ができるようになったソフトによって あらためて解析し直しました (2) これらの有効詳細フォームにおける 全重心の水平速度が最大値をとるところ を パワ ポジション ( キックポイント ) と見なしました (3) それらの脛角 (θs) と太もも角 (θt) をプログラムソフトによって求め これを図

Size: px
Start display at page:

Download "ができるようになったソフトによって あらためて解析し直しました (2) これらの有効詳細フォームにおける 全重心の水平速度が最大値をとるところ を パワ ポジション ( キックポイント ) と見なしました (3) それらの脛角 (θs) と太もも角 (θt) をプログラムソフトによって求め これを図"

Transcription

1 短距離ランニングフォーム解析 (17) FK 選手の 100m と 200m のパワーポジションによるランニングフォーム分類 黒月樹人 (KULOTSUKI 9621 ANALYSIS) パワーポジションによるランニングフォーム分類 スプリントランニングフォームの分類 というページで キック局面のパワーポジション位置のフォームについて 脛の立位角 (θs) と太ももの立位角 (θt) を指標として さまざまなランニングフォームの値をプロットしたところ 次の図中のグラフのような結果が得られ これに基づいて クランクキックやピストンキックを分類しました ここに示されているεクランクキックは走幅跳の踏切 1 歩前で現れるものです スタートダッシュのフォームについては調べていません これらは 中間疾走からトップスピードのランニングフォームについて調べたものです パワーポジションというのは キックの局面において 地面に最も大きな力が加えられるときを意味します しかし このグラフを構成したときのことを思い出すと 全身の重心についての水平速度のピーク位置としていたようです この位置を キックポイント と呼ぶことにします 図 1 パワーポジションでの脛角 (θs) と太もも角 (θt) による分類 FK 選手の 100m と 200m のパワーポジションによるランニングフォーム分類解析内容の変更手順を次に示します (1) FK 選手の 100m と 200m のランニングフォームについて より精密な解析 1

2 ができるようになったソフトによって あらためて解析し直しました (2) これらの有効詳細フォームにおける 全重心の水平速度が最大値をとるところ を パワ ポジション ( キックポイント ) と見なしました (3) それらの脛角 (θs) と太もも角 (θt) をプログラムソフトによって求め これを図 1 のグラフに照らし合わせてフォームの分類を行いました (a) 有効キック区間 (b) キックポイント (d) 全重心速度 / 黒 水平 / 緑 鉛直中 全身 / 下 キック脚図 2 FK100m(1) δクランクキック 図 2 から図 11 まで (a)~(e) の解析図やグラフをまとめました これらはすべて 画像 4 コマのステックピクチャーから構成しています 2 コマ間のフォームを 10 分割した詳細フォーム 0~30 を キック足スパイク面あたりをそろえて描き これらの重心を求め まず (d) の全重心速度を描きます ここにおける黒いプロットが全重心の水平速度です これのピーク位置の詳細フォームを (b) キックポイントとします これのキック脚における 脛と太ももの 水平面から測った角度を 脛角 (θs) と太もも角 (θt) とし のグラフで フォームの種類を求めます (d) の黒い全重心水平速度のパターンから 有効キック区間を判定し その前後に縦線を引きます (e) は スウィング脚重心 全身の重心 ( 全重心 ) キック脚重心の それぞれの水平速度だけをプロットし 2

3 たものです 図 2 の FK100m(1) のフォームはδクランクキックとして分類されます (e) を見ると 黒い全重心水平速度のピーク位置が d17 のところにあるのに対して 赤いスウィング脚重心水平速度のピーク位置が 有効キック区間外の d21 あたりにあります うまくあっていません 逆に考えると スウィング脚は d21 あたりに動きのピークをもってきて 全重心の速度を高めようとしているのに このことがうまくいっていないことになります (a) 有効キック区間 (b) キックポイント (d) 全重心速度 / 黒 水平 / 緑 鉛直中 全身 / 下 キック脚図 3 FK100m(2) βクランクキック 図 3 の FK100m(2) のフォームはβクランクキックとして分類されます (e) のパターンを見ると 黒い全重心の水平速度が 有効キック区間でほぼ一定であるのに対して 青いスウィング脚重心水平速度のピークが有効キック区間の初めにあって 赤いキック脚重心水平速度のピークが有効キック区間の終わりのほうにあります あまり合理的な動きとはなっていません スウィング脚はすばやく動かされているようですが このとき キック脚のほうにあまり力が込められていないようです 3

4 (d) 全重心速度 / 黒 水平 / 緑 鉛直中 全身 / 下 キック脚図 4 FK100m(3) δクランクキック 図 4 の FK100m(3) のフォームはδクランクキックとして分類されます (e) のパターンを見ると 赤いスウィング脚重心水平速度と 青いキック脚重心水平速度のピー位置が 有効キック区間の終わりあたりにありますが 黒い全重心水平速度が そこで高まっていません 黒い全重心水平速度が 100m の 4 歩のフォームの中では もっとも大きな値でピークを生み出しています (a) 有効キック区間のフォームにおいて スウィング脚の膝が折りたたまれすぎていません しかし スウィング脚の動きは それほど強調されているようには感じられません キック脚のほうでは 全般的に高い水平速度となっています 4

5 (d) 全重心速度 / 黒 水平 / 緑 鉛直中 全身 / 下 キック脚図 5 FK100m(4) δクランクキック 図 5 の FK100m(4) のフォームはδクランクキックとして分類されます (e) のパターンを見ると 赤いスウィング脚重心水平速度と 青いキック脚重心水平速度のピー位置が 有効キック区間の終わりあたりにありますが 黒い全重心水平速度が そこで効果的に高まっていません わずかに増えていますが ほぼ一定値と見なせます 5

6 (d) 全重心速度 / 黒 水平 / 緑 鉛直中 全身 / 下 キック脚図 6 FK200m(1) δクランクキック 図 6 の FK200m(1) のフォームはδクランクキックとして分類されます (e) の 3 種類の水平速度パターンは 自然な右上がりを示しています 調和のとれたフォームと見なせますが とくに力を込めて加速しようしているものではないようです 6

7 (d) 全重心速度 / 黒 水平 / 緑 鉛直中 全身 / 下 キック脚図 7 FK200m(2) αクランクキック 図 7 の FK200m(2) のフォームはαクランクキックとして分類されます αクランクキックは そのあとの水平速度が低下したため 最初のフォームが最大値を生み出しているということを示しています そう考えると これは明らかに 減速フォーム です (e) の 3 つの水平速度のプロットも そのことを表わしています 7

8 (d) 全重心速度 / 黒 水平 / 緑 鉛直中 全身 / 下 キック脚図 8 FK200m(3) δクランクキック 図 8 の FK200m(3) のフォームはδクランクキックとして分類されます 減速フォーム のあとに このような 加速フォーム がくるのは 自然なことかもしません 100m の 4 歩と 200m の 6 歩のフォームの中で このフォームがもっともうまく加速できています 赤いキック脚重心水平速度の変化と 青いスウィング脚重心水平速度の変化が うまく同調して 全重心の水平速度を高めようとしています どうやら FK 選手が得意としていて 目指そうとしているのは このようなフォームのようです 8

9 (d) 全重心速度 / 黒 水平 / 緑 鉛直中 全身 / 下 キック脚図 9 FK200m(4) γクランクキック 図 9 の FK200m(4) のフォームはγクランクキックとして分類されます (e) のパターンを見ると 全体的にプロットの 山 が低く また 青いキック脚重心水平速度のパターンだけが 有効キック区間の終わりに 峰 をもっていて 結果的に 無駄な動きとなっています 9

10 (d) 全重心速度 / 黒 水平 / 緑 鉛直中 全身 / 下 キック脚図 10 FK200m(5) γクランクキック 図 10 の FK200m(5) のフォームはγクランクキックとして分類されます (e) のパターンより 赤いキック脚重心水平速度が右下がりです また スウィング脚も それほど効果的に動いていません このような状態であるにもかかわらず 黒い全重心水平速度は比較的大きな値となっています FK 選手はγ クランキックをあまり目指そうとはしていないようですが ガトリン選手が得意としているのは (c) の位置より もう少しだけ下のところにあるフォームです 10

11 (d) 全重心速度 / 黒 水平 / 緑 鉛直中 全身 / 下 キック脚図 11 FK200m(6) δクランクキック 図 11 の FK200m(6) のフォームはδクランクキックとして分類されます しかし (c) のパターンを見ると 図 11 の (c) と 図 10 の (c) とは わずかな違いしかありません (e) のパターンでは 赤いスウィング脚重心水平速度がユニークな変化を見せています (a) のフォームを見れば このことの理由が分かります スウィング脚が膝できょくたんに折り曲げられているため 腰を中心とした回転運動となって あまり水平速度を大きくできないところがあるからです でも 前方へと動くときには コンパクトになっている分 動かしやすいということなのでしょう ただし このような変化の差は相対的なものであり 絶対的な速度の大きさという面では 図 4 の FK100m(3) や図 8 の FK200m(3) のスウィング脚のほうがすぐれています (Written by KULOTSUKI Kinohito, Nov 8, 2012) 11

Gatlin(8) 図 1 ガトリン選手のランニングフォーム Gatlin(7) 解析の特殊な事情このビデオ画像からフレームごとの静止画像を取り出して保存してあるハードディスクから 今回解析するための小画像を切り出し ランニングフォーム解析ソフト runa.exe に取り込んで 座標を読み込み この

Gatlin(8) 図 1 ガトリン選手のランニングフォーム Gatlin(7) 解析の特殊な事情このビデオ画像からフレームごとの静止画像を取り出して保存してあるハードディスクから 今回解析するための小画像を切り出し ランニングフォーム解析ソフト runa.exe に取り込んで 座標を読み込み この 短距離ランニングフォーム解析 (20) 2005 年ガトリン選手の詳細重心解析 黒月樹人 (KULOTSUKI Kinohito @ 9621 ANALYSIS) 2005 年 9 月のガトリン選手 2005 年の 9 月に日本で行われた 100m レースにガトリン選手は出場しています 記録は 10 秒 2 くらいだったでしょうか もちろん優勝しています このときのレースがテレビ放映されたので その画面をビデオで撮影しました

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

SICE東北支部研究集会資料(2011年)

SICE東北支部研究集会資料(2011年) 269 (2011.12.12) 269-10 Basic analysis of coaching in sprint motion using three dimensional motion capture data Masahiro Nagayama,Takayuki Takahashi *, ** *Graduate School Fukushima University,**Fukushima

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

zsj2017 (Toyama) program.pdf

zsj2017 (Toyama) program.pdf 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88

More information

88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88

More information

_170825_<52D5><7269><5B66><4F1A>_<6821><4E86><5F8C><4FEE><6B63>_<518A><5B50><4F53><FF08><5168><9801><FF09>.pdf

_170825_<52D5><7269><5B66><4F1A>_<6821><4E86><5F8C><4FEE><6B63>_<518A><5B50><4F53><FF08><5168><9801><FF09>.pdf 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E >

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E > バットの角度 打球軌道および落下地点の関係 T999 和田真迪 担当教員 飯田晋司 目次 1. はじめに. ボールとバットの衝突 -1 座標系 -ボールとバットの衝突の前後でのボールの速度 3. ボールの軌道の計算 4. おわりに参考文献 はじめに この研究テーマにした理由は 好きな野球での小さい頃からの疑問であるバッテングについて 角度が変わればどう打球に変化が起こるのかが大学で学んだ物理と数学んだ物理と数学を使って判明できると思ったから

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

CPP46 UFO Image Analysis File on yucatan091206a By Tree man (on) BLACK MOON (Kinohito KULOTSUKI) CPP46 UFO 画像解析ファイル yucatan091206a / 黒月樹人 Fig.02 Targe

CPP46 UFO Image Analysis File on yucatan091206a By Tree man (on) BLACK MOON (Kinohito KULOTSUKI) CPP46 UFO 画像解析ファイル yucatan091206a / 黒月樹人 Fig.02 Targe CPP46 UFO Image Analysis File on yucatan091206a By Tree man (on) BLACK MOON (Kinohito KULOTSUKI) CPP46 UFO 画像解析ファイル yucatan091206a / 黒月樹人 Fig.02 Target (T) of Fig.01 Original Image of yucatan091206a yucatan091206a

More information

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )

More information

計算機シミュレーション

計算機シミュレーション . 運動方程式の数値解法.. ニュートン方程式の近似速度は, 位置座標 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます. 本来は が の極限をとらなければいけませんが, 有限の小さな値とすると 秒後の位置座標は速度を用いて, と近似できます. 同様にして, 加速度は, 速度 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます.

More information

Microsoft Word - 9章3 v3.2.docx

Microsoft Word - 9章3 v3.2.docx 3. 内歯歯車 K--V 機構の効率 3. 退行駆動前項では外歯の K--V 機構の効率について考察した ここでは内歯歯車の K--V 機構を対象とする その考え方は外歯の場合と同じであるが 一部外歯の場合とは違った現象が起こるのでその部分に焦点を当てて述べる 先に固定したラックとピニオンの例を取り上げた そこではピニオン軸心を押す場合と ピニオンにモーメントを加える方法とではラックの役割が違うことを示した

More information

Microsoft PowerPoint - 08economics4_2.ppt

Microsoft PowerPoint - 08economics4_2.ppt 経済学第 4 章資源配分と所得分配の決定 (2) 4.2 所得分配の決定 中村学園大学吉川卓也 1 所得を決定する要因 資源配分が変化する過程で 賃金などの生産要素価格が変化する 生産要素価格は ( 賃金を想定すればわかるように ) 人々の所得と密接な関係がある 人々の所得がどのように決まるかを考えるために 会社で働いている人を例にとる 2 (1) 賃金 会社で働いている人は 給与を得ている これは

More information

ChMd18 月には球殻があるのだろうか ChMd18 Does The Moon Have The Sphere Shell? 黒月樹人 (Kinohito KULOTSUKI) 月には球殻があるのだろうか月に大気があるかどうかを調べるため 多くの画像をチェックしてゆくうちに 月の周囲に 大気層と

ChMd18 月には球殻があるのだろうか ChMd18 Does The Moon Have The Sphere Shell? 黒月樹人 (Kinohito KULOTSUKI) 月には球殻があるのだろうか月に大気があるかどうかを調べるため 多くの画像をチェックしてゆくうちに 月の周囲に 大気層と ChMd18 月には球殻があるのだろうか ChMd18 Does The Moon Have The Sphere Shell? 黒月樹人 (Kinohito KULOTSUKI) 月には球殻があるのだろうか月に大気があるかどうかを調べるため 多くの画像をチェックしてゆくうちに 月の周囲に 大気層とは考えられない大きさで まるで地球のバン アレン帯のような対応の 球殻のようなものがあるのではないかと考えるようになった

More information

実験題吊  「加速度センサーを作ってみよう《

実験題吊  「加速度センサーを作ってみよう《 加速度センサーを作ってみよう 茨城工業高等専門学校専攻科 山越好太 1. 加速度センサー? 最近話題のセンサーに 加速度センサー というものがあります これは文字通り 加速度 を測るセンサーで 主に動きの検出に使われたり 地球から受ける重力加速度を測定することで傾きを測ることなどにも使われています 最近ではゲーム機をはじめ携帯電話などにも搭載されるようになってきています 2. 加速度センサーの仕組み加速度センサーにも様々な種類があります

More information

Microsoft PowerPoint - sc7.ppt [互換モード]

Microsoft PowerPoint - sc7.ppt [互換モード] / 社会調査論 本章の概要 本章では クロス集計表を用いた独立性の検定を中心に方法を学ぶ 1) 立命館大学経済学部 寺脇 拓 2 11 1.1 比率の推定 ベルヌーイ分布 (Bernoulli distribution) 浄水器の所有率を推定したいとする 浄水器の所有の有無を表す変数をxで表し 浄水器をもっている を 1 浄水器をもっていない を 0 で表す 母集団の浄水器を持っている人の割合をpで表すとすると

More information

円筒面で利用可能なARマーカ

円筒面で利用可能なARマーカ 円筒面で利用可能な AR マーカ AR Marker for Cylindrical Surface 2014 年 11 月 14 日 ( 金 ) 眞鍋佳嗣千葉大学大学院融合科学研究科 マーカベース AR 二次元マーカはカメラ姿勢の推定, 拡張現実等広い研究分野で利用されている 現実の風景 表示される画像 デジタル情報を付加 カメラで撮影し, ディスプレイに表示 使用方法の単純性, 認識の安定性からマーカベース

More information

Microsoft Word - マニュアルBL-6A03.docx

Microsoft Word - マニュアルBL-6A03.docx BL-6A 新制御ソフト操作マニュアル 2011 年 10 月 18 日 Ver. 1.0 (KEK-PF 清水伸隆 ) I. 操作準備 (1) PC が起動していなければ起動します ( 基本的には常時起動しているはずです ) この PC はシャットダウンする必要はありません!! (2) 自動ログイして タスクバーにコマンドプロンプトが 2 つ (manager(stars device manager)

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx

Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx 分布荷重の合力 ( 効果 ) 前回の復習 ( 第 回 ) p. 分布荷重は平行な力が連続して分布していると考えられる 例 : 三角形分布 l dx P=ql/ q l qx q l 大きさ P dx x 位置 Px 0 x x 0 l ql 0 : 面積に等しい 0 l l 重心に等しいモーメントの釣合より ( バリノンの定理 ) l qx l qx ql q 3 l ql l xdx x0 xdx

More information

202

202 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 DS =+α log (Spread )+ β DSRate +γlend +δ DEx DS t Spread t 1 DSRate t Lend t DEx DS DEx Spread DS

More information

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63>

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63> 土質力学 Ⅰ 及び演習 (B 班 : 小高担当 ) 配付資料 N.11 (6.1.1) モールの応力円 (1) モールの応力円を使う上での3つの約束 1 垂直応力は圧縮を正とし, 軸の右側を正の方向とする 反時計まわりのモーメントを起こさせるせん断応力 の組を正とする 3 物体内で着目する面が,θ だけ回転すると, モールの応力円上では θ 回転する 1とは物理的な実際の作用面とモールの応力円上との回転の方向を一致させるために都合の良い約束である

More information

Microsoft PowerPoint - 口頭発表_折り畳み自転車

Microsoft PowerPoint - 口頭発表_折り畳み自転車 1 公道走行を再現した振動試験による折り畳み自転車の破損状況 ~ 公道での繰り返し走行を再現した結果 ~ 2 公道走行を想定した試験用路面について 九州支所製品安全技術課清水寛治 目次 1. 折り畳み自転車のフレームはどのように破損するのか公道の走行振動を再現する自転車用ロードシミュレータについて繰り返し走行を想定した折り畳み自転車の破損部の特徴 ~ 公道による振動を繰り返し再現した結果 ~ 2.

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

Microsoft Word doc

Microsoft Word doc 原著論文 原著論文 アテネオリンピックに向けての 走りの改革 の取り組み Development of running techniques making approach to Olympic game in Athens 土江寛裕 Hiroyasu Tsuchie 富士通 陸上競技部, 早稲田大学大学院人間科学研究科 Graduate School of Human Sciences, Waseda

More information

マップマッチングのアルゴリズム

マップマッチングのアルゴリズム マップマッチングのアルゴリズム 羽藤英二 伊藤創太 伊藤篤志編 : ネットワーク行動学 ( BinN studies シリーズ ), pp.84-106,2014. 2015/05/29 理論勉強会 #7 M1 山本萌美 もくじ マップマッチングとは? マップマッチングのバリエーション Point to Point map-matching Point to Curve map-matching Curve

More information

Microsoft Word - Grspes…~…j…}…j…–…A…‰6.0.doc

Microsoft Word - Grspes…~…j…}…j…–…A…‰6.0.doc GRAPES ミニマニュアル グラフウィンドウグラフウィンドウにはグラフや図形が表示される. また, 上部のコントロールパレットを用いて, 表示領域や変域の設定, 目盛りの設定, 残像の設定を行うことができる. グラフウィンドウのサイズを変更すると, グラフ表示エリアのサイズが変わる. 下部ステータスバーには, マウスポインタの座標や表示領域が表示される. データパネルデータパネルは, グラフや図形を描くためのデータを管理している.

More information

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8 [N/m] m[g] mẍ x (N) x. f[hz] f π ω π m ω πf[rd/s] m ω 4π f [Nm/rd] J[gm ] J θ θ (gm ) θ. f[hz] f π ω π J J ω 4π f /8 θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ

More information

untitled

untitled に, 月次モデルの場合でも四半期モデルの場合でも, シミュレーション期間とは無関係に一様に RMSPE を最小にするバンドの設定法は存在しないということである 第 2 は, 表で与えた 2 つの期間及びすべての内生変数を見渡して, 全般的にパフォーマンスのよいバンドの設定法は, 最適固定バンドと最適可変バンドのうちの M 2, Q2 である いずれにしても, 以上述べた 3 つのバンド設定法は若干便宜的なものと言わざるを得ない

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X 4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0

More information

Phys1_03.key

Phys1_03.key 物理学1/物理学A 第3回 速度と加速度 速度 加速度 関数の話 やりたいこと : 物体の運動を調べる 物体の位置と速度を調べる これらを時間の関数として表したい 関数とは? ある された変数に対して, 出 の値が決まる対応関係のこと inpu 関数 ( 函数 ) oupu 例 : y(x)=x 2 x=2 を inpu すると y=4 が得られる 時々刻々と変化していく物体の位置 をその時刻とともに記録する

More information

Taro-解答例NO3放物運動H16

Taro-解答例NO3放物運動H16 放物運動 解答のポイント 初速度, 水平との角度 θ で 高さ の所から投げあげるとき 秒後の速度 =θ =θ - 秒後の位置 =θ 3 ( 水平飛行距離 ) =θ - + 4 ( 高さ ) ~4 の導出は 基本問題 参照 ( 地上から投げた場合の図 : 教科書参照 ) 最高点の 高さ 最高点では において = 水平到達距離 より 最高点に到達する時刻 を求め 4に代入すると最高点の高さH 地上では

More information

はじめに 本資料は ( 一財 ) 建設業技術者センターの 監理技術者資格者証インターネット申込みサイト から提出していただく資格者証用写真の画像ファイル ( カラー JPEG 形式 ) を Windows7 にインストールされている画像編集ソフトウェア Microsoft ペイントR を使用して 画

はじめに 本資料は ( 一財 ) 建設業技術者センターの 監理技術者資格者証インターネット申込みサイト から提出していただく資格者証用写真の画像ファイル ( カラー JPEG 形式 ) を Windows7 にインストールされている画像編集ソフトウェア Microsoft ペイントR を使用して 画 マイクロソフトの画像編集ソフト ペイント を使用した 資格者証用写真の画像の編集例 平成 27 年 3 月 31 日版 一般財団法人建設業技術者センター はじめに 本資料は ( 一財 ) 建設業技術者センターの 監理技術者資格者証インターネット申込みサイト から提出していただく資格者証用写真の画像ファイル ( カラー JPEG 形式 ) を Windows7 にインストールされている画像編集ソフトウェア

More information

Microsoft PowerPoint - H24全国大会_発表資料.ppt [互換モード]

Microsoft PowerPoint - H24全国大会_発表資料.ppt [互換モード] 第 47 回地盤工学研究発表会 モアレを利用した変位計測システムの開発 ( 計測原理と画像解析 ) 平成 24 年 7 月 15 日 山形設計 ( 株 ) 技術部長堀内宏信 1. はじめに ひびわれ計測の必要性 高度成長期に建設された社会基盤の多くが老朽化を迎え, また近年多発している地震などの災害により, 何らかの損傷を有する構造物は膨大な数に上ると想定される 老朽化による劣化や外的要因による損傷などが生じた構造物の適切な維持管理による健全性の確保と長寿命化のためには,

More information

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx)

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx) 6 章スペクトルの平滑化 スペクトルの平滑化とはフーリエスペクトルやパワ スペクトルのギザギザを取り除き 滑らかにする操作のことをいう ただし 波のもっている本質的なものをゆがめてはいけない 図 6-7 パワ スペクトルの平滑化 6. 合積のフーリエ変換スペクトルの平滑化を学ぶ前に 合積とそのフーリエ変換について説明する 6. データ ウィンドウデータ ウィンドウの定義と特徴について説明する 6.3

More information

初めてのプログラミング

初めてのプログラミング Excel の使い方 2 ~ 数式の入力 グラフの作成 ~ 0. データ処理とグラフの作成 前回は エクセルを用いた表の作成方法について学びました 今回は エクセルを用いたデータ処理方法と グラフの作成方法について学ぶことにしましょう 1. 数式の入力 1 ここでは x, y の値を入力していきます まず 前回の講義を参考に 自動補間機能を用いて x の値を入力してみましょう 補間方法としては A2,

More information

機構学 平面機構の運動学

機構学 平面機構の運動学 問題 1 静止座標系 - 平面上を運動する節 b 上に2 定点,Bを考える. いま,2 点の座標は(0,0),B(50,0) である. 2 点間の距離は 50 mm, 点の速度が a 150 mm/s, 点 Bの速度の向きが150 である. 以下の問いに答えよ. (1) 点 Bの速度を求めよ. (2) 瞬間中心を求めよ. 節 b a (0,0) b 150 B(50,0) 問題 1(1) 解答 b

More information

<4D F736F F D E682568FCD CC82B982F192668BAD9378>

<4D F736F F D E682568FCD CC82B982F192668BAD9378> 7. 組み合わせ応力 7.7. 応力の座標変換載荷 ( 要素 の上方右側にずれている位置での載荷を想定 図 ( この場合正 ( この場合負 応力の座標変換の知識は なぜ必要か? 例 土の二つの基本的せん断変形モード : - 三軸圧縮変形 - 単純せん断変形 一面せん断変形両者でのせん断強度の関連を理解するためには 応力の座標変換を理解する必要がある 例 粘着力のない土 ( 代表例 乾燥した砂 のせん断破壊は

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2005 1 1991 1996 5 i 1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2 13 *3 *4 200 1 14 2 250m :64.3km 457mm :76.4km 200 1 548mm 16 9 12 589 13 8 50m

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

Microsoft PowerPoint - 測量学.ppt [互換モード]

Microsoft PowerPoint - 測量学.ppt [互換モード] 8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,

More information

支持力計算法.PDF

支持力計算法.PDF . (a) P P P P P P () P P P P (0) P P Hotω H P P δ ω H δ P P (a) ( ) () H P P n0(k P 4.7) (a)0 0 H n(k P 4.76) P P n0(k P 5.08) n0(k P.4) () 0 0 (0 ) n(k P 7.56) H P P n0(k P.7) n(k P.7) H P P n(k P 5.4)

More information

_世界の女性の.indd

_世界の女性の.indd 22 年 11 月株式会社ワコール ワコール orld omen Now ~ 世界女性のこころとからだ ~ 調査 株式会社ワコールでは 当社の営業 製造拠点がある世界 12 都市 ( 東京 シンガポール マニラ パリ 上海 香港 台北 ソウル バンコク クアラルンプール ジャカルタ ) に住む 2 代 3 代 4 代の女性を対象に 体型と意識に関する調査を実施しました 当社では からだを科学する人間科学研究所を設置してさまざまな研究を行っているほか

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

/ 3 1 / 3 / 3 1 /

/ 3 1 / 3 / 3 1 / 8-18-29 3 291415 297 1-11-4 3/31/ 3/31/ 29 8 22 29 1 17 24 8-1 29 [1] PCB [2] HCB [3] [4] [5] DDT [6-1] p,p'-ddt [6-2] p,p'-dde pg/l ( ) nd 2,4 (46/47) 2.9 18 (47/47) 84 12 pg/g-dry ( ) nd 61, (61/62)

More information

グラフを作成

グラフを作成 Microsoft Office を使ってグラフを作成する方法について 一例です 操作ができなかったら色々試してください 山際 1 グラフ用紙に手書きでグラフを書いた場合の利点 (1) 副目盛があるので プロットした点の座標を確認しやすい (2) 上付きや下付きの文字 分数を書きやすい (3) データ点を結んで線を引くときに 全体の傾向を正しく認識しやすい 2 Office を使って書いたグラフの欠点

More information

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 剛体過去問解答例. 長さの棒の慣性モーメントは 公式より l G l A 点のまわりは平行軸の定理より A l l l B y 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 運動方程式は 方向 : R f, y 方向 : y N l 回転 : G { N f R cos } A 静止しているとき 方向の力と 力のモーメントがつり合うので y ~ より R ' また 摩擦力が最大静止摩擦力より大きいとはしごは動き出すので

More information

PowerPoint Presentation

PowerPoint Presentation 1. 力のつりあい 力学の復習と準備 ベクトル (vector) B C A A B C この講義の資料では大抵の専門書や大学の教科書 論文等と同じくベクトル (vector) を太字のイタリックで書きます 矢印や縦線を追加した字で書いてもかまいません A 質点 (partcle, ass pont, ateral pont) 質点? 大きさは無視できるが 質量を無視できない仮想の物体 パチンコ玉

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

(4) 左眼右眼奥2. 網膜像差の幾何学的表現 図 A2 に網膜像差 観察距離 対象の奥行き量間の幾何学的関係を模式的に表現してい 行き観察距離d 図 A2. 奥行きをもった対象が作りだす網膜像差 F δf N δn 両眼間距離 ステレオグラム 網膜像 nl fl fr nr る ( 図 A2 は

(4) 左眼右眼奥2. 網膜像差の幾何学的表現 図 A2 に網膜像差 観察距離 対象の奥行き量間の幾何学的関係を模式的に表現してい 行き観察距離d 図 A2. 奥行きをもった対象が作りだす網膜像差 F δf N δn 両眼間距離 ステレオグラム 網膜像 nl fl fr nr る ( 図 A2 は サポートサイト 1. オートステレオグラムの観察方法 口絵のオートステレオグラム ( 以下 AS) は 以下の方法で観察することができる a 1) 約 20cm 離して観察する ( 図 A1a) AS は壁においてもいいし 机においてもよい 2) 図 A1a に示すように棒状のもの ( たと オートステレオグラム (AS) えば鉛筆とかボールペンとか ) を AS と自分の間に挟み ( 本から 5

More information

Title 幼 児 期 の 気 になる 子 の 心 理 発 達 的 援 助 を 目 指 す のびのび どっしり 体 操 の 言 語 化 の 試 み Author(s) 榊 原, 久 直 ; 中 野, 弘 治 Citation 大 阪 大 学 教 育 学 年 報. 19 P.69-P.82 Issue 2014-03-31 Date Text Version publisher URL http://hdl.handle.net/11094/26906

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

Microsoft PowerPoint - ce07-09b.ppt

Microsoft PowerPoint - ce07-09b.ppt 6. フィードバック系の内部安定性キーワード : 内部安定性, 特性多項式 6. ナイキストの安定判別法キーワード : ナイキストの安定判別法 復習 G u u u 制御対象コントローラ u T 閉ループ伝達関数フィードバック制御系 T 相補感度関数 S S T L 開ループ伝達関数 L いま考えているのは どの伝達関数,, T, L? フィードバック系の内部安定性 u 内部安定性 T G だけでは不十分

More information

10_Link3_manual

10_Link3_manual KHR-3HV 10_LINK 機能の使い方 3 マニュアル 2010 KONDO KAGAKU CO.,LTD 2010.08 Ver.1.0 ここでは 既存のモーションの編集や オリジナルのモーション作成などで役立つ LINK 機能 についてご説明します 準備 本マニュアルで対応している HTH4 のバージョンは HTH4 Ver.1.2.2 となります 2010.08.27 時点 HTH4 Ver.1.2.2

More information