Microsoft PowerPoint - ce07-09b.ppt
|
|
|
- ありさ たにしき
- 7 years ago
- Views:
Transcription
1 6. フィードバック系の内部安定性キーワード : 内部安定性, 特性多項式 6. ナイキストの安定判別法キーワード : ナイキストの安定判別法 復習 G u u u 制御対象コントローラ u T 閉ループ伝達関数フィードバック制御系 T 相補感度関数 S S T L 開ループ伝達関数 L いま考えているのは どの伝達関数,, T, L? フィードバック系の内部安定性 u 内部安定性 T G だけでは不十分 外部から加わる信号 {, } から各要素の出力 { u, } への つの伝達関数がすべて安定 u 内部安定性 外部から加わる信号 {, } から各要素の出力 { u, } への つの伝達関数がすべて安定 G u G u G G G だけでは不十分 u, D D Gu G D G G u D : D D [ 定理 ] 内部安定性の必要十分条件 特性多項式 : D D のすべての根の実部が負 既約 特性多項式 5 [ 例 6. ] 不安定な極零相殺, 安定? u, u 6 8 t[] 6
2 [ 例 6. ] 不安定な極零相殺, 安定?,.8.6. u u. 6 8 t[] 7 [ 例 6. ] D D : D D 不安定 G 不安定な極零相殺が生じている 8 [ 結果 ] と の間に不安定な極零相殺が存在するとき, フィードバック制御系は内部安定ではない. [ 結果 ] の証明 D D : D D [ 結果 ] と の間に不安定な極零相殺が存在しないとき, 以下の三つは等価である [ ] で の極と の零点が相殺したとする. 不安定 D フィードバック制御系が内部安定 b G が安定 G の零点がすべて安定 9 [ ] の根の一つであるである S の実部は負ではない フィードバック制御系が内部安定ではない の零点と の極が相殺したときも同様. [ 結果 ] b の証明 * S とおくと S G が成り立つ. b G が安定 S G が安定 S の極がすべて安定 の零点がすべて安定 逆も成立するので b [ 結果 ] b の証明 * b b は明らか背理法 と の間に不安定な極零相殺が存在しないとき, G が安定で, 内部安定ではない, と仮定 内部安定ではない [ ] に対して は を因子に持つ G の分子も でわり切れる D D の場合 D かつ, 不安定な極零相殺がない D D に矛盾 D の場合も同様
3 6. フィードバック系の内部安定性キーワード : 内部安定性, 特性多項式 6. ナイキストの安定判別法キーワード : ナイキストの安定判別法 復習 G u u u 制御対象コントローラ u T 閉ループ伝達関数フィードバック制御系 T 相補感度関数 S S T L 開ループ伝達関数 L いま考えているのは どの伝達関数,, T, L? 6. フィードバック系の内部安定性 キーワード : 内部安定性, 特性多項式 H qut ナイキストの安定判別法 キーワード : ナイキストの安定判別法 ナイキストの安定判別法 フィードバック系の内部安定性 特性多項式 の根を求める 因数分解などにより, 直接計算する実際的でないラウスフルビッツの安定判別法を適用する 開ループ伝達関数の周波数応答に基づき図的に判別する 高次系では手間がかかる L 開ループ伝達関数 L 7 ナイキストの安定判別法 [] 目的 { p, p, L, p} : 開ループ系 の極,, L, }: 閉ループ系 制御系 の極 { D D D D D D 還送差 L 閉ループ系の極 p p L p 開ループ系の極 Π { p, p, L, p} の中で 開ループ系の不安定極の数 知っている Z {,, L, } の中で 閉ループ系の不安定極の数知りたい 8
4 [] 方法 閉曲線 このなかにすべての不安定な極がある Π 閉曲線 の内部にある開ループ系の極の数 Z 閉曲線 の内部にある閉ループ系の極の数 半径 R b 写像 w 複素数 を決めると, 対応する複素数 w が定まる. : 閉曲線 に沿って b と時計方向に 回転 このとき, 対応する w が描く軌跡 : Γ Γ が原点を時計方向にまわる回転数 図 6. 右半平面全体を囲む閉曲線 9 図 6. 閉曲線 とその による像 Γ b Γ :[ ] Z Π Π : 既知 : 図的に調べる Z : 知ることができる Z ならば安定 Z ならば不安定 Π : 閉曲線 の内部にある開ループ系の極の数 Z : 閉曲線 の内部にある閉ループ系の極の数 Γ : が原点を時計方向にまわる回転数 b Γ [] 証明 L w p p L p w ベクトル p がの内部にあるとき : 正味 回転 6 が の外部にあるとき : 正味の回転数は b 図 6. の偏角の変化 w p [] ベクトル軌跡の利用右に だけ移動 v w の総変化量 6 Z p の総変化量 6 Π Γ : ナイキスト軌跡 Γ が点, を 回まわる Γ :[ ] Γ Γ が原点を 回まわる Γ :[ ] w の総変化量 6 Z Π Z Π よって Z Π
5 : 上を と動くとき, ベクトル軌跡 jω jω ω ~ に一致する 半径の円周上を動くとき 上を と動くとき, ベクトル軌跡と実軸に関して対称 ナイキストの安定判別法 [ ステップ ] 開ループ伝達関数のベクトル軌跡 jω jω を, 角周波数 ω ~ の範囲で描く. さらにこれを実軸に関して上下対称に描き, ナイキスト軌跡 Γ を得る. [ ステップ ] ナイキスト軌跡 Γ が点, のまわりを時計方向にまわる回数を調べ, これを とする. Γ :[ ] [ ステップ ] 開ループ伝達関数 の極の中で実部が正であるものの個数を調べ, これを Π とする. 半径 R b [ ステップ ] 閉ループ系の不安定な極の数は Z Π となる. したがって, Z ならばフィードバック制御系は安定, Z ならば系は不安定である. 5 6 安定 Z Π ナイキスト軌跡が点, のまわりを反時計方向にまわる回数が, 開ループ伝達関数の不安定極の個数に等しいならば, 制御系は安定である. ナイキストの安定判別法の利点 ループを閉じる前の開ループ伝達関数の周波数応答によって, 図的に制御系 閉ループ系 の安定性を判別できる 計算の必要がなく, 次数の高い系やむだ時間系にも容易に適用できる 実測データに基づいて判定できる 直感的に分かりやすく, さらに安定余裕も調べられる 7 [ 例 6. ] L [ ステップ ] [ ステップ ] [ ステップ ] Π ω ω [ ステップ ] Z Π ω 5 ω 制御系は安定 8 [ 例 6. ] 不安定系の場合 L, [ ステップ ] ω ω [ ステップ ] [ ステップ ] Π 安定 ω ω [ ステップ ] Z Π ω ω Π 不安定 b ω ω Z Π 9 [ 例 6. ] 虚軸上に極がある場合 L [ ステップ ] 閉曲線 に対するナイキスト軌跡 ω の近傍で不連続, を求められない ω ω ω ω 5
6 を回避し, 左に見るように経路 f 経路 lm L 新たな閉曲線 内に の極は入らない f L θ ε j ε ε ε, 9 θ 9 lm ε ε ε ε lm ε ε 9 から 9 へ半径 時計方向にの円周 f ε b f [ ステップ ] [ ステップ ] Π ε [ ステップ ] Z Π b ω f ω ω ω 制御系は安定 次回 6. フィードバック系の内部安定性 キーワード : 内部安定性, 特性多項式 6. ナイキストの安定判別法 キーワード : ナイキストの安定判別法 6. ナイキストの安定判別法キーワード : 簡単化されたナイキストの安定判別法 6. ゲイン余裕, 位相余裕 キーワード : 位相交差周波数, ゲイン交差周波数, 位相余裕, ゲイン余裕 学習目標 : 簡単化されたナイキストの安定判別法について理解する. 安定性の程度を評価する. ゲイン余裕や位相余裕について理解する. 6
Microsoft PowerPoint - H22制御工学I-10回.ppt
制御工学 I 第 回 安定性 ラウス, フルビッツの安定判別 平成 年 6 月 日 /6/ 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し
Microsoft PowerPoint - ce07-13b.ppt
制御工学 3 第 8 章 : フィードバック制御系の設計法 8. 設計手順と性能評価キーワード : 設計手順, 性能評価 8. ID 補償による制御系設計キーワード : ( 比例 ),I( 積分 ),D( 微分 ) 8.3 進み 遅れ補償による制御系設計キーワード : 遅れ補償, 進み補償 学習目標 : 一般的な制御系設計における手順と制御系の性能評価について学ぶ. ループ整形の考え方を用いて, 遅れ補償,
航空機の運動方程式
過渡応答 定常応答 線形時不変のシステムの入出力関係は伝達関数で表された. システムに対する基本的な 入力に対する過渡応答と定常応答の特性を理解する必要がある.. 伝達関数の応答. 一般的なシステムの応答システムの入力の変化に対する出力の変化の様相を応答 ( 時間応答, 動的応答 ) という. 過渡応答 システムで, 入力がある定常状態から別の定常状態に変化したとき, 出力が変化後の定常状態に達するまでの応答.
Microsoft PowerPoint - H22制御工学I-2回.ppt
制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し
例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (
第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表
Microsoft PowerPoint - chap8.ppt
第 8 章 : フィードバック制御系の設計法 第 8 章 : フィードバック制御系の設計法 8. 設計手順と性能評価 キーワード : 設計手順, 性能評価 8. 補償による制御系設計 キーワード : ( 比例 ),( 積分 ),( 微分 ) 学習目標 : 一般的な制御系設計における手順と制御系の性能評価について学ぶ. 学習目標 : 補償の有効性について理解し, その設計手順を習得する. 第 8 章
第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2
第 4 週コンボリューションその, 正弦波による分解 教科書 p. 6~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問. 以下の図にならって, と の δ 関数を図示せよ. - - - δ () δ ( ) - - - 図 δ 関数の図示の例 δ ( ) δ ( ) δ ( ) δ ( ) δ ( ) - - - - - - - -
Microsoft PowerPoint - 応用数学8回目.pptx
8- 次の 標 : 複素関数 ( 正則関数 ) の積分 8- 実関数 : 定積分 講義内容 名城 学理 学部材料機能 学科岩 素顕 複素関数の積分について学ぶ 複素関数の積分 複素積分の性質 周回積分の解法 コーシーの積分定理 コーシーの積分公式 グルサーの公式 - 定義 複素関数の積分 : 線積分 今後の内容 区分的に滑らかな曲線に沿って複素関数の積分を計算する 複素関数の積分の性質に関して議論する
航空機の運動方程式
可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,
ディジタル信号処理
ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*
数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数
. 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6
航空機の運動方程式
オブザーバ 状態フィードバックにはすべての状態変数の値が必要であった. しかしながら, システムの外部から観測できるのは出力だけであり, すべての状態変数が観測できるとは限らない. そこで, 制御対象システムの状態変数を, システムのモデルに基づいてその入出力信号から推定する方法を考える.. オブザーバとは 次元 m 入力 r 出力線形時不変システム x Ax Bu y Cx () の状態変数ベクトル
2015-2017年度 2次数学セレクション(複素数)解答解説
05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点
2018年度 東京大・理系数学
08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母
PowerPoint Presentation
付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像
Microsoft PowerPoint - spe1_handout11.ppt
目次 信号処理工学 Ⅰ 第 回 : ディジタルフィルタ 電気通信大学電子工学専攻電子知能システム学講座 ディジタルフィルタ ( 復習 ) FIR フィルタの補足 IIR フィルタの設計 IIR フィルタの実現 FIR フィルタと IIR フィルタの比較 最後の課題 長井隆行 ディジタルフィルタ ( 復習 ) 線形位相 FIR フィルタの補足 FIR フィルタ フィードバックがない インパルス応答が有限
オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 正規言語の性質 反復補題正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると
オートマトン 形式言語及び演習 4. 正規言語の性質 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ 正規言語の性質 正規言語が満たす性質 ある与えられた言語が正規言語でないことを証明するために その言語が正規言語であると仮定してを使い 矛盾を導く 閉包性正規言語を演算により組み合わせて得られる言語が正規言語となる演算について調べる
Microsoft PowerPoint - ip02_01.ppt [互換モード]
空間周波数 周波数領域での処理 空間周波数 (spatial frquncy) とは 単位長さ当たりの正弦波状の濃淡変化の繰り返し回数を表したもの 正弦波 : y sin( t) 周期 : 周波数 : T f / T 角周波数 : f 画像処理 空間周波数 周波数領域での処理 波形が違うと 周波数も違う 画像処理 空間周波数 周波数領域での処理 画像処理 3 周波数領域での処理 周波数は一つしかない?-
(Microsoft Word - PLL\203f\203\202\216\221\227\277-2-\203T\203\223\203v\203\213.doc)
ディジタル PLL 理論と実践 有限会社 SP システム 目次 - 目次 1. はじめに...3 2. アナログ PLL...4 2.1 PLL の系...4 2.1.1 位相比較器...4 2.1.2 ループフィルタ...4 2.1.3 電圧制御発振器 (VCO)...4 2.1.4 分周器...5 2.2 ループフィルタ抜きの PLL 伝達関数...5 2.3 ループフィルタ...6 2.3.1
複素数平面への誘い
いざな複素数平面への誘い GRS による複素数平面の表現 複素数平面への第一歩 - 複素数モード - 点と複素数 -3 複素数の四則演算 -4 絶対値と偏角, 共役複素数 -5 絶対値と偏角による複素数の表現 複素数平面の変換 4 - 回転移動と相似拡大 - 直線 に関する対称変換 -3 単位円に関する反転変換 -4 複素数平面の変換と曲線 3 入試問題に挑戦 6 3- 陰関数を利用した図形の表示
公式集 数学 Ⅱ B 頭に入っていますか? 8 和積の公式 A + B A B si A + si B si os A + B A B si A si B os si A + B A B os A + os B os os A + B A B os A os B si si 9 三角関数の合成 si
公式集 数学 Ⅱ B 頭に入っていますか? < 図形と方程式 > 点間の距離 A x, B x, のとき x x + : に分ける点 A x, B x, のとき 線分 AB を:に分ける点 æ x + x + ö は ç, è + + ø 注 < のとき外分点 直線の方程式 傾き で 点 x, を通る : x 点 x, x, を通る : x 注 分母が のとき は座標軸と平行な直線 x x 4 直線の位置関係
s と Z(s) の関係 2019 年 3 月 22 日目次へ戻る s が虚軸を含む複素平面右半面の値の時 X(s) も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z(s) にしていま す リアクタンス回路の駆動点リアクタンス X(s)
と Z の関係 9 年 3 月 日目次へ戻る が虚軸を含む複素平面右半面の値の時 X も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z にしていま す リアクタンス回路の駆動点リアクタンス X も Z に含まれます Z に正弦波電流を入れた時最大値 抵抗 コイル コンデンサーで作られた受動回路の ラプラスの世界でのインピーダンスを Z とします
2018年度 筑波大・理系数学
筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ < < とする 放物線 上に 点 (, ), A (ta, ta ), B( - ta, ta ) をとる 三角形 AB の内心の 座標を p とし, 外心の 座標を q とする また, 正の実数 a に対して, 直線 a と放物線 で囲まれた図形の面積を S( a) で表す () p, q を cos を用いて表せ S( p) () S(
PowerPoint プレゼンテーション
回転型クレーン / 倒立振子の制御 回転型クレーンの制御 状態方程式 コントローラ設計 ( 極配置法 ) コントローラ設計 ( 最適レギュレータ ) 回転型倒立振子の制御 状態方程式 コントローラ設計 コントローラの形式 : 状態フィードバック P-D コントローラ アームの P-D 振子の P-D 目標値 状態フィードバック制御 回転型クレーン コントローラ で 状態フィードバック制御 回転型クレーン
オペアンプの容量負荷による発振について
Alicatin Nte オペアンプシリーズ オペアンプの容量負荷による発振について 目次 :. オペアンプの周波数特性について 2. 位相遅れと発振について 3. オペアンプの位相遅れの原因 4. 安定性の確認方法 ( 増幅回路 ) 5. 安定性の確認方法 ( 全帰還回路 / ボルテージフォロア ) 6. 安定性の確認方法まとめ 7. 容量負荷による発振の対策方法 ( 出力分離抵抗 ) 8. 容量負荷による発振の対策方法
システム工学実験 パラメータ推定手順
システム工学実験パラメータ推定手順 大木健太郎 2014/11/14 2014 年度システム工学実験 : フレキシブルリンク 1 アウトライン 1. 線形システムと周波数情報 2. パラメータ推定 3. 実際の手順 2014/11/14 2014 年度システム工学実験 : フレキシブルリンク 2 線形時不変システムと伝達関数 入力と出力の関係が線形な定係数微分方程式で与えられるとき, この方程式を線形時不変システムという
Microsoft Word - 第9章 PID制御.doc
NAOSITE: Nagaak Unry' Ac Tl 自動制御の理論と応用 Auhr() 辻, 峰男 Can 自動制御の理論と応用 ; 5 Iu Da 5 URL h://hdl.handl.n/69/35886 Rgh Th dcumn dwnladd h://na.lb.nagaak-u.ac.j 第 9 章 PID 制御 これまで, どのような制御器を用いるかということはあまり触れなかったが,
<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63>
土質力学 Ⅰ 及び演習 (B 班 : 小高担当 ) 配付資料 N.11 (6.1.1) モールの応力円 (1) モールの応力円を使う上での3つの約束 1 垂直応力は圧縮を正とし, 軸の右側を正の方向とする 反時計まわりのモーメントを起こさせるせん断応力 の組を正とする 3 物体内で着目する面が,θ だけ回転すると, モールの応力円上では θ 回転する 1とは物理的な実際の作用面とモールの応力円上との回転の方向を一致させるために都合の良い約束である
s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt
とは何か 0 年 月 5 日目次へ戻る 正弦波の微分 y= in を時間 で微分します は正弦波の最大値です 合成関数の微分法を用い y= in u u= と置きますと y y in u in u (co u co になります in u の は定数なので 微分後も残ります 合成関数の微分法ですので 最後に u を に戻しています 0[ra] の co 値は [ra] の in 値と同じです その先の角
Microsoft PowerPoint - 10.pptx
m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる
Microsoft Word - ClassicalControl_Matlab.doc
MATLAB による古典制御の学習 4 年 4 月 7 日 目次. はじめに.MATLAB の導入 3. ステップ応答, インパルス応答, 一般の応答 4. とナイキスト軌跡 5. 根軌跡 6. 設計例 7. 積分器と定常偏差. はじめに 制御性能の解析や制御系設計では, 時間応答のシミュレーションや周波数応答などを数値計算し, それをグラフに表示することが必要となる. この目的に適した数値計算ツールに
Microsoft PowerPoint - 6.PID制御.pptx
プロセス制御工学 6.PID 制御 京都大学 加納学 Division of Process Control & Process Systems Engineering Department of Chemical Engineering, Kyoto University [email protected] http://www-pse.cheme.kyoto-u.ac.jp/~kano/
2017年度 千葉大・理系数学
017 千葉大学 ( 理系 ) 前期日程問題 1 解答解説のページへ n を 4 以上の整数とする 座標平面上で正 n 角形 A1A A n は点 O を中心とする半径 1 の円に内接している a = OA 1, b = OA, c = OA 3, d = OA4 とし, k = cos とおく そして, 線分 A1A3 と線分 AA4 との交点 P は線分 A1A3 を n :1に内分するとする
<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>
3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として
PowerPoint プレゼンテーション
PID 制御の基礎 ON/OFF 制御 PID 制御 P 制御 過渡特性を改善しよう PD 制御と P-D 制御 定常特性を改善しよう PI-D 制御 4.2 節 I-PD 制御 角度制御実験装置 0 [deg] 30 [deg] 角度制御実験装置 目標値 コントローラ ( マイコン ) アクチュエータ (DC モータ ) 制御対象 ( アーム ) 角度 センサ ( ロータリエンコーダ ) ON/OFF
2016年度 筑波大・理系数学
06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,
2018年度 神戸大・理系数学
8 神戸大学 ( 理系 ) 前期日程問題 解答解説のページへ t を < t < を満たす実数とする OABC を 辺の長さが の正四面体とする 辺 OA を -t : tに内分する点を P, 辺 OB を t :-tに内分する点を Q, 辺 BC の中点を R とする また a = OA, b = OB, c = OC とする 以下の問いに答えよ () QP と QR をt, a, b, c を用いて表せ
重要例題113
04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0
2017年度 長崎大・医系数学
07 長崎大学 ( 医系 ) 前期日程問題 解答解説のページへ 以下の問いに答えよ () 0 のとき, si + cos の最大値と最小値, およびそのときの の値 をそれぞれ求めよ () e を自然対数の底とする > eの範囲において, 関数 y を考える この両 辺の対数を について微分することにより, y は減少関数であることを示せ また, e< < bのとき, () 数列 { } b の一般項が,
2015年度 金沢大・理系数学
05 金沢大学 ( 理系 ) 前期日程問題 解答解説のページへ四面体 OABC において, 3 つのベクトル OA, OB, OC はどの つも互いに垂直で あり, h > 0 に対して, OA, OB, OC h とする 3 点 O, A, B を通る平面上の点 P は, CP が CA と CB のどちらとも垂直となる点であるとする 次の問いに答えよ () OP OA + OB とするとき, と
利得を指定して IIR フィルタ ( 感度関数も含む ) を設計する方式の SCILAB 用プログラムの紹介 木坂正志 MK サーボ開発 2010/3/16 NSS2
利得を指定して IIR フィルタ 感度関数も含む を設計する方式の SCIAB 用プログラムの紹介 木坂正志 MK サーボ開発 最近の発表との関係 FIR による位相設計 Fterex MS IIR による位相設計 最小位相関数による利得の設計 最小位相関数を使ったサーボ設計 SISO 木坂正志 : GKY 補題を使った感度関数設計 第 8 回計測自動制御学会制御部門大会 8.3 安定多項式の実数表現
PowerPoint プレゼンテーション
電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量
第6章 実験モード解析
第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法
2014年度 名古屋大・理系数学
04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ空間内にある半径 の球 ( 内部を含む ) を B とする 直線 と B が交わっており, その交わりは長さ の線分である () B の中心と との距離を求めよ () のまわりに B を 回転してできる立体の体積を求めよ 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ 実数 t に対して 点 P( t, t ), Q(
スライド 1
作成 : 群馬大学電気電子教員 電子回路設計 OP アンプ (2) 小林春夫 桑名杏奈 Email: [email protected] Tel: 277-3-788 オフィスアワー : AM9:~AM:( 平日 ) 電気電子棟 (3 号館 )4F 44 室 電子回路設計 授業の内容 第 回講義内容の説明と電子回路設計の基礎知識 第 2 回キルヒホッフ則を用いた回路解析と演習 第 3 回集積回路のデバイス
1999年度 センター試験・数学ⅡB
99 センター試験数学 Ⅱ 数学 B 問題 第 問 ( 必答問題 ) [] 関数 y cos3x の周期のうち正で最小のものはアイウ 解答解説のページへ 0 x 360 のとき, 関数 y cos3x において, y となる x はエ個, y となる x はオ 個ある また, y sin x と y cos3x のグラフより, 方程式 sin x cos3x は 0 x 360のときカ個の解をもつことがわかる
Microsoft Word - 断面諸量
応用力学 Ⅱ 講義資料 / 断面諸量 断面諸量 断面 次 次モーメントの定義 図 - に示すような形状を有する横断面を考え その全断面積を とする いま任意に定めた直交座標軸 O-, をとり また図中の斜線部の微小面積要素を d とするとき d, d () で定義される, をそれぞれ与えられた横断面の 軸, 軸に関する断面 次モーメント (geometrcal moment of area) という
Microsoft PowerPoint - 第3回2.ppt
講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3
DVIOUT-17syoze
平面の合同変換と相似変換 岩瀬順一 要約 : 平面の合同変換と相似変換を論じる いま大学で行列を学び始めている大学一年生を念頭に置いている 高等学校で行列や一次変換を学んでいなくてもよい 1. 写像 定義 1.1 X, Y を集合とする X の各元 x に対し Y のただ一つの元 y を対応させる規則 f を写像とよび,f : X! Y のように書く f によって x に対応する Y の元を f(x)
チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用
チェビシェフ多項式の 変数への拡張と公開鍵暗号 Ell 暗号 への応用 Ⅰ. チェビシェフ Chbhv Chbhv の多項式 より であるから よって ここで とおくと coθ iθ coθ iθ iθ coθcoθ 4 4 iθ iθ iθ iθ iθ i θ i θ i θ i θ co θ co θ} co θ coθcoθ co θ coθ coθ したがって が成り立つ この漸化式と であることより
2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録
遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数
Microsoft Word - 微分入門.doc
基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,
< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂
公式集数学 Ⅱ B < 式と証明 > 整式の割り算縦書きの割り算が出来ること f を g で割って 商が Q で余りが R のときは Q g f /////// R f g Q R と書ける 分数式 分母, 分子をそれぞれ因数分解し 約分する 既約分数式 加法, 減法については 分母を通分し分子の計算をする 繁分数式 分母 分子に同じ多項式をかけて 普通の分数式になおす 恒等式 数値代入法 係数比較法
20~22.prt
[ 三クリア W] 辺が等しいことの証明 ( 円周角と弦の関係利用 ) の の二等分線がこの三角形の外接円と交わる点をそれぞれ とするとき 60 ならば であることを証明せよ 60 + + 0 + 0 80-60 60 から ゆえに 等しい長さの弧に対する弦の長さは等しいから [ 三クリア ] 方べきの定理 接線と弦のなす角と円周角を利用 線分 を直径とする円 があり 右の図のように の延長上の点
p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと
567_ 次曲線の三角関数による媒介変数表示 次曲線の三角関数による媒介変数表示 次曲線 ( 放物線 楕円 双曲線 ) の標準形の, についての方程式と, 三角関数による媒介変数表示は次のように対応している.. 放物線 () 4 p (, ) ( ptn, ptn ) (). 楕円. 双曲線 () () (, p p ), tn tn (, ) ( cos, sin ) (, ), tn cos (,
PowerPoint プレゼンテーション
工業数学 Ⅰ 第 7 章多変数関数の微分 2. 実多変数の実数値関数 千葉大学工学部機械工学科担当者武居昌宏 教科書 工科系の数学 (4) [ 単行本 ] マイベルク ファヘンアウア著 及川正行訳 出版社 : サイエンス社 (1996/12) ISBN-10: 4781907814 第 7 章多変数関数の微分 2. 実多変数の実数値関数 2.1 基礎 多変数の実数値関数変数が2つ以上の n 変数関数定義域がn
横浜市環境科学研究所
周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.
<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>
力学 A 金曜 限 : 松田 微分方程式の解き方 微分方程式の解き方のところが分からなかったという声が多いので プリントにまとめます 数学的に厳密な話はしていないので 詳しくは数学の常微分方程式を扱っているテキストを参照してください また os s は既知とします. 微分方程式の分類 常微分方程式とは 独立変数 と その関数 その有限次の導関数 がみたす方程式 F,,, = のことです 次までの導関数を含む方程式を
RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える
共振回路 概要 回路は ラジオや通信工学 などに広く使われる この回路の目的は 特定の周波数のときに大きな電流を得ることである 使い方には 周波数を設定し外へ発する 外部からの周波数に合わせて同調する がある このように 周波数を扱うことから 交流を考える 特に ( キャパシタ ) と ( インダクタ ) のそれぞれが 周波数によってインピーダンス *) が変わることが回路解釈の鍵になることに注目する
DVIOUT
第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため
反射係数
平面波の反射と透過 電磁波の性質として, 反射と透過は最も基礎的な現象である. 我々の生活している空間は, 各種の形状を持った媒質で構成されている. 人間から見れば, 空気, 水, 木, 土, 火, 金属, プラスチックなど, 全く異なるものに見えるが, 電磁波からすると誘電率, 透磁率, 導電率が異なるだけである. 磁性体を除く媒質は比透磁率がで, ほとんど媒質に当てはまるので, 実質的に我々の身の回りの媒質で,
工業数学F2-04(ウェブ用).pptx
工業数学 F2 #4 フーリエ級数を極める 京都大学加納学 京都大学大学院情報学研究科システム科学専攻 Human Systems Lab., Dept. of Systems Science Graduate School of Informatics, Kyoto University 復習 1: 複素フーリエ級数 2 周期 2π の周期関数 f(x) の複素フーリエ級数展開 複素フーリエ係数
2011年度 筑波大・理系数学
0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ
The open source platform for numerical computation
Scilab による古典制御の学習目次 1. はじめに.Scilab の導入 3. ステップ応答, インパルス応答, 一般の応答 4. ボード線図とナイキスト軌跡 5. 時間応答と周波数応答 6. 根軌跡 7. 設計例 8. 積分器と定常偏差 9. 付録古典制御で用いる Scilab 関数の例 014 年 4 月 7 日,5 月 8 日 018 年 4 月 日 1. はじめに 制御性能の解析や制御系設計では,
Microsoft Word - Matlab使用法
MATLAB / SIMULINK の使い方 ( 注 )5 号館 ( システム工学科棟 )3 階 306PC 室,7 号館計算機室 1 2 で使えます. ライセンスの関係上,MATLAB/SIMULINK を同時に使用できる人数は 50 名です. 使い方が分からないなど, 不明な点は伊藤まで連絡してください. ( 直接でも構いませんし, 伊藤研 HP の掲示板に匿名で質問を書いて頂いても構いません.)
vecrot
1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向
平面波
平面波 図.に示すように, 波源 ( 送信アンテナあるいは散乱点 ) から遠い位置で, 観測点 Pにおける波の状態を考えてみる. 遠いとは, 波長 λ に比べて距離 が十分大きいことを意味しており, 観測点 Pの近くでは, 等位相面が平面とみなせる状態にある. 平面波とは波の等位相面が平面になっている波のことである. 通信や計測を行うとき, 遠方における波の振舞いは平面波で近似できる. したがって平面波の性質を理解することが最も重要である.
19年度一次基礎科目計算問題略解
9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる
人間科学部研究年報平成 24 年 (1) (2) (3) (4) 式 (1) は, クーロン (Coulomb) の法則とも呼ばれる.ρは電荷密度を表し,ε 0 は真空の誘電率と呼ばれる定数である. 式 (2) は, 磁荷が存在しないことを表す式である. 式 (3) はファラデー (Faraday)
複素振幅をもつ球面波の人間科学部研究年報 Maxwell 平成 24 方程式年 複素振幅をもつ球面波の Maxwell 方程式 Maxwell Equation of Spherical Wave with Complex Amplitude 戸上良弘 Yoshihiro TOGAMI Abstract 複素振幅をもつ球面波に関して, マクスウェル (Maxwell) 方程式との関係を考察した. 電気的な球面波としてのスカラーポテンシャルが与えられたとき,
Microsoft PowerPoint - 基礎電気理論 07回目 11月30日
基礎電気理論 7 回目 月 30 日 ( 月 ) 時限 次回授業 時間 : 月 30 日 ( 月 )( 本日 )4 時限 場所 : B-3 L,, インピーダンス教科書 58 ページから 64 ページ http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 授業評価アンケート ( 中間期評価 ) NS の授業のコミュニティに以下の項目について記入してください
