自由集会時系列part2web.key
|
|
|
- しのぶ あいしま
- 7 years ago
- Views:
Transcription
1 spurious correlation spurious regression
2
3 xt=xt-1+n(0,σ^2) yt=yt-1+n(0,σ^2)
4 n=20 type1error(5%)= no trend p for r
5 xt=xt-1+n(0,σ^2) random walk random walk variable variable time time i.i.d. normal variable xt=n(0,σ^2)
6 Granger & Newbold, 1974 Phillips, 1986
7
8
9 n=20 type1error(5%)= no trend histgram of p value for r resource output type error for r= p for r p (difference) p for r
10 n=20 type1error(5%)= no trend p for r
11 histgram of correlation coefficient r histgram of correlation coefficient r r r (difference)
12 n=20 type1error(5%)= no trend n=20 type1error(5%)= no trend p for r p for tau
13 sd=1and5 n=100 type1error= p value for r
14 type1error= unif vs unif type1error= unif vs normal p value for r p value for r
15 type1error= RW vs iid p value for r
16 sine curve 4cycles sine curve 2cycles sine curve 1 cycle variable variable variable time time time
17 sine curve 4cycles sine curve 2cycles sine curve 1 cycle type1error= RW vs sine4cycles type1error= RW vs sine2cycles type1error= RW vs sine1cycles variable variable variable time time time p value for r p value for r p value for r
18 sine curve quarter cycle type1error= RW vs sine1/4cycle variable time p value for r
19 xt=xt-1+n(0,σ^2) random walk random walk variable variable time time i.i.d. normal variable xt=n(0,σ^2)
20
21 n=20 n=10000 n=20 type1error(5%)= no trend n=10000 type1error(5%)= no trend p for r p for r
22 type1 error rate (5%) sample size (n)
23 n=10000 n=10000 type1error(5%)= no trend p for r
24 n=10000 n=10000 type1 error rate level of significance
25
26 Granger & Newbold, 1974 Phillips, 1986
27
28 xt=θx xt-1+n(0,σ^2) θx 1 θx 1
29
30 i.i.d. normal coef=0.95 coef=0.98 θx 0.00 θx 0.95 θx 0.98 variable variable variable time time time random walk coef=1.01 coef=1.02 θx 1.00 θx 1.01 θx 1.02 variable variable variable time time time
31 Granger et al (2001) Applied Economics, 33:
32 xt=θx xt-1+n(0,σ^2) θx 1 θx 1
33 θx=0.98 θx=0.95 type1error=0.674 theta=0.98 type1error= theta= p value for r p value for r θx=0.90 type1error= theta= p value for r
34 yt=α+β xt yt=α+β xt+εt εt 0
35 yt=α+β xt yt=α+β xt+εt εt 0
36 n=100 n=1000 Distribution of b n=100 RW Distribution of b n=1000 RW b b n=2000 Distribution of b n=2000 RW b
37 n=100 n=1000 Distribution of a n=100 RW Distribution of a n=1000 RW a n= Distribution of a n=2000 RW a
38 var(b) sample size (n) var(a) sample size (n)
39
40
41
42
43
44 resource output time series resource output time series y output (resource) output (resource) time time
45 resource output type error for r=0 resource output correlation p for r r r +1.0
1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915
10:30 12:00 P.G. vs vs vs 2
1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B
研修コーナー
l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l
_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf
untitled
Horioka Nakagawa and Oshima u ( c ) t+ 1 E β (1 + r ) 1 = t i+ 1 u ( c ) t 0 β c t y t uc ( t ) E () t r t c E β t ct γ ( + r ) 1 0 t+ 1 1 = t+ 1 ξ ct + β ct γ c t + 1 1+ r ) E β t + 1 t ct (1
第13回:交差項を含む回帰・弾力性の推定
13 2018 7 27 1 / 31 1. 2. 2 / 31 y i = β 0 + β X x i + β Z z i + β XZ x i z i + u i, E(u i x i, z i ) = 0, E(u i u j x i, z i ) = 0 (i j), V(u i x i, z i ) = σ 2, i = 1, 2,, n x i z i 1 3 / 31 y i = β
こんにちは由美子です
1 2 . sum Variable Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- var1 13.4923077.3545926.05 1.1 3 3 3 0.71 3 x 3 C 3 = 0.3579 2 1 0.71 2 x 0.29 x 3 C 2 = 0.4386
オーストラリア研究紀要 36号(P)☆/3.橋本
36 p.9 202010 Tourism Demand and the per capita GDP : Evidence from Australia Keiji Hashimoto Otemon Gakuin University Abstract Using Australian quarterly data1981: 2 2009: 4some time-series econometrics
2 3
Sample 2 3 4 5 6 7 8 9 3 18 24 32 34 40 45 55 63 70 77 82 96 118 121 123 131 143 149 158 167 173 187 192 204 217 224 231 17 285 290 292 1 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
今回 次回の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ Danger!! (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか これは次回)
生態学の時系列データ解析でよく見る あぶない モデリング 久保拓弥 mailto:[email protected] statistical model for time-series data 2017-07-03 kubostat2017 (h) 1/59 今回 次回の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ Danger!! (危 1) 時系列データの
第11回:線形回帰モデルのOLS推定
11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i
II III II 1 III ( ) [2] [3] [1] 1 1:
2015 4 16 1. II III II 1 III () [2] [3] 2013 11 18 [1] 1 1: [5] [6] () [7] [1] [1] 1998 4 2008 8 2014 8 6 [1] [1] 2 3 4 5 2. 2.1. t Dt L DF t A t (2.1) A t = Dt L + Dt F (2.1) 3 2 1 2008 9 2008 8 2008
/22 R MCMC R R MCMC? 3. Gibbs sampler : kubo/
2006-12-09 1/22 R MCMC R 1. 2. R MCMC? 3. Gibbs sampler : [email protected] http://hosho.ees.hokudai.ac.jp/ kubo/ 2006-12-09 2/22 : ( ) : : ( ) : (?) community ( ) 2006-12-09 3/22 :? 1. ( ) 2. ( )
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
JA2008
A1 1 10 vs 3 2 1 3 2 0 3 2 10 2 0 0 2 1 0 3 A2 3 11 vs 0 4 4 0 0 0 0 0 3 6 0 1 4 x 11 A3 5 4 vs 5 6 5 1 0 0 3 0 4 6 0 0 1 0 4 5 A4 7 11 vs 2 8 8 2 0 0 0 0 2 7 2 7 0 2 x 11 A5 9 5 vs 3 10 9 4 0 1 0 0 5
3. みせかけの相関単位根系列が注目されるのは これを持つ変数同士の回帰には意味がないためだ 単位根系列で代表的なドリフト付きランダムウォークを発生させてそれを確かめてみよう yと xという変数名の系列をを作成する yt=0.5+yt-1+et xt=0.1+xt-1+et 初期値を y は 10
第 10 章 くさりのない犬 はじめにこの章では 単位根検定や 共和分検定を説明する データが単位根を持つ系列の場合 見せかけの相関をする場合があり 推計結果が信用できなくなる 経済分析の手順として 系列が定常系列か単位根を持つ非定常系列かを見極め 定常系列であればそのまま推計し 非定常系列であれば階差をとって推計するのが一般的である 1. ランダムウオーク 最も簡単な単位根を持つ系列としてランダムウオークがある
こんにちは由美子です
Sample size power calculation Sample Size Estimation AZTPIAIDS AIDSAZT AIDSPI AIDSRNA AZTPr (S A ) = π A, PIPr (S B ) = π B AIDS (sampling)(inference) π A, π B π A - π B = 0.20 PI 20 20AZT, PI 10 6 8 HIV-RNA
平成20年5月 協会創立50年の歩み 海の安全と環境保全を目指して 友國八郎 海上保安庁 長官 岩崎貞二 日本船主協会 会長 前川弘幸 JF全国漁業協同組合連合会 代表理事会長 服部郁弘 日本船長協会 会長 森本靖之 日本船舶機関士協会 会長 大内博文 航海訓練所 練習船船長 竹本孝弘 第二管区海上保安本部長 梅田宜弘
読めば必ずわかる 分散分析の基礎 第2版
2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)
1. 2. (Rowthorn, 2014) / 39 1
,, 43 ( ) 2015 7 18 ( ) E-mail: [email protected] 1 / 39 1. 2. (Rowthorn, 2014) 3. 4. 5. 6. 7. 2 / 39 1 ( 1). ( 2). = +. 1. g. r. r > g ( 3).. 3 / 39 2 50% Figure I.1. Income inequality in the
nsg02-13/ky045059301600033210
φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W
: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99
218 6 219 6.11: (EQS) /EQUATIONS V1 = 30*V999 + 1F1 + E1; V2 = 25*V999 +.54*F1 + E2; V3 = 16*V999 + 1.46*F1 + E3; V4 = 10*V999 + 1F2 + E4; V5 = 19*V999 + 1.29*F2 + E5; V6 = 17*V999 + 2.22*F2 + E6; CALIS.
, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1
2016 1 12 4 1 2016 1 12, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, 1980 1990.,, 225 1986 4 1990 6, TOPIX,1986 5 1990 2, explosive. 2,.,,,.,, 1986 Q2 1990 Q2,,. :, explosive, recursiveadf,
JMP V4 による生存時間分析
V4 1 SAS 2000.11.18 4 ( ) (Survival Time) 1 (Event) Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time Start of Study End Start of Observation Censor
19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional
19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e
untitled
1 th 1 th Dec.2006 1 1 th 1 th Dec.2006 103 1 2 EITC 2 1 th 1 th Dec.2006 3 1 th 1 th Dec.2006 2006 4 1 th 1 th Dec.2006 5 1 th 1 th Dec.2006 2 6 1 th 1 th Dec.2006 7 1 th 1 th Dec.2006 3 8 1 th 1 th Dec.2006
> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3
13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >
1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................
solutionJIS.dvi
May 0, 006 6 [email protected] /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x
seminar0220a.dvi
1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: [email protected] 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }
kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :
kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda
最小2乗法
2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )
JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =
JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz
% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr
1 1. 2014 6 2014 6 10 10% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti 1029 0.35 0.40 One-sample test of proportion x: Number of obs = 1029 Variable Mean Std.
CG38.PDF
............3...3...6....6....8.....8.....4...9 3....9 3.... 3.3...4 3.4...36...39 4....39 4.....39 4.....4 4....49 4.....5 4.....57...64 5....64 5....66 5.3...68 5.4...7 5.5...77...8 6....8 6.....8 6.....83
商品流動性リスクの計量化に関する一考察(その2)―内生的流動性リスクを考慮したストレス・テスト―
E-mail: [email protected] E-mail: [email protected] Bangia et al. G Bangia et al. exogenous liquidity risk endogenous liquidity risk et al LTCMLong Term Capital Management Fed G G T
投資家の株式需要関数におけるボラティリティの限界効果と構造変化
Fama Semi-strong form BIS TOPIX Kamesaka, Nofsinger and Kawakita Choe, Kho and Stulz Grinblatt and Keloharju Kang and Stulz Choe et al. Dahlquist and Robertsson Kalev, Nguyen and Oh Froot and Ramadorai
tokei01.dvi
2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN
σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv("h:=y=ynikkei4csv",header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n
R 1 R R R tseries fseries 1 tseries fseries R Japan(Tokyo) R library(tseries) library(fseries) 2 t r t t 1 Ω t 1 E[r t Ω t 1 ] ɛ t r t = E[r t Ω t 1 ] + ɛ t ɛ t 2 iid (independently, identically distributed)
