V+ Q 2 Q 3 + V BE V R 2 Q 5 R Op Amp + Q 6 V BE R 3 Q 7 R 4 R 2 A A 2 Buffer 2 ± Ω Ω R G V+ Q.4.2

More information

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675 139ィ 48 1995 3. 753 165, 2 6 86 タ7 9 998917619 4381 縺48 縺55 317832645 タ5 縺4273 971927, 95652539358195 45 チ5197 9 4527259495 2 7545953471 129175253471 9557991 3.9. タ52917652 縺1874ィ 989 95652539358195 45

More information

表1-表4_No78_念校.indd

表1-表4_No78_念校.indd mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm Fs = tan + tan. sin(1.5) tan sin. cos Fs ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

More information

213 2 katurada AT meiji.ac.jp http://nalab.mind.meiji.ac.jp/~mk/pde/ 213 9, 216 11 3 6.1....................................... 6.2............................. 8.3................................... 9.4.....................................

More information

0 5 15

0 5 15 18 2006 6 20 2007SDR 0 5 15 846Gal 434Gal 406 325 325 20042317560 P S 0 2 4 6 8 km P 2.9 P 3.9 3.9 S 5.9 P 3.3 P 3.9 3.9 S 6.4 P 3.5 P 4.5 S 6.7 13km 846Gal 434Gal 406 325 325 20042317560 P S 0 2 4 6 8

More information

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2 12 Big Bang 12.1 Big Bang Big Bang 12.1 1-5 1 32 K 1 19 GeV 1-4 time after the Big Bang [ s ] 1-3 1-2 1-1 1 1 1 1 2 inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

05秋案内.indd

05秋案内.indd 1 2 3 4 5 6 7 R01a U01a Q01a L01a M01b - M03b Y01a R02a U02a Q02a L02a M04b - M06b Y02a R03a U03a Q03a L03a M08a Y03a R04a U04a Q04a L04a M09a Y04a A01a L05b, L07b, R05a U05a Q05a M10a Y05b - Y07b L08b

More information