Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download ""

Transcription

1 1 ( ) J. L. eiberg (ed.) rchimedis Opera Omnia cum Commentariis utocii (3 vols.) Teubner J. L. eiberg (Iterum didit). S. Stamatis (Corrigenda diecit) rchimedis Opera Omnia cum Commentariis utocii (4 vols.) Teubner T. L. eath (ed.) The Works of rchimedes Dover ( ) ( ) 1981 ( 56) 5 ( ) ( ) 1990 ( 2) 6 ( ) ( ) ( 9) 1972 ( 47) ( 11) 8 ( ) 1971 ( 46) 9 ( ) ( ) 2008 ( 20) 10 J. Torelli (recensio) rchimedis quae supesunt omnia cum utocii ascalonitae commentariis Oxonia (Oxford) F. Peyrard (ed.) Oeuvres d'rchimède, traduites littéralement, avec un commentarire François uisson ( 174) 2010 ( 22)

2

3 Κύκλου Μέτρησις Dimensio Circuli 1 ΑΒ Ε O Ρ Π Ξ Α 2 ΒΖ ΖΑ ΑΜ Μ Ν ΖΑ ΝΞ ΝΞ Ε Ε 2 ΟΑΡ 3 18 ΟΡ > ΜΡ ΜΡ = ΡΑ ΡΟΠ > 1 ΟΖΑΜ 2 Ε ΑΒ ΠΖΑ Ε ΝΑ Ε 2 11 : 14 ΑΒ Η Ε = 2 ΕΖ = 1 7 3

4 Α Ε Ζ ΖΕ 3 1 ΕΖ : Ζ = 306 : 153 Ε : Ζ > 265 : 153 Α ΒΑ 3 1 ΑΒ : Β < 1351 : = < π = < 3 1 = = > 265 = < 1351 =

5 Τετραγωνισμὸς Παραβολῆς Quadratura Parabolae 1 ΑΒ Β Α Β Α = Α = Α Β 2 ΑΒ Β Α Β Ε Β = ΒΕ 3 ΑΒ Β Β Α ΕΖ Β : ΒΖ = Α 2 : ΕΖ 2 4 ΑΒ Α Β 5

6 Β Ζ Β Ζ : Η = Α : Ζ I I 5 ΑΒ Α ΖΑ Ζ ΖΑ ΑΖ Α Α Α Α I I Β Α Ζ ΑΖ // Β Κ // ΑΖ Κ Κ : = ΑΚ : Κ 6 ΑΒ Β Β Β Β Ζ Α Α Ζ Β Ζ Β 3 1 6

7 7 Α Β Β Η Η Η Β Α Ζ Η Ζ Η Α Β Β Ε Ε Ε Ζ Α Ε ΑΒ : ΒΕ = Ε : Κ Ζ Ε Κ 9 Α Β Κ Κ Ε Ε Ζ Α Κ Κ : = ΑΒ : ΒΕ Ζ Κ 10 Α Β ΒΗΚ Β Η Κ ΒΚΗ : = ΒΑ : ΒΗ ΒΗΚ Β Η Ζ Α ΒΚΗ Ζ 7

8 11 Α Β ΚΤΡ Κ ΤΡ Ρ ΚΤ Β Ρ Β ΑΒ : ΒΗ = ΚΤΡ : ΚΤΡ Β Η Ζ Α Ζ ΚΤΡ Ζ < T Ρ 12 Α Β ΕΚΗ Ε Η Κ ΕΗ ΑΒ : ΒΗ = ΚΕΗ : Μ ΑΒ : ΒΕ = ΚΕΗ : ΚΕΗ Ε Η Ζ Α Μ > Ζ > I 13 Α Β ΚΤΡ Κ ΤΡ Τ ΚΡ Β Ε Η Ζ Α ΚΤΡ Μ > Ζ > 8

9 Ρ T 14 Β Β Β Β Β Β ΒΕ ΕΖ ΖΗ ΗΙ Ι ΕΣ ΖΤ ΗΥ ΙΞ Β ΚΕ Ζ ΜΗ ΝΙ ΞΙ 3 ΖΦ Η ΙΠ ΙΟ 3 I I Ρ Χ Ψ Φ O Π Ξ Υ Ξ Ω T I ϙ Σ Φ Π O ΑΒ ΑΒ Β Α Β Β Β Β Α Ρ Χ Ψ Ω ϙ Ρ Ε Χ ΖΣ Ψ ΤΗ Ω ΥΙ ϙ ΞΙ Β Ρ + Χ + Ψ + Ω + ϙ 3 6 Β Β Β ΣΕ Β : ΒΕ = ΣΕ : ΕΦ 5 ΒΑ : ΒΕ = Ε : ΚΕ ΑΒ : ΒΖ = ΣΖ : Ζ ΑΒ : ΒΗ = ΤΗ : ΜΗ ΑΒ : ΒΙ = ΥΙ : ΝΙ Ε Β Ε Α Ζ ΒΑ : ΒΕ = Ε : ΚΕ ΚΕ > Ρ 10 ΖΣ Ζ Ε 9

10 ΣΤ Α Χ ΒΑ : ΒΕ = ΖΣ : ΖΦ ΑΒ : ΒΖ = ΖΣ : Ζ Ζ > Χ > ΖΦ 12 ΜΗ > Ψ > Η ΝΟΙΗ > Ω > ΠΙ ΞΙ > ϙ > ΙΟ 8 ΚΕ > Ρ Ζ > Χ ΜΗ > Ψ ΝΙ > Ω ΞΙ > ϙ Ρ + Χ + Ψ + Ω + ϙ Ρ + Χ + Ψ + Ω + ϙ = 1 Β 6 Β < 3 (ΚΕ + Ζ + ΜΗ + ΝΙ + ΞΙ) 3 ΖΦ < Χ Η < Ψ ΙΠ < Ω ΙΟ < ϙ ϙ + Ω + Ψ + Χ Β ΦΖ Η ΙΠ ΙΟ Β Β Β Β Β Β Β Β ΒΕ ΕΖ ΖΗ ΗΙ Ι Ε Ζ Η Ι ΕΣ ΖΤ ΗΥ ΙΞ 3 (ΒΦ + Ζ + ΜΗ + ΝΙ + ΙΞ) > Β > 3 (ΖΦ + Η + ΙΠ + ΟΙ) I Ρ Χ Ψ Φ Π Υ O Ξ Ω ϙ T Σ 16 Β Β Β 10

11 Ζ Β 3 1 Β Ζ Ξ Π Χ Φ Ρ Ψ T O Σ I Β Ζ Β Β ΒΕ Β ΒΕ Β Β ΒΕ Η Ι Κ Η Ι Κ ΜΦ ΝΡ Ξ ΠΟ Β ΒΕ < Β Ζ Ζ + ΒΕ < Β ΒΕ ΜΕ Φ Ρ Ο ΟΣ ΜΕ Μ = Φ Ξ = Ρ ΧΞ = Ο ΧΠ = ΟΣ Ζ < Μ + ΞΡ + Π + ΠΟ Β = 3 Ζ Β < 3 (Μ + ΡΞ + Π + ΠΟ) Β Β Ζ Ζ Β Β Β ΒΕ Β ΒΕ Ζ Β ΒΕ Β Ζ Ζ < ΕΜ + ΦΝ + ΨΞ + ΠΤ + ΠΣ Β = 3 Ζ Β < 3 (ΕΜ + ΦΝ + ΨΞ + ΠΤ + ΠΣ) ΒΕ + Β < ΕΜ + ΦΝ + ΨΞ + ΠΤ + ΠΣ ΒΕ ΒΕ ΕΜ + Φ + Ρ + Ο + ΟΣ Β Ζ 11

12 Ζ ΑΒ Α Β Β

13 I

14 I a 4 a 4a 4 2 a 4 n 1 a n 1 4 k a a = 4 ( 4 n 1 a ) = 4n 3 3 a k= ΑΒΕ ΑΒ Κ = 4 ΑΒ 3 Κ = ΑΒΕ I ΑΒΕ Κ ΑΒ ΒΕ 2 ΑΒΕ Κ Κ 4 ΑΒ ΑΒ ΒΕ Κ 3 1 ΑΒΕ Κ ΑΒ = Ζ Η = 1 Ζ = 1 Η 4 4 Κ I Ζ + Η + + Ι + 1 Ι = 4 Ζ

15 23 Κ = 4 Ζ Κ = Ζ + Η + + Ι + 1 Ι 3 3 Κ Ζ Η Ι Ι Ι Ζ Η Ι 4 22 ΑΒΕ Κ Κ Κ ΑΒ 3 1 ΑΒΕ ΑΒ

16

17 1 Επιπέδων ἱσορροπιῶν ἢ κέντρα βαρῶν ἐπιπέδων De Planorum equilibriis sive De Centris Gravitatis Planorum O G Α Β Α Α Β Α < Β 4 2 Α Α Β Β ΑΒ 2 17

18 5 3 3 Α Β Α Β Α Β Α Β Α Β Α Β Ε Α : Β = : Ε Α Β

19 ΑΒ Ε ΕΖ ΑΒ : = Ε : ΕΖ ΑΒ Ε 8 ΑΒ ΑΒ Ε Α Ε Ζ : Ε = Α : Η ( ) Ζ Η Ζ 9 ΑΒ ΑΒ ΕΖ ΑΒ ΕΖ I 19

20 10 ΑΒ ΕΖ ΑΒ 2 Κ Α Β ΑΒ ΕΖ ΑΒ ΕΖ Α : Ζ = ΑΒ : Ε = Β : ΕΖ Ν ΑΒ Ν ΕΖ ΑΒ ΕΖ Α : Ζ = ΑΒ : Ε = Β : ΖΕ Α Η 2 ΒΗ ΑΒ ΒΗ ΕΖ 13 20

21 ΑΒ Β Α ΑΒ Α Σ Υ I Ξ Ρ Π T Φ Χ O Ω Ψ Β Ι 2 Ι Β Α ΕΖ ΗΚ Μ Β ΜΝ ΥΣ ΚΞ ΤΥ ΖΟ Τ 9 Σ 4 Ρ Ρ Α Φ Α ΑΜ ΜΚ ΚΖ Ζ Α Α : ΑΜ ΑΜ ΜΚ Ζ ΚΖ ΑΒ Α Η ΗΕ ΕΒ ΒΑ : Α ΑΒ Α : ΑΜ Α : ΑΜ > ΦΡ : Ρ Α : ΑΜ = : Ω = ΦΡ : ΡΠ ΑΒ ΦΡ : Ρ ΜΝ ΚΞ ΖΟ Φ : Ρ Χ : Ρ ΑΒ ΜΝ ΚΞ ΖΟ Ρ Ρ ΡΧ Χ Ρ 8 Χ Χ Α 21

22 ΑΒ Α Β ΑΒ Α Α Β Ε ΖΕ ΒΑ Α Α ΕΚ Ζ Κ Κ ΜΝ ΒΑ Ζ ΑΒ Ζ ΑΒ Ζ 11 ΕΒ Κ ΕΒ Ζ ΕΒ = Ζ Κ ΒΕ : ΕΑ = ΒΚ : Κ Ζ : ΖΑ = : Κ Ν Β Κ Β : = ΚΝ : Ν Ν ΑΕΖ Μ 10 ΕΒ Ζ ΑΕΖ ΜΝ ΑΒ ΜΝ ΜΝ Α ΑΒ Α Α O Ρ T Σ Π Ξ ΑΒ Α // Β Ε Ζ Α Β Ν ΑΒ Τ Μ 3 ( 22

23 Β Κ 3 Β ΝΚΤ Μ Ζ ΒΕ ΟΞ ) ΕΖ ΕΠ : ΠΖ = (2 Β + Α) : (2 Α + Β) Π ΑΒ 23

24 2 Επιπέδων ἱσορροπιῶν ἢ κέντρα βαρῶν ἐπιπέδων De Planorum equilibriis sive De Centris Gravitatis Planorum ΑΒ Ε Ζ ΑΒ : = Ζ : Ε ΑΒ Ξ Π 2 1 Η // ΙΖ // ΚΕ // Α Ν = ΝΗ ΙΜ = ΜΖ Κ = Ε = Α ΒΝ : ΝΜ : Μ : = 1 : 3 : 5 : 7 ΑΒ ΑΕΖΗΒΙΚ Β I 24

25 3 2 2 ΑΒ ΞΟΠ Β ΟΡ ΕΚ ΖΙ Η ΣΤ ΥΦ ΧΨ I Υ Χ O ϛ ϡ Ψ Φ Σ Ω T Ξ Ρ Π 4 ΑΒ Β Β 5 ΑΒ Β Χ I 6 25

26 ΑΒ ΑΒ Ζ ΑΒ : Κ = Β : Ζ ΑΒ ΑΚΒ Κ Ε Ε Ζ ΑΒ ΕΖΗ Β Ζ ΑΒ Κ ΕΖΗ Κ Ξ 8 ΑΒ Β Β =

27 Σ Ξ Χ ΑΒ ΑΒ Ε ΒΑ Β Ζ Η 2 Β ΚΖ Η ΑΚΒ Β ΑΚΒ Μ Β Ν ΖΗ ΜΝ Κ Χ ΚΜ : ΜΖ = Β : ΚΖ : ΖΜ = Β : 5 18 Β : ΚΖ = : ΜΖ 5 16 Β = 4 ΚΖ = 4 ΜΖ Β = 4 ΚΜ = 4 ΣΧ ΣΧ ΒΣ + Χ = 3 ΣΧ ΒΣ = 3 ΣΞ Χ = 3 ΞΧ Β = 4 ΒΣ ΒΣ = 3 ΣΞ ΞΒ = 1 Β 3 ΑΒ Ε Ε = 1 Β 3 ΞΕ = 1 Β 3 ΑΚΒ Β Χ ΑΒ Ε ΑΒ Χ : Ε 1 8 ΑΒ 3 Χ = 3 ΧΞ ΞΕ = 5 Ε Ε = 5 Ε Ε = ΞΕ = 6 Ε Β = 3 Ε Β = 3 2 Β = 4 ΚΖ ΑΒ Β ordinatus Α ΑΒ ΑΒ Ζ Ζ Β ΕΖ ΑΒ Ε Ζ ΕΗ Ζ ΑΖ = ΒΖ ΑΒ = 2 ΖΒ Β = 2 Β Α = 2 Ζ = 2 ΕΗ Α 2 = 4 ΕΗ 2 Β = 4 ΒΗ 1 20 Β = 2 Β Β = 2 ΒΗ Η = ΗΒ ΕΗΖ ΗΒ = ΕΖ Β = 4 ΖΕ

28 2 5 4 ΑΒ Β Β ΒΕ ΒΕ : ΕΑ = ΖΗ : Α (2 ΑΒ + 4 Β + 6 Β + 3 ΒΕ) : (5 ΑΒ + 10 Β + 10 Β + 5 ΒΕ) = Η : Α Ζ = 2 ΑΒ 5 O Α Ε ΑΒ ΒΖ Α Ε Β ΑΕ ΖΗ ΗΖ 5 5 Κ Ι : ΙΚ = ΑΖ 2 (2 Η + ΑΖ) : Η 2 (2 ΑΖ + Η) ΑΕ Ι Χ Ρ I Ξ O T Ι : ΙΚ Ι : ΙΚ = Α 2 (2 Ε + Α) : Ε 2 (2 Α + Ε) Α = 2 ΑΖ Ε = 2 Η 28

29 1 Περὶ Σϕαίρας καὶ Κυλίνδρου De Spahera et Cylindro 1 (καμπύλη γραμμή) (εὐθεῖα) 2 (ἐπὶ τὰ αὐτὰ κοίλη) 3 (ἐπιϕάνεια) 4 5 (τομεὺς στερεός) 6 (ῥόμβος στερεός)

30

31 2 Π Ξ T O ΑΒ ΑΒ Β Α ΑΒ ( ) Ξ O Π

32 ( ) 5 7 ΑΒ ΑΒ a c b G c 8 ΑΒ ΕΖ ΑΒ 32

33 9 ΑΒ Α Α Α Α Α 10 2 ΑΒ Ε Α Ε Α ΕΑ Ε Ε ΑΕ Ε ΑΕ Ε ΑΒ Ξ O ΑΒ Α Β Α Β ΑΒ 33

34 ΑΒ Α 2 Α 2 Η 2 2 (2 ) ΑΒ Α Α ΕΖ Η ΕΖ Η Β Β 34

35 T Ρ 14 Α Ε Β Ε Β 15 Α Β Α Α Β ΑΒ Ε ΒΗ Α Ζ ΗΑ Ε Α

36 ΑΒ ΕΖ ΑΒ ΕΖ ΑΗ Ε Κ 18 2 Β Α 2 ΑΒ ΑΒ ΑΒ Ζ 1 ΗΚ ΗΚ Ζ O Ξ 19 2 ΑΒ Ε Ζ Ε Ζ 2 ΒΖΕ Ε Α Ζ ΑΒ ΖΗ Κ ΑΒ ΒΖΕ Κ 36

37 ΑΒ ΕΖ ΕΖ ΕΒΖ Α ΕΖ ΒΑ Κ Κ ΑΒ ΑΕΖΒΗΜΝΚ ΕΚ Ζ Β ΗΝ Μ 2 Ε ΕΑ 37

38 Ξ Π Ρ Σ O T Υ Φ Χ 22 1 ΑΒ Α ΑΒ Α ΖΗ Ε ΖΗ Ε ΑΞ ΒΞ Ζ ΖΒ Ξ 23 4 ( ) ΑΒ 4 Α Β Α ( ) ΑΒ Α ΑΒ Β ΑΖ ΑΝ ΖΝ Α ΖΗ ΜΝ ΜΗ ΖΗ ΜΝ Α ( ) ΒΗ Μ ΑΒ Β ΒΗ Μ Α ( ) 38

39 24 2 ΑΒ 4 ( ) 2 ΕΖ Η Κ ΜΝ ΑΕ ΕΖ Η Κ ΜΝ Ξ 25 4 ΑΒ 4 ( ) 4 Ρ I 39

40 26 1 ΑΒ 1 Ρ Ρ Χ Ρ I 27 4 Χ Ξ Ρ 28 4 ( )

41 24 ( ) 2 = ΑΖ (ΕΖ + Η + + Κ + ΜΝ) 30 4 Σ Χ ΑΒ 12 ΑΒ ΧΣ ΑΒ 4 ΕΗ Ζ Α Β ΖΒ ΕΗ Ε ΑΚ 41

42 Π 33 4 Α 4 Α Α Α 2 Α 2 Β Β ΕΖΗ Β Α Α Α Β Α Β Β Β Α Α Α Α

43 I Ξ ΑΒ 4 4 ΑΒ 4 Ξ Ξ Ξ 2 Ξ 2 Κ Η Κ Ι Ι Η Ι ΑΒ 4 Κ Ι Α Β Α ΑΒ Κ Ι Κ Ι Κ Η Κ Ι Κ Η Κ Η Ξ Ξ ( 2 3 ) Ξ 4 4 Ξ Κ Η Κ Η Ξ Κ Η Ι Κ Ι ΑΒ ΑΒ Κ Ι Κ Ι Κ Η Κ Ι Κ Η Κ Η Ξ Ξ 2 3 Ξ ΑΒ (3/2 ) 1 (3/2 ) 43

44 2r r r 2r r r 2πr πr3 3 πr3 ( ) 6πr 2 4πr πr ΑΗ ΑΗ ΑΗ ΑΕΖΗ Α ΕΖ ΑΚ 36 ( ) ΑΕΖ ΑΒ ΑΒ Ζ Ε Α Β Ε ΑΒ ΑΒ 37 44

45 ΑΒΕΖ ΑΒ Ε Α Α Μ Μ 38 1 ΑΒ Ε ΑΒ Α Β Α Ε 1 Κ Κ ΑΕ 39 ΑΒ ΑΒ Α Β Α Β ΑΒ ΕΚ ΑΒ ΑΒ 45

46 ΖΗ ΑΒ ( ) 1 40 O Ξ 1 Κ ΑΒ ΑΒ ( ) 46

47 ΗΒ 42 ΑΒ ΑΒ Α ΑΒ Ζ ΑΒ Ζ Ζ Α Ζ 2 Ζ ΑΒ Ζ Ζ Ζ Ζ Ζ Ζ 47

48 43 44 ΑΒ ΑΒ Β ΑΒ 2 2 Ε Ε Ε Ζ Ζ Η Η Ε 2 Ζ Η Ζ 2 Ζ Ζ Ε Ζ Ε Ε ( 2 3 ) Ε Ε 48

49 Ζ Η Ζ Ε 49

50 2 Περὶ Σϕαίρας καὶ Κυλίνδρου De Spahera et Cylindro 1 2 ( ) Α Α Β Α Ζ Β Η Κ Β Ε Κ Ε Κ Κ = Η 2 : Η 2 = Κ : ΕΖ = Η : ΕΖ Η 2 = ΜΝ ΜΝ : Η = Η : ΜΝ 1 Η : ΕΖ = 2 : Η 2 = 2 : ΜΝ = : ΜΝ : Η = ΜΝ : ΕΖ : Η = Η : ΜΝ = ΜΝ : ΕΖ Η ΜΝ ΕΖ 2 3/2 2 Α r = 3 h = 4 Ε = 2r = 2 3 = 6 ΕΖ = (3/2)h = (3/2) 4 = 6 Η = ΜΝ = 6 Η = 6 R = 3 Β Α V Α = π = 36π Ε V Ε = π = 54π = (3/2)V Α Β V Β = (4/3) π 3 3 = 36π Α r = 6 h = 3 3/2 Ε = 2r = 12 ΕΖ = (1/2)h = (1/2) 3 = 3/2 50

51 Η = 6 ΜΝ = 3 Β R = 6 2 = 3 V Α = (1/3) π = 36π V ε = π 6 2 (3/2) = 54π = (3/2)V Α V Β = (4/3) π 3 3 = 36π 1 2 Α Α ΒΖ Α + ΑΕ : ΑΕ = Ε : Ε + Ε : Ε = ΚΕ : ΕΑ ΒΖ Κ ΒΖ ΒΚΖ Α 3 3 ΑΒΕ ΑΒ ΑΒ ΑΒΕ Ε Α Β Ζ : Η Α : Β = Ζ : Η ΑΒΕ ΑΕ Α 4 51

52 ΑΒ Χ Ρ Π Σ Π : Σ ( Π > Σ) Β ΚΒ = ΒΖ Ζ ΒΖ Ζ : Β = Π : Σ Β ΧΖ : Ζ = Β 2 : Χ 2 Χ Χ Β r = 60 Π : Σ = 3 : 1 Ζ : Β = 3 : 1 ΒΖ = 60 Ζ = 45 Β = 15 ΒΧ = x ΧΖ : Ζ = Β 2 : Χ 2 (x + 60) : 45 = : (120 x) 2 x 3 180x = 0 x x = ΒΧ 39 (Κ + Χ) : Χ = ΡΧ : ΧΒ Χ = Β ΒΧ = = : 81 = ΡΧ : 39 ΡΧ = 611/9 = (ΚΒ + ΒΧ) : ΒΧ = Χ : Χ 99 : 39 = Χ : 81 Χ = 2673/13 = Α : ΑΒ = Α : ΑΡ = Χ : ΡΧ 206 : 68 = : 1 ΒΧ = 39.2 ΡΧ = Χ = ΡΧ = 68 Χ = : ΑΒ ΕΖΗ ΑΒ ΑΒ ΕΖΗ ΕΖ Η ΑΒ ΕΖΗ Χ Ψ Ω Φ Υ Σ Ρ Π T O Ξ 52

53 2 ΑΒ ΕΖΗ ΑΒΝ ΕΗΖΟ Ν ΗΟ Π Σ ΠΝ + ΝΤ : ΝΤ = ΧΤ : Τ ΣΟ + ΟΦ : ΟΦ = ΩΦ : ΦΗ Χ Ω ΩΦ : ΕΖ = ΧΤ : ΑΒ 2 Κ ς (ΑΒ : Κ = Κ : ς = ς : ) Κ ΕΖΗ Κ ΚΞ ΚΞ Κ 6 2 ΑΒ ΕΖ ΑΒ ΕΖ Π Ρ 2 ΑΒ ΕΖΗ 2 Α Β Π Β : ΕΖ = Β : Ν Ν Ν Ν Π : ΠΒ = ΝΡ : Ρ Ρ Ρ Ν ΚΜ ΚΜ 7 ΑΒ Β Α ΑΒ ΑΒ 53

54 ΑΒ Β Ε Κ : Κ 3 : 2 (Ε + Β) : Β = 3 : 2 Κ : Κ > (Ε + Β) : Β : Κ = Ε : Ζ Ζ Ζ Β Α Α Β ΑΒ ΑΒ Β Α ΑΒ ΑΒ ΑΒ Α ΑΒ Α ΕΖΗ ΕΗ Α ΕΗ Β Ζ Ξ O Ρ Ξ Ρ O Ξ : Κ = ΜΑ : ΑΚ ΑΡ 2 = ΑΚ Ξ = (1/2)ΑΒ 2 ΕΝ = Ε ΕΖ = ΑΒ 54

55 Περὶ Ελίκων De Lineis Spiralibus ( ) P O 2 π X 1 2 ΑΒ 2 Ε 55

56 ΖΗ Ε Η : Ε = ΖΗ : Η ΑΒ Κ ΑΒ 2 Ε Κ ΖΗ Η ΑΒ Κ 1 ΖΗ Ε 1 Η 1 : Ε = ΖΗ : Η Ξ ΑΒ Κ Ζ Β Ε Κ Ζ ΑΗ Ε Β Η Κ Ζ : Κ = Β : Η 6 56

57 ΒΕ Β Ζ : Η ΑΒ Κ Α Ζ : Η : Κ Κ Α Α ΚΝ Κ ΕΒ : Β = Ζ : Η 7 ΕΙ Ι Ζ : Η Ζ : Η : Κ ΕΙ : Ι = Ζ : Η I 8 ΑΒ Α Ξ : Κ Ζ : Η Κ Ζ : Η < Κ : 57

58 Κ : Ξ = Ζ : Η Ξ > Κ Ξ ΒΕ : Ι Ζ : Η Ξ I 9 ΑΒ Α Ξ : Κ Ζ : Η Ζ : Η > Κ : Κ : Ξ = Ζ : Η ΒΕ : Ι Ζ : Η Ξ I Α Β Ε Ζ Η Β Ι 58

59 Η Κ Ζ Ε Ε Μ Ζ Ν Η Ξ Β Ο Α Α Α Β Ε Ζ Η 3 Α Β Ε Ζ Η 3 I Ξ O θ θ a 1 = θ d = θ n a n = n θ n n n n (a n ) 2 + (a n ) 2 + a 1 (a 1 + a a n ) = 3 { (a 1 ) 2 + (a 2 ) (a n ) 2} n (n θ) 2 + (n θ) 2 + θ (θ + 2 θ + + n θ) = 3 { (θ) 2 + (2 θ) (n θ) 2} (n + 1) n ( n) = 3 ( n 2) { (θ) ((n 1) θ) 2} < n (n θ) 2 < 3 { (θ) ((n 1) θ) 2 + (n θ) 2} 3 { (n 1) 2} < n 3 < 3 { (n 1) 2 + n 2}

60 3 1 ΑΒ ΕΖ ΕΖ Η Η ΙΚ ΙΚ Μ Μ ΝΞ 1 Ο ΕΖ 2 ΕΠ Η 3 ΗΡ ΝΞ ΑΒ 2 : ΑΒ ΝΞ ΝΥ2 ΑΒ O Π Ρ Σ T Υ I Φ Χ Ψ Ω ϡ ϙ Ξ a d n {a k } (n 1) (a n ) 2 : { (a 2 ) (a n 1 ) 2 + (a 1 ) 2} > (a n) 2 : a n a (an a1)2 3 > (n 1) (a n) 2 : { (a 2) (a n 1) 2 + (a n) 2} (7 1)ΑΒ 2 : ( Μ 2 + ΙΚ 2 + Η 2 + ΕΖ ΝΞ 2) > ΑΒ 2 : ΑΒ ΝΞ ΝΥ2 > (7 1)ΑΒ 2 : ( Μ 2 + ΙΚ 2 + Η 2 + ΕΖ ΑΒ 2)

61 O P X O OX 1 P P 1 OP O P O OP O 1 O 1 2 O 2 12 ΑΒ Α Α ΑΕ ΑΖ ΑΒ Α Α Α 61

62 13 1 Α Β Α Α ΕΖ ΑΒΕ Α Α ΚΗ 1 Α ΑΕ Α Ζ Η ΑΕ : Α = ΚΖ : ΚΗ ΑΒ ΕΜ 2 ΑΒ ΑΕ Α Α 62

63 ΑΕ 1 ΚΖ 1 ΚΗ 16 Α Β Α Α ΚΗ 1 ΕΖ Α Α Ζ Α Ρ Ξ I T 17 2 ΕΖ 2 16 ΡΝ Α Ζ 63

64 Χ I Ρ Σ T 18 1 ΑΒ Α Α ΗΚ 1 Ζ Α Α ΑΖ Ζ Α Ζ Ζ ΖΑ ΚΗ Ρ Χ Π Χ 64

65 ΑΒ ΕΤ 2 ΚΗ 1 ΤΜΝ 2 ΤΖ ΤΑ ΖΑ ΤΖ ΑΤ ΤΖ ΖΑ ΤΜΝ 2 T Σ Ρ Χ 20 ΑΒ ΕΖ Α Α Α Κ Α ΖΑ Ζ 16 ΖΑ ΚΜΝ Χ Ρ 2 65

66 Α ΑΒ Α 1 ΖΗΙΑ ΑΗ ΖΙ ΑΚ Α Κ 4 Κ Α Ο Κ ΟΜ Μ Ν Ν Κ Μ I T Ρ Χ Σ Π O 66

67 ΑΒΕ Α ΕΑ 2 ΑΖΗ 2 ΑΗ ΖΙ Ρ I ΑΒΕ Α Ε Α Ε Α Ζ Ε ΑΖ 2 67

68 ΑΒΕ Α 1 ΑΚΖΗΙ ϙ ϙ O ϙ I ΑΒΕ Α ϙ 21 ΑΚ ΕΟ ϙ Α Ε 68

69 3 10 ΑΖΗΙ ΑΖΗΙ 3 ΑΖΗΙ ϙ 3 ϙ ΑΒΕ Α ϙ I Ρ O Ξ ϙ ΑΒΕ Α ϙ 21 ΡΞ ΟΕ ϙ 12 Α Ε ΑΖΗΙ 3 10 ΑΖΗΙ ΑΖΗΙ 3 ΑΖΗΙ ϙ 3 ϙ ϙ ΑΒΕ Α 69

70 P θ y S s = 1 3 x 2πa r = a θ 1 ( ) S s Sc S s = 1 2 2π 0 (a θ) 2 dθ = 1 [ ] 2π 1 2 a2 3 θ3 = 4 3 π3 a 2 1 2πa S c S c = π (2πa) 2 = 4π 3 a : ΑΒΕ Ε 1 ΑΕ 2 ΑΖΗΙ 2 ΑΗ ΙΖ ΑΒΕ ΑΕ ΑΖΗΙ 7 : 12 Ρ O O I I

71 y 2πa 4πa x 2 S s 2 S c S c = π (4πa) 2 = 16π 3 a 2 S s : S c = 28 : 16 = 7 : 12 3 S s = 1 2 = 1 2 4π π 2π (aθ) 2 dθ 2π 0 (aθ) 2 dθ = 1 2 a2 [ 1 3 θ3 ] 4π 2π (aθ) 2 dθ = 28 3 π3 a ΑΒΕ Α Ε Α Ε Ζ ΑΒΕ Α Ε ΑΖ Α Ε ΕΖ2 : Α 2 O O Ε 71

72 Κ 2 3 Μ 4 Ν 5 Ξ Κ 6 1 Μ 2 Ν 3 Ξ Κ 6 1 Κ : : 3 1 Κ 3 : 1 24 Κ 6 1 Κ++Μ 3 Β+ 1 3 Β2 : : Β Κ+ Β 2 : Β Α+ 1 3 ΑΒ2 25 Κ + + Μ : Κ + = Β Β2 : Β Α ΑΒ2 = 19 : 7 Κ + + Μ : + Κ = 19 : 7 Μ : Κ + = 12 : Κ + : = 7 : 6 Μ : = 12 : Μ = 2 Κ + + Μ + Ν + Ξ Ε Ε Ε2 : Ε 2 25 Ε Ε 2 : Κ + + Μ + Ν 2 : Κ + + Μ + Ν + Ξ : Κ + + Μ + Ν = Ε Ε2 : Ξ : Κ + + Μ + Ν = Ε Ε2 ( ) : Ε Ε2 ( ) = Ε ( Ε = ) = Ε Ξ : Κ++Μ+Ν = Ε : Ν : Κ++Μ = Β : Β+ 1 3 Β2 Ν : Κ++Μ+Ν = Β : Β+ 1 3 Β2 + Β Β + Β Β2 = ( = Β ) Ξ : Κ + + Μ + Ν = Ε : Κ + + Μ + Ν : Ν = : Β 5 7 Ξ : Ν = Ε : Β = : (Ε = Β ) 5 72

73 22 Ξ : Ν = : Ν : Μ = : Β Μ : = Β : Α Β Α k ( 2) (k 1) k S k k = 2 k = 3 Μ r = aθ S k = 1 2 2πk 2π(k 1)(aθ) 2 dθ 1 2 2π(k 1) 2π(k 2) (aθ) 2 dθ = 8π 3 a 2 (k 1) S 2 = 8π 3 a 2 S 3 = 16π 3 a 2 S 2 S k : S 2 = 8π 3 a 2 (k 1) : 8π 3 a 2 = (k 1) : 1 S 3 S 2 2 S 4 S 2 3 S k S 2 (k 1) 1 2πa 2 4πa 3 6πa 1 4π 3 a π 3 a π 3 a 2 Κ + + Μ : 36 = 19 : : 2 = 36 : 16 = 27 : 12 2 : Κ + = 16 : + 8 = 12 : 7 3 Κ + + Μ : Κ + = 19 : 7 θ = α θ = 0 θ = 0 θ = α ( α > 2π) r = aθ θ = α ( ) T T = 1 2 = 1 2 α 0 α (aθ) 2 dθ 1 2 α 2π (aθ) 2 dθ α 2π = 1 3 a2 ( 3πα 2 6π 2 α + 4π 3) 0 (aθ) 2 dθ ( 0 θ α α 2π θ α 0 θ α 2π 0 < α 2π T = 1 α 2 0 (aθ)2 dθ ) α = 2πk (k 2) T k T k = 1 2πk (aθ) 2 dθ = π3 a 2 ( 3k 2 3k + 1 ) 2π(k 1) α = 8π (k = 4) T 4 = 1 2 = π 6π (aθ) 2 dθ = 1 2 a2 ( π π 3 a 2 = ( ) π 3 a 2 π 3 )

74 ΑΒ 2 Α Α Α 2 Ξ : Π = Α + 2 ΗΑ : Α + 1 ΗΑ 3 3 Π Ξ 74

75 Περὶ Κωνοειδέων καὶ σϕαιροειδέων De Conoidibus et Sphaeroidibus I ( )

76 76

77 II ( )

78 2 2 Α Β Ε Ζ Η Ι Κ Μ 2 2 Α : Β = Η : Β : = : Ι Α Β Ε Ζ Ν Ξ Ο Π Ρ Σ Η Ι Κ Μ Τ Υ Φ Χ Ψ Ω Α : Ν = Η : Τ Β : Ξ = : Υ Α + Β Ε + Ζ Ν + Ξ + Ο + Π + Ρ + Σ = Η + + Ι + Κ + + Μ Τ + Υ + Φ + Χ + Ψ + Ω I Ξ O Π Ρ Σ T Υ Φ Χ Ψ Ω Α Β Ε Ζ Η Β Η Ι Κ ΑΒ + Ι = Α Κ + = Β + Ι = 2Ι Κ + = 3Κ Ι Κ ΑΒ Α Α ΑΕ ΑΖ ΑΗ + Ι + Κ + : Ι + Κ ΑΒ + Ι + Κ + : Ι + Κ 78

79 I I I I I I I Α a ( ) 1 Η x ΑΗ ( ) x(a + x) Η Ζ Ε x x n Β nx n ΑΒ ( ) (nx)(a + nx) Ι Κ = Ι = 1 2 a Κ = 1 (nx) = 2 Κ 3 n ΑΒ : ΑΗ + + ΑΒ < Α + Β : n(nx)(a + nx) : 1 2 Α n (kx)(a + kx) < a + nx : k=1 Β < n ΑΒ : ΑΗ + + Α 1 2 a (nx) n 1 < n(nx)(a + nx) : (kx)(a + kx) k= Α Β Ζ ΕΖΚ Ε Β Α ΕΖ ΖΚ : Ζ Ζ = Α 2 : Β

80 2 2 ΑΒ 2 ΑΕ Β ΑΕ Ζ Β ΒΗ Ζ = ΒΗ ΑΕ Β 4 Α Β Α Β Α Β : Α Β : ΕΖ Ψ ΑΕΖ Β : ΕΖ Ψ 80

81 O Ξ Π Ρ Σ Ψ 5 Χ Α Β Α Ψ ΕΖ Χ : Ψ = Α Β : ΕΖ 2 Χ Ψ 6 2 Α Β 2 Α ΕΖ Α : Β = : ΕΖ Ψ 81

82 7 ΑΒ ΑΒ Ξ Π Ρ O 8 ΒΑ ΑΒ ΑΒ Π Ρ 9 82

83 ΑΒ ΑΒ ΑΒ Ξ O (a) (b) 83

84 (c) (d) 12 ΑΒ Α Β Α Α Α Β Α 84

85 T Ρ 13 ΑΒ Α Β Κ Κ Α Κ Κ ΑΒ Β ΕΖ ΕΖ Κ Ρ T 14 ΑΒ Α Β Χ ΠΡ ΒΤ Β 85

86 Ν ΗΝ Α Μ Χ Α T Π Χ Ρ 15 (a) (b) (c) 1 16 (a) 1 (b) (c) ΑΒ ΕΖ Η Α Β 16(c) 86

87 ΑΒ ΑΒ 11 Α Β Α 11 I Ρ O Π Ξ 20 87

88 ΑΒ Α Α ΦΥ Α Β ΦΥ Α Β 16(b) Β Β Β Β Β Β Β Α 2 Β Β Φ I Ρ Υ 21 ΑΒ Α Β Β Α Β Ψ Α Β Ψ Ψ 88

89 Σ I T Ψ Π Ξ Ω 22 ΑΒ 11(a) Α Α Β ΦΥ Β Α 2 ΦΥ Α Β 16(b) Β Β Α Α 12 Φ Σ T Υ I Ξ ΑΒ Β 11(a) ΑΖ Ε ΖΑ 89

90 Β Κ Β Β 2 ΑΖ ΕΒ Κ Β ΑΚ ΕΒ ΑΖ ΕΒ 3 ΑΧ Κ Β = Κ Ε = ΑΧ Β ΑΖ Μ Β O Π Χ Κ Κ 2 : ΑΒ Α Β Β Β = Ζ = ΖΗ Η : Ζ 90

91 Υ O Ρ Φ Ψ Ξ Ξ Ξ Ξ Ξ Ω Ω Ω Ω Ω ΦΑ Υ Ψ Β Η : Ζ Ψ > Ψ Ψ 19 Α Β ΑΦΥ Ψ Ψ ΒΡ Β 3 1 Η = 3 Ρ Α Β Η : Ρ 3 : 1 Ψ Ζ : Η 5 18 Ψ Ζ : Ρ 5 23 Β 91

92 ΖΒ Ξ Ζ Β ΖΟ ΟΒ Ν Β ΒΟ Ζ Β Ω Α Ε Κ Ε Α 2 : ΚΕ 2 Α 2 : ΚΕ 2 = Ζ Β : ΖΕ ΒΕ 1 21 ΞΝ Ζ Β ΞΜ ΖΕ ΒΕ Ξ = ΖΒ Μ = ΒΕ Ν = Β Α Ε, Κ Ε Ω ΞΜ Ε 1 1 Ω Ξ Ε Ω 2 2 Ω Ω Ξ Ω 1 Ω 1 Ν + Ξ : Ξ + 1 Ν Ψ Ζ : Ρ Ν + Ξ = Β + ΖΒ = Ζ 1 2 Ξ + 1 Ν = Β + ΒΡ = Ρ 3 Ψ Ψ Ψ Ψ < Ψ Ψ Ψ Ψ Ε Ε Ω ΞΝ ( ) Ε Ω Ξ 1 Ω 92

93 1 Ω 1 Ξ + Ν : Ξ + 1 Ν Ζ : Ρ Ζ : Ρ Ψ Ψ Ψ 5 8 Ψ Ψ Α Β 3 Ε Ζ Α : Β = : Ε Β : = Ε : Ζ Α : = : Ζ Α Β 3 Ε Ζ Α : Β = Ε : Ζ Β : = : Ε Α : = : Ζ

94 ΑΒ 11(b) Α Β Α ΦΥ Β Β Α 2 Β Β Β Β = Ζ = ΖΗ ΦΥ Α Β 16(b) Α Α 13 Υ Ρ O Φ 27 2 ΑΒ 11(c) Β Β Α Β Α Β 2 94

95 I Χ Π Ρ Σ T Υ Φ Ξ Ξ Ξ Ξ Ξ Ξ Β 2 Ψ Ψ Ψ Ψ 19 Ψ Ψ Α Β ΑΒ Ψ 2 Ψ ΑΒ Ξ Β Β ΒΙ ΒΙ Ι Β 2 = (ΒΙ + Ι) 2 = ΒΙ ΒΙ Ι + Ι 2 Ι 2 = (Β ΒΙ) 2 = Β 2 2 Β ΒΙ + ΒΙ 2 2 ( Β 2 Ι 2) = 2 ΒΙ (Ι + Β) = 2 ΒΙ Ι Β 2 (Β ΒΙ) 2 = I Ι 2 ΒΙ ΒΧ Χ ΒΙ 1 Β 2 Ε Ε Ε Α 2 : ΚΕ Β : ΒΕ Ε Ε 95

96 ΞΞ ΞΡ ΞΣ ΞΤ ΞΥ ΞΦ 2 ΞΞ Ψ Ψ Ψ Ψ Ψ Ε Ε ΕΠ 2 ΕΠ 2 2 Ε 1 3 Ψ Ψ Ψ 96

97 L 28 2 ΑΒ 11(c) Α Α 14 Α Β Κ ΜΝ Κ ΜΝ Α Β 16(b) Β 16(c) Β Β Β Α 9 29 ΑΒ 11(c) Β Α ΒΖ Β ΖΗ = Β Β Η : Ζ 97

98 Ρ Χ O O O O O Ξ Ξ Ξ Ξ Ξ 30 ΑΒ 11(c) Α Α Β Ζ ΠΡ ΣΤ Α Β Ζ 16(b) ΒΖ 16(c) Α 14 Β Α 9 Β Α 8 Β Η : Ζ ΖΗ = Ζ 98

99 Π Ρ Σ T 31 ΑΒ Β 11(c) Α Β Β Η ΒΖ Β ΕΗ : Ε Ξ 11(c) Κ Α : Ε Κ 2 : ΕΑ 2 Κ 2 : ΕΑ 2 = Β : ΒΕ Ε 1 21 Ξ : = : Ε 6 11 Ξ Β : Β = : Ε Ξ Β : Β 99

100 Β : ΒΕ Ε Χ Β : ΒΕ Ε Κ Α Ξ Β : ΒΕ Ε Α ΒΕ Ε : ΖΕ Ε Ξ Β ΖΕ Ε 5 22 ΖΗ Ξ : Β Ξ ( ΖΗ = 4Β 4 ) Ξ Β : ΖΕ Ε ΖΗ Ξ : ΖΕ Ε 5 22 ΖΗ Ξ ΖΕ Ε : ΖΕ Ε 5 17 ΖΗ Ξ ΖΕ Ε = Ξ ΕΗ + ΖΕ ΞΕ Ξ ΕΗ + ΖΕ ΞΕ : ΖΕ Ε ΖΕ Ε : ΒΕ Ε ΒΕ Ε : ΒΕ Ξ ΕΗ + ΖΕ ΞΕ : ΒΕ ΕΗ : Ε Ξ ΕΗ : Ξ Ε = ΕΗ : Ε ΞΕ ΖΕ : ΖΕ Ε = ΕΗ : Ε Ξ Ε = Η ΞΕ : Ε = ΕΗ : Ε Ξ ΕΗ + ΖΕ ΞΕ : Ξ Ε + ΖΕ Ε = ΕΗ : Ε ΕΒ 2 = Ξ Ε + ΖΕ Ε Β 2 = Ξ Ε Β = ΒΖ ΒΕ 2 Β 2 = ΖΕ Ε ΕΗ : Ε 32 ΑΒ 11(c) Α Α Β ΠΡ ΣΤ Α Β 16(b) Β Β Η ΒΖ ΕΗ : Ε 100

101 Π Σ Ξ Ρ T 101

102

103 1 Περὶ τῶν ὕδατι ἐϕισταμένων ἢ περὶ τῶν Οχουμένων De iis, quae in humido vehuntur G D DG D G 2 2 GD GD O L P G R X D 3 3 GD T 103

104 GT G GD L T XOP GT RSY L G T X O S R P Y D 4 4 GD R R G G G XOP R R G X O P 5 5 T 104

105 L G T X O S R P Y D 6 6 G G D G D G D G 7 7 G G D D D G D 105

106 G D 2 (ieron (Ιέρων)) 2 6 pp GD T T R C O L T G D R C O L T G D 106

107 R C O T P G L D 107

108 2 Περὶ τῶν ὕδατι ἐϕισταμένων ἢ περὶ τῶν Οχουμένων De iis, quae in humido vehuntur 1 F F F F F I F I F I RO I R F I RO F O R I L I F R G S O P T Ω eath 3 (p.264) If a right segment of a paraboloid of revolution whose axis is not greater than 3 p (where p is the principal parameter of the 4 108

109 generating parabola), and whose specic gravity is less than that of a uid,... O 3 p 4 Peyrard 11 (p.383) Lorsqu'un segment droit d'un conoïde parabolique n'a pas son axe plus grand que trois fois la moitié du demi-paramètre; si ce segment, quelle que soit sa pesanteur par rapport a celle d'un uide, y 2 = 4px x 4p 3 1 POL PF IS IS PF TO P Ω I G R S L F POL O IS IS O 109

110 L I F T G R S P O Ω POL O IS IS O O P Ω I R G T F S L 4p 1 O > 3p = 3 4 : { O 2 (O 3p) 2} : O 2 (4p) 110

111 POL S O OF F 2 F O FΩ 15 4 Ω O Ω O FΩ F PC POL S PI O L G L I S F T R Ω G F Ω P O C T I P R O S C POL SL PF I PF RP RF 2 R PF RΩ 15 4 Ω PF Ω RΩ R SL 111

112 O CO O PF C S O P I Ω R G T L S P C T Ω O R G F L F D D 2 R C R 1 FQ D F Q 2 FQ D C D C 1 FQ C F R RX F D R X X X 112

113 L G X T S Q X F R C D Ω I P Y O L G X T Ω S Q X F R C D P I Y O D D 2 R C R 1 D FQ D F Q 2 D C D D FQ D C 1 D 113

114 FQ D C FQ C F R F RX R X X D O Y P S Ω C T I X F R Q C D G L Y O S P Ω C I D C R X T F Q G L

115 Y P Q F m T v X O c G S D R C X Φ n I Q L POL D D D 2 D C 15 4 C C R R DS 1 S R 1 C D T 2 D T T T I TD L I R I Y G Y G D OG PYQ TD X F POL O P PΦ OX 3 POL I TD XGO Q QFYP OG GX IL L D DI 2 LI L 2 5 C D C D D D D D 2 LI L D DI GO GX 2 PY YF 2 DS R 1 S 1 1 S D 2 S D XO D X 3 1 XO D 115

116 1 X 3 2 PF D 1 Φ 4 FP D XO D 5 FP D Φ 1 116

117 Ἀρχιμήδους Περὶ τῶν Μηχανικῶν εωρημάτων πρὸς Ερατοσθένην Εϕοδος rchimedis De echanicis Propositionibus ad ratosthenem ethodus 1 2 ( ) ( ) 6 (2 ) ( ) ( ) ( ) 2 ( ) 2 ( ) ( ) 1 Α ΑΒ ΑΒ Α 2 ΒΕ ( ) ΑΒ Β ( ) ΑΒ ΑΒ ΑΖ Α ΒΕ ( ) Ζ Β Κ Κ Κ Κ ΜΞ Ε 117

118 T O X Ξ ΑΒ Α Β ( ) ΑΒ Β ( ΑΒ ) Α ( ) ( ) Α ΕΖ Α Ε ΖΗ Α Α Α Α Β ΜΝ ΜΝ ΑΒ Ξ Ο Α Σ ΑΕ Π ΑΖ Ρ ΜΝ Α ΜΝ ΑΒ ΞΟ ΑΕΖ ΠΡ Ψ O Ω Ρ Σ Π Φ Ξ X Α ΑΣ ΜΣ ΣΠ Α ΣΜ ΑΣ ΠΣ ΑΞ ΞΣ ΣΠ Α ΑΣ ΜΣ ΣΠ ΞΣ ΣΠ Α ΑΣ ΜΣ ΣΠ Α Α Α ΑΣ ΜΣ ΣΠ ΜΣ ΜΣ ΣΠ ΞΣ ΣΠ ΜΣ ΣΠ Α ΑΣ ΜΣ ΞΣ ΣΠ ΜΣ ΞΣ ΣΠ ΜΝ ΞΟ 118

119 ΠΡ ΜΝ ΞΟ ΠΡ ΜΝ ΠΡ ΞΟ Α ΑΣ Α ΑΣ ΞΟ ΠΡ Α Ζ ΕΖ Α Α ( ) ( ) Α Κ Α Α ΑΚ Α ΑΚ ΑΕΖ 1 2 ΑΕΖ ΑΒ 8 ΕΖ Β ΑΒ Α Α Β 4 Β Ζ Α ΦΒΧ ΨΩ ΦΨ ΧΩ Α ΦΩ Φ 2 ΑΒ 3 ΦΩ ΑΒ 6 ΑΒ ( ) 4 4 ( ) ( ) ( ) 2 ( ) ΑΒ ( ) Α Β Κ Α Β Α ( ) ( ) Α ΕΖ ΕΖ Α Α Α Α Α Ζ ΕΖ ΜΝ ΜΝ Α 119

120 ΜΝ ΞΟ ΠΡ Ψ O Ρ Σ Ω Φ Ξ Π X ΑΒ ( ) Β (2 ) Α ( ) Α Α Α Α ( ) Α Β Β Α Β Α (Ε) ΜΝ Β ΜΝ Α ΜΝ ΞΟ O Σ Ξ 5 ( ) 2 120

121 ΑΒ ( ) ( ) ( ) Β ( ) ( ) ΑΒ Α Α Α Α Α ( ) ΒΑ Α Β ΞΟ Ξ Ο Π Ρ O Ρ Σ Π Ξ 6 ( ) 5 3 ΑΒ Α Β Β Α Β Α ΒΑ Α Α Α Α Α ΒΑ Β ΞΟ Ξ Ο Π Ρ Α Ε ΑΕ ΞΟ ΞΟ ΠΡ O Ρ X Φ Π Ξ 7 ( ) ( ) ( ) ( ) 121

122 O Ρ Υ Σ X Φ Ω Π Ξ T Ψ ΜΝ Α ΜΝ ΞΟ ΕΖ Α ΠΡ ΜΝ ΞΟ ΠΡ 2 Α ( ) ( ) ( ) ( ) ( Α ) ΑΗ ΑΧ ΧΗ Χ ΗΦ ΑΗ 1 3 Φ Χ ΑΗ 2 (3 ) Α ( ) ΕΖ ΒΑ Α ΑΧ ΗΑ ΗΦ 3 Η ΗΦ ΑΗ Η 1 ΗΒ ΑΗ Η 3 Η ΗΦ ΒΗ 1 3 Α ΑΧ Κ ΑΒ ( ) ( ) ( ΑΒ) : ( ΑΒ) = ( 1 2 Α + Η) : Η ( 5 pp.55 57) ΑΒ Α ΤΥ Α = Α Β ΜΝ Ψ ΑΕΖ ΑΒ 2 ΜΝ ΠΡ ΞΟ Α Β Α 122

123 Ω Χ Ω O Ξ Ρ Π Ψ ΑΧ = ΧΗ ΗΦ = 1 ΑΗ Χ Ψ 3 Α : ΑΧ = ( Ψ) : ( ΑΕΖ + ΑΒ) ( Η ΗΦ ) = 1 ( ΑΗ Η ) 3 ( ΗΒ ) = ( ΑΗ Η ) ( Η ΗΦ ) = 1 ( ΒΗ ) ( ΑΗ ) = 3( 3 ΑΗ ΗΦ ) = 3( ΑΧ ΑΦ ) Α = ΚΗ ΑΗ = ΗΕ 1 ( Α ) : ( ΑΗ ) = ( Ψ) : ( ΑΕΖ) 3 ( Α ) : ( ΑΧ ΑΦ ) = ( Ψ) : ( ΑΕΖ) Α = Α = ΑΦ + Φ ( Α ) : ( ΑΦ ΑΧ + Φ ΑΧ ) = ( Ψ) : ( ΑΕΖ + ΑΒ) ( Α ) : ( Φ ΑΧ ) = ( Ψ) : ( ΑΒ) ( Α ) : ( Α ) : 1 ( ΒΗ ) = ( Ψ) : ( ΑΒ) 3 1 ( ΒΗ ) = ( Α ) : ( Η ΗΦ ) 3 ( Φ ΑΧ ) : ( Η ΗΦ ) = ( ΑΒ) : ( ΑΒ) ΑΗ = 2 ΑΧ = ΑΦ + ΦΗ = 3 ΦΗ Φ = ΦΗ + Η = 1 ΑΗ + Η 3 ( Φ ΑΧ ) = ( 1 3 ΑΗ 3 ΦΗ ) + 2 ( Η 3 ΦΗ ) 2 = ( ΦΗ 1 Α + Η ) 2 ( ΑΒ) : ( ΑΒ) = ( 1 Α + Η) : Η 2 8 ( ) ( ) ( ) 9 ( ) ( ) ( ) ( ) ( ) 4 ( ) ( ) 2 123

124 O Π X Φ Ξ Ρ 10 ( ) ( ) ( ) ( ) 4 ( ) 2 11 ( ) ( ) 3 ( ) 2 ( ) ( ) ( ) ( ) 3 8 ( ) ( ) ( 2 ) (2 ) ( ) 4 ( ) ( ) 1 6 ΑΒ Β ΕΖ 2 ΕΖ ΜΝ ΞΟΠΡ (ΜΝ) Ξ Ο Π Ρ ΕΖ Κ ΠΞ Κ 2 ΣΤ ΟΠΡ ΠΧ ΣΤ ΞΠ ΞΟΠΡ ( ) ΟΠΡ ΣΤ ( ) ΣΤ Ν Υ 124

125 Ν Υ ΕΙ ΠΧ Ε ΒΩ Ε Ν Ι Ε Β (Ν Ι ) Ε Ι Ω Ν ΒΩ ΥΝ ΒΩ ΥΝ ΣΤ ( ) Ε Π Ι Χ Π Ξ Ε Χ Ρ T Υ I Ξ Χ Π Ν Ω O Σ ( ) Ξ Ξ ΠΞ Ξ Ξ Χ Ξ (Ξ ) ( ) Ξ Χ Χ Ξ Χ Ξ ΟΠΡ Π Π ΞΟΠΡ Ξ Ξ Ξ Ξ Ξ ( ) Ρ Ξ Υ Χ Σ Κ Π Φ Ζ Τ O ΜΝ ΞΟΠΡ Μ Η Μ Η ΟΠΡ (2 ) ( ΟΠΡ ) ΜΗ ( ) 125

126 1 ΟΠΡ ΜΝ ΠΞ 4 Κ Τ Υ ΟΠΡ Κ Τ ΟΡ Σ Ζ Η Μ Χ Φ ( ) Κ Τ Υ ΟΡ (2 ) ΞΟΠΡ ΟΠΡ Κ Σ ΗΜ Χ ( ) ( ) Τ Ζ (ΗΜ) Υ Φ eiberg eiberg 3 ( 5 p.81) 3 ΜΝ eiberg ΑΒ ( ) Ε Ζ Η ΑΒ ΕΖΗ (ΕΖΗ) ΑΒ 1 4 ( ) 3 2 ΕΖΗ ΖΚ ( ) 12 (ΕΖΗ ) = 1 ( ) Ξ Σ Η ΚΖ ΜΝ ΜΝ Ξ ( ) ΜΝ Ν ΝΖ ΜΝ Ν 126

127 ΚΗ Σ ΜΝ ΕΗ 1 ΜΝ 1 Ν ( ) ( ) ΕΗ 1 ΜΞ 1 ΚΝ Ξ ( ) ΜΝ Μ ΜΞ ΜΝ Μ ΜΝ ΜΞ ΜΝ ΜΞ ΜΝ ΜΞ ΜΝ Μ ( ) ( ) ( ) (Η) ΚΖ ΕΗ Η ΚΖ ΕΗΖ ( ) ΕΗ Η ΚΖ ( ) Η ΕΗ ( ) Η Η ΚΖ ( ) ΕΗ Η ΕΗ ΕΖΗ Η ΕΗ ( ) ( ) ΑΒ ΕΖΗ (ΕΖΗ) (ΑΒ) Ε Ζ Η Κ (ΕΖΗ) ΕΗ ( )

128 Π Ρ O Σ ( 5 pp.9599) ΑΒ 1 ΕΖΗ Κ ΕΖΗ ΕΗ ( ) ΠΡ ( ) = 1 ( ) 6 ΗΠΕΡ ΗΕ 1 ( 10 1 ) ΗΠΜΝ ( ) ( ) = 2( ΗΠΜΝ) ΗΠΕΡ ΗΠΕΡ 2 3 I ( ) > 2 ( ΗΠΕΡ) 3 ( ) ( ) < ( ) 2 3 ( ΗΠΕΡ) ( ) > 2 ( ΗΠΕΡ) 14 3 ΚΖ ( ) Ε Ζ Η ( ) ( 1) ( ΗΠΕΡ) : ( ) = ( Η) : ( ) ( 128

129 Η) < 3 ( ) ( 2 ) ( Η) = 3 ( ΕΖΗ) 2 ΗΠΕΡ 2 3 II ( ) < 2 ( ΗΠΕΡ) 3 ( ) ( ) < 2 ( ΗΠΕΡ) ( 3 ) ( ) < 2 3 ( ΗΠΕΡ) ( ΗΠΕΡ) : ( ) = ( Η) : ( ) ( Η) > 3 2 ( ) ( Η) = 3 ( ΕΖΗ) 2 ΗΠΕΡ 2 3 ( ) = 2 3 ( ΗΠΕΡ) = 1 6 ( ) ( ) ( ) ( ) (2 ) 4 ( ) ( ) (2 ) 4 ( ) 2 ( ) y Υ Υ Χ Χ x Ψ Ψ z Φ Φ 129

130 z y y a a 2 t 2 x a z = t a 2 t 2 x a a 1 a z = t 1 2 a 2 t 2 S(t) = 4 ( a 2 t 2) ( ) V a V = 2 4 ( a 2 t 2) dt = 16 3 a3 = 2 ( 8a 3 ) = ( ) 0 130

131 Liber ssumptorum CD CD 2 D D D D 2 G F GF D GF C F G D C G F D 2 C DC D C D F F CD G C G G D D F F C C 3 C D C D D F CF C F D C 4 C C 2 D DC D 131

132 ; rbelos ; ἄρβηλος ( 2 ) D C D 5 C 2 C C C CD DC F G C 2 C C F 1 F 2 C F C D F F F F D G GC C G G I I I F D I G L C y O P 0 Q R C k T S 1 x 1 2 k r r 1 (1 k) 2 2 ( O) L ( P)

133 = 1 C = k 2 r : C = D : = CD : C = 1 : k D = CD D = (1 k)cd C : = CD : D = 1 : (1 k) = (1 k)c = k(1 k) k(1 k) = 1 2 r = 1 = C C a b 2 OQ = 1 2 k + r QR = 1 2 k r ab a+b OR 2 = OQ 2 QR 2 = ( 1 k + 2 r)2 ( 1 k 2 r)2 = 2kr = k 2 (1 k) OR = k 1 k R = C CR = k r = 1 k(1 + k) 2 PS = 1 (1 k) + r ST = 1 (1 k) r 2 2 PT2 = PS 2 ST 2 = k(1 k) 2 PT = (1 k) k T = C + CT = k + r = 1 k(3 k) 2 2 O ( 1 k(1 + k) k 1 k) P ( 1 k(3 k) (1 k) k) C D D DC 1 D DC 2 3 F C F C F 2 2 CF F C 2 FG C 2 D DF DI DL F O P F I G L O D P C D G D DI O FP C L 2 DL DI C D DC F O OP CD D C CP PO D DC 1 O OP 1 OP CP 1 3 O OP PC PC 4 OP 6 O 9 C 19 PO F C F 19 6 D DC D : DC = : F = O : OP DC : D = C : = CP : OP D : DC = r : 1 CP : OP : O : C = 1 : r : r 2 : (1 + r + r 2 ) 133

134 F = OP C : F = (1 + r + r 2 ) : r r = 4 C : F = ( ) : 4 = 37 : D F C G 8 C C D F 3 D F C G 9 2 CD ( ) 2 D C 2 C D D G F C 10 D D DC C D C F D F C FG FG G C 134

135 F D G C 11 2 CD C D D C F 12 C 2 D 2 F D CF G CG D C F G 13 2 CD CD 2 CD 2 F CF D I CD IG D L G C F I 135

136 14 C D C CD D 2 CD F G FG 2 ; ; salinum ; σάλινον G C D F 15 C 1 C D CD F C D F FG G C D F G 136

137 , , 22, , 20, , , 77, , , , , , 89, , 55, 75, , , ,

138 , 12, 14, ,

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ Complete Ancient Greek 2010 (2003 ) October 15, 2013 * 25 04-23 0 ἅ ὅς 03 05(06) 0 ἄβιος,-ον, 15 99-02 0 ἄβροτον ἄβροτος 15 99-02 0 ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυσσος

More information

* 09 α-24 0 ἅ ὅς 17 β-52 0 ἄβατον ἄβατος 17 β-52 0 ἄβατος(,-η),-ον, 17 β-55 0 ἀβάτῳ ἄβατος 30 δ ἄγ ἄγω 2 ἄγε 30 γ ἀγαγεῖν ἄγω 2 13 α-02 0

* 09 α-24 0 ἅ ὅς 17 β-52 0 ἄβατον ἄβατος 17 β-52 0 ἄβατος(,-η),-ον, 17 β-55 0 ἀβάτῳ ἄβατος 30 δ ἄγ ἄγω 2 ἄγε 30 γ ἀγαγεῖν ἄγω 2 13 α-02 0 Athenaze 2nd version 2013 10 15 * 09 α-24 0 ἅ ὅς 17 β-52 0 ἄβατον ἄβατος 17 β-52 0 ἄβατος(,-η),-ον, 17 β-55 0 ἀβάτῳ ἄβατος 30 δ-142 1 ἄγ ἄγω 2 ἄγε 30 γ-139 2 ἀγαγεῖν ἄγω 2 13 α-02 0 ἀγαγὼν ἄγω 2 ἄγαγών

More information

and καὶ Α καὶ Β A B both also 3 auto- iste D in orthan asso forwhen thatso that

and καὶ Α καὶ Β A B both also 3 auto- iste D in orthan asso forwhen thatso that 1. 2. 3. 4. ὁ, ἡ, τό ὅς, ἥ, ὅ αὐτός, -ή, -ό καί 5. 6. 7. 8. δέ τίς, τί τις, τι οὗτος, αὕτη, τοῦτο 9. 10. 11. 12. ἤ ἐν μὲν... δέ γάρ 13. 14. 15. 16. οὐ, οὐκ, οὐχ μή ὡς τε and καὶ Α καὶ Β A B both also 3

More information

Κριτική ανάγνωση της επικούρειας Φιλοσοφίας νος, ή ως ένα παράδειγμα προς μίμηση και γιατί; Και τέλος, η επιστήμη φιλοσοφία διδάσκεται ή ασκείται; Δηλ

Κριτική ανάγνωση της επικούρειας Φιλοσοφίας νος, ή ως ένα παράδειγμα προς μίμηση και γιατί; Και τέλος, η επιστήμη φιλοσοφία διδάσκεται ή ασκείται; Δηλ Φιλοσοφεῖν: ἐπιστήμη, εὔνοια, παρρησία Κριτική ανάγνωση της επικούρειας φιλοσοφίας: Ποια η διαχρονικότητα ή το δίδαγμά της σήμερα; Γιώργος Σκουλάς, Αν. Καθηγητής Πανεπιστημίου Μακεδονίας Ιωάννα-Παρασκευή

More information

andκαὶακαὶβa B bothalso 3 even auto- iste D in orthan asso forwhen thatsothat (G) (G) (A) (A) (G) (G) (D) (A) (A) (A) (G) (A) + subj. (G) (G) (D) (D)

andκαὶακαὶβa B bothalso 3 even auto- iste D in orthan asso forwhen thatsothat (G) (G) (A) (A) (G) (G) (D) (A) (A) (A) (G) (A) + subj. (G) (G) (D) (D) 1. ὁ,ἡ,τό 2. ὅς,ἥ,ὅ 3. αὐτός, -ή, -ό 4. καί 5. δέ 6. τίς, τί 7. τις, τι 8. οὗτος, αὕτη, τοῦτο 9. ἤ 10. ἐν 11. μὲν... δέ 12. γάρ 13. οὐ,οὐκ,οὐχ 14. μή 15. ὡς 16. τε 17. εἰς 18. ἐπί 19. κατά 20. ἐγώ 21.

More information

ὁ,ἡ,τό ὅς,ἥ,ὅ αὐτός, -ή, -ό καί δέ τίς, τί τις, τι οὗτος, αὕτη, τοῦτο

ὁ,ἡ,τό ὅς,ἥ,ὅ αὐτός, -ή, -ό καί δέ τίς, τί τις, τι οὗτος, αὕτη, τοῦτο 1. 2. 3. 4. ὁ,ἡ,τό ὅς,ἥ,ὅ αὐτός, -ή, -ό καί 5. 6. 7. 8. δέ τίς, τί τις, τι οὗτος, αὕτη, τοῦτο 9. 10. 11. 12. ἤ ἐν μὲν... δέ γάρ 13. 14. 15. 16. οὐ,οὐκ,οὐχ μή ὡς τε 4. andκαὶακαὶβa B bothalso even 3. 3

More information

εἰς ἐπί κατά ἐγώ ἡμεῖς πρός ἐ ᾱν διά ἀλλά ἐκ,ἐξ περί ὅστις,ἥτις,ὅτι ἄν σύ ῡμεῖς ἀνά

εἰς ἐπί κατά ἐγώ ἡμεῖς πρός ἐ ᾱν διά ἀλλά ἐκ,ἐξ περί ὅστις,ἥτις,ὅτι ἄν σύ ῡμεῖς ἀνά 1. 2. 3. 4. ὁ,ἡ,τό ὅς,ἥ,ὅ αὐτός, -ή, -ό καί 5. 6. 7. 8. δέ τίς, τί τις, τι οὗτος, αὕτη, τοῦτο 9. 10. 11. 12. ἤ ἐν μὲν... δέ γάρ 13. 14. 15. 16. οὐ,οὐκ,οὐχ μή ὡς τε 17. 18. 19. 20. εἰς ἐπί κατά ἐγώ 21.

More information

13西洋古代文化史特講Ⅰ

13西洋古代文化史特講Ⅰ 第八講スパルタが抱える問題 (1) キナドンの陰謀少数派のスパルティアタイホモイオイ=スパルティアタイキナドンはホモイオイではない ヘイロタイ ネオダモデイス ヒュポメイオネス ペリオイコイ アゴラにいた人々のうちスパルティアタイは僅か 40 名 それ以外の人々は 4000 名 1% スパルティアタイに対する激しい敵意の存在 Xen. Hell. 3. 3. 5: οὗτος δ ἦν καὶ τὸ

More information

untitled

untitled 56 1 2010 67 76 : 21 6 9 : 22 2 1 18 1 ΔΕΛΤΟΣ Deltos, Φίλοι Μουσείου Ελληνικής Ιατρικής 18 19 1. 近代におけるギリシャ文化の再興と古代医学の継承 5 1453 400 τουρκοκρατία 2 18 68 56 1 2010 18 Νεοελληνικός Διαφωτισμός Νεοελληνική

More information

Microsoft Word - sympo_2_18_miyake_1.doc

Microsoft Word - sympo_2_18_miyake_1.doc mmiyake@lang.osaka-u.ac.jp,, 1. WW Gfeller et al. (2005) Dorow, B. et al.(2005) Steyvers & Tenenbaum (2005) 2007 2006 2008 Web 1 2. 2.1. 27 ευαγγελιον (Conzelmann & Lindermann, 1998) (Mk) (Mt) (Lk) (Joh)

More information

Lieber Herr Schmidt, 佐藤太郎様 Λιγότερο επίσημη επιστολή, ο αποστολέας είχε ήδη πάρε-δώσε με τον παραλήπτη προηγουμένως Lieber Johann, 佐藤太郎様 Ανεπίσημη επι

Lieber Herr Schmidt, 佐藤太郎様 Λιγότερο επίσημη επιστολή, ο αποστολέας είχε ήδη πάρε-δώσε με τον παραλήπτη προηγουμένως Lieber Johann, 佐藤太郎様 Ανεπίσημη επι - Εισαγωγή γερμανικά ιαπωνικά Sehr geehrter Herr Präsident, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Sehr geehrter Herr, Επίσημη

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

ギリシアのドデカイーメロ(Δωδεκαήμερο)と食文化

ギリシアのドデカイーメロ(Δωδεκαήμερο)と食文化 資 料 Δωδεκαήμερο Δωδεκαήμερο and Food culture in Greece Satoko Tsurushiin, Shizuko Tsurushiin, Daisuke Yamaguchi Seigakuin University,, Tozaki, Ageo-shi Saitama, Junior College Seitoku University,, Iwase

More information

07_KUCICKI Janusz.indd

07_KUCICKI Janusz.indd 12 91 104 2016 6 91 11 1 36 Relation between the jews and the christian according to Paul s teaching in Rom11 sociological and theological meaning of the Rom 11, 1 36 Janusz KUCICKI 11, 1 36 11 11, 1 36

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

予稿集(1)の表紙

予稿集(1)の表紙 京都大学人文科学研究所共同研究プロジェクト: 情報処理技術は漢字文献からどのような情報を 抽出できるか 人文情報学の基礎を築く 文字と非文字のアーカイブズ モデルを使った文献研究 文字資料アーカイブズの現在 特に検索可能性を中心に 岡本 真 動画のテキスト処理 安岡孝一 写真の検索可能性について考える 守岡知彦 ネットワーク分析からみた共観福音書間の比較研究 三宅真紀 異なる文献間の数理的な比較研究をふり返る

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

ント州立大学の古典学の准教授である Rick Newton の英訳を入手することがで きた この英訳および Rick Newton の解説文から多くの示唆を受けた 1. リッツォス詩 エピタフィオス について 1936 年 4 月にメタクサス将軍が副首相から首相に昇格した後 議会を休会させて 労働界

ント州立大学の古典学の准教授である Rick Newton の英訳を入手することがで きた この英訳および Rick Newton の解説文から多くの示唆を受けた 1. リッツォス詩 エピタフィオス について 1936 年 4 月にメタクサス将軍が副首相から首相に昇格した後 議会を休会させて 労働界 研究ノート ミキス テオドラキス作曲 ヤニス リッツォス エピタフィオス - 言語芸術 音楽芸術と政治との関係について - 土居本稔 はじめにヤニス リッツォス (1909-1990) は 二人のノーベル賞詩人 ヨルゴス セフェリス (1900-1971) とオディッセアス エリティス (1911-1996) に並ぶ現代ギリシアの大詩人である 1958 年に作曲家ミキス テオドラキス (1925 -)

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

広島大学学術情報リポジトリ Hiroshima University Institutional Repository Title Auther(s) Citation Issue Date ミキス テオドラキス作曲ヤニス リッツォス ロミオシーニ 土居本, 稔プロピレア, 23 :

広島大学学術情報リポジトリ Hiroshima University Institutional Repository Title Auther(s) Citation Issue Date ミキス テオドラキス作曲ヤニス リッツォス ロミオシーニ 土居本, 稔プロピレア, 23 : 広島大学学術情報リポジトリ Hiroshima University Institutional Repository Title Auther(s) Citation Issue Date ミキス テオドラキス作曲ヤニス リッツォス ロミオシーニ 土居本, 稔プロピレア, 23 : 83-100 2017-08-31 DOI Self DOI URL Right http://ir.lib.hiroshima-u.ac.jp/00044339

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

( ( 3 ( ( 6 (

( ( 3 ( ( 6 ( ( ( ( 43037 3 0 (Nicolas Bourbaki (Éléments d'histoire des athématiques : 984 b b b n ( b n/b n b ( 0 ( p.3 3500 ( 3500 300 4 500 600 300 (Euclid (Eukleides : EÎkleÐdhc : 300 (StoiqeÐwsic 7 ( 3 p.49 (

More information

目次

目次 2007 年度リサーチペーパー ギリシャ - 特にクレタ島における Mediterranean Diet の認知と食の変容に関する研究 ~ クレタ島とアテネの事例から ~ A Study on the Mediterranean Diet and the Changes of Food Habits,especially in Crete, Greece ~Case Study in Crete and

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

------------------------- elicobacter ylori E --------------------------- ---------------------- ------------------------- ------------------------- ------------------------- -----------------------------

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

2 可能であった. ローマ市民およびアレクサンドリア, ナウクラティス, プトレマイス, そして 130 年に設立されたアンティノポリスの 4 つのギリシア都市の市民以外の属州住民は, 実際の人種にかかわらず エジプト人 という劣格身分に属した. エジプト人 は 州都民 とそうではないもの, 便宜的

2 可能であった. ローマ市民およびアレクサンドリア, ナウクラティス, プトレマイス, そして 130 年に設立されたアンティノポリスの 4 つのギリシア都市の市民以外の属州住民は, 実際の人種にかかわらず エジプト人 という劣格身分に属した. エジプト人 は 州都民 とそうではないもの, 便宜的 ローマ期エジプトにおける地方名望家 2 世紀アルシノイテス州のパトロン家の事例から * 髙橋亮介 はじめに ローマ帝国はエジプトを属州として支配するにあたり既存の官僚機構を活用しただけでなく, 他の属州と同様に都市を通じた支配体制の確立を試みた. エジプトに 40 余りを数えた州 nomos の中心市, 州都 metropolis には, 地方行政の中核としての機能が求められ, 富裕な州都住民から選ばれる公職者

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

@08460207ヨコ/立花 220号

@08460207ヨコ/立花 220号 παιδεραστεία παιε ραστεύωε ράω ιλέωιλία ε ράω by ιλέω ιλητόν ιλητόν τελεὶα ιλία μέσον α κρότη θεωρειν definition John M. Cooper morally good (in some respect, in some degree) character friendship Cooper

More information

(2) 品詞はいつも語形コードの中で最初のフィールドで示される ルドがコードセット内の配置のために許されるかを決定する それは 以降のどのフィー. 形容詞...J. 名詞...N. 定冠詞...D. 代名詞...R. 動詞...V. 接続詞...C. 助動詞...B. 間投詞...I. 前置詞...

(2) 品詞はいつも語形コードの中で最初のフィールドで示される ルドがコードセット内の配置のために許されるかを決定する それは 以降のどのフィー. 形容詞...J. 名詞...N. 定冠詞...D. 代名詞...R. 動詞...V. 接続詞...C. 助動詞...B. 間投詞...I. 前置詞... (1) ロゴスバイブルソフトウェア ギリシャ語語形コードの解説 (LOGOS 社による ) 作業中 村上定幸 インタリニアのギリシャ語の上にカーソルを置くと 品詞が表示されます この code ですが 解説がマニュ アルにはみられません ( 添付されている日本語のファイ ル help から見ることができる英文の解説にも ) そこ で 初めて見る者には ギリシャ語原形の下におる 何 ケタかのアルファベットの表記を分かりにくいものに

More information

四変数基本対称式の解放

四変数基本対称式の解放 The second-thought of the Galois-style way to solve a quartic equation Oomori, Yasuhiro in Himeji City, Japan Jan.6, 013 Abstract v ρ (v) Step1.5 l 3 1 6. l 3 7. Step - V v - 3 8. Step1.3 - - groupe groupe

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

susy.dvi

susy.dvi 1 Chapter 1 Why supper symmetry? 2 Chapter 2 Representaions of the supersymmetry algebra SUSY Q a d 3 xj 0 α J x µjµ = 0 µ SUSY ( {Q A α,q βb } = 2σ µ α β P µδ A B (2.1 {Q A α,q βb } = {Q αa,q βb } = 0

More information

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα = 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a + b α (norm) N(α) = a + b = αα = α α (spure) (trace) 1 1. a R aα = aα. α = α 3. α + β = α + β 4. αβ = αβ 5. β 0 6. α = α ( ) α = α

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

13西洋文化史(8)

13西洋文化史(8) 第 13 講クセルクセスの背後にあるペルシア帝国膨張の論理近代 ( 現代 ) の価値観は過去に適用できるのか? 国境外への遠征 領土拡大を規制する内的要因は存在しない 今日との相違 : 帝国主義が国際法に違反 ( ウェストファリア条約による国家主権尊重の原則 ) 外国の主権の侵犯 他国領への侵略 他国領の併合に対する道徳的 倫理的批判の欠如繰り返される対外遠征と侵略 : 初代のキュロス以来の伝統キュロス

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n 3 () 3,,C = a, C = a, C = b, C = θ(0 < θ < π) cos θ = a + (a) b (a) = 5a b 4a b = 5a 4a cos θ b = a 5 4 cos θ a ( b > 0) C C l = a + a + a 5 4 cos θ = a(3 + 5 4 cos θ) C a l = 3 + 5 4 cos θ < cos θ < 4

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

分野区分 B ホストタウン推進事業 -No.32 三郷市 - 事業の目的 ギリシャ共和国を相手国とするホストタウンに登録 ( 平成 28 年 6 月 ) されたことを契機に 同国とスポーツをはじめ 文化などの更なる交流等を図るとともに 2020 年東京オリンピック パラリンピックに向け機運醸成を図り

分野区分 B ホストタウン推進事業 -No.32 三郷市 - 事業の目的 ギリシャ共和国を相手国とするホストタウンに登録 ( 平成 28 年 6 月 ) されたことを契機に 同国とスポーツをはじめ 文化などの更なる交流等を図るとともに 2020 年東京オリンピック パラリンピックに向け機運醸成を図り 分野区分 B ホストタウン推進事業 -No.32 三郷市 - 事業の目的 ギリシャ共和国を相手国とするホストタウンに登録 ( 平成 28 年 6 月 ) されたことを契機に 同国とスポーツをはじめ 文化などの更なる交流等を図るとともに 2020 年東京オリンピック パラリンピックに向け機運醸成を図ります 事業の内容 オリンピック パラリンピックの開催を契機に 多くの選手 観客等の来訪による 地域の活性化等の推進及び事前合宿の誘致等を通じ

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

上田徹 私はすでに ゼノンの逆理とアリストテレスの誤謬 において (1) ゼノンの第一逆理と第二逆理について論じた つぎに 第三逆理 ( 飛矢静止の逆理 ) について論じたい 第三逆理の解釈はすでに行った解釈を踏まえている そのために まず すでに確認された諸点を簡潔に振り返っておきたい 第一 第二逆理についての解釈の要点 1 現実主義者のアリストテレスにとって 運動不可能は笑止な妄説であり (2)

More information

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1 1 (1) 1.1 X Y f, g : X Y { F (x, 0) = f(x) F (x, 1) = g(x) F : X I Y f g f g F f g 1.2 X Y X Y gf id X, fg id Y f : X Y, g : Y X X Y X Y (2) 1.3

More information

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx x E E E e i ω t + ikx k λ λ π k π/λ k ω/v v n v c/n k nω c c ω/π λ k πn/λ π/(λ/n) κ n n κ N n iκ k Nω c iωt + inωx c iωt + i( n+ iκ ) ωx c κω x c iω ( t nx c) E E e E e E e e κ e ωκx/c e iω(t nx/c) I I

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information