商品流動性リスクの計量化に関する一考察(その2)―内生的流動性リスクを考慮したストレス・テスト―
|
|
|
- おさむ かくはり
- 7 years ago
- Views:
Transcription
1
2 Bangia et al. G Bangia et al. exogenous liquidity risk endogenous liquidity risk et al
3
4
5
6 LTCMLong Term Capital Management Fed G G T RTSI LTCM i.i.d.independently and identically distributed T
7
8 t =1 t =5 iid T VaR tt i.i.d.
9 n λ (= np) t =7 f (x ; n, p)= n C x p x q n x n p 0np λ f f (x ; λ)= λ x e λ /x!
10
11 Bangia et al.finger Bangia et al. λ Bangia et al. λ (κ) LadjVaR (99%)= P t (1 e 2.33λσ t). LadjVaR (99%)VaR P t σ t κ λ =1+ φ 1 ln + φ 2 l, 3 1 > 0.5 l = κ φ 1, φ 2
12 2.33λσ
13 Q k P k Q k ( c k ) C t C = S Σ S t Σ = A V A, S ij, 1/ = Σ i = j ij 0, A 1 θ k + θ k/( p k + q k) 1 z( i) z( j) ( 1) θk /( pk + qk) 0 ij = + 1 z ( i) = 0 i Q k. i = j, i P i = j, i P i j, i P, k k k Q k Qk Q, j P k k Q k P k Q k P k Q k
14 n p k P k q k Q k θ 0 0 θ 0 1 θ k kθ k θ 0 θ k = c k θ 0 c k 0 < c k 1 V n n Σ n n C n n Cosandey Cosandey N A P N A NP=Α/N P = Α/(N+ N) A θ 0 c k
15 A P = N A A P = N + N Cosandey N N N P P 0, P 1, P 2,, P n N 0, N 1, N 2,, N n P t t 0 Nt 1 P 1 P' 1 P t /P t VaR P t 0 P0 N 0 P P t 1 1 t 2 2 N 1 P P N N 2 P N 1 2 VaR t n P P n N n n P t VaR
16 P = P + P = P N = P ( N P ) Pmarket ( N0P0 ) ( N P )( N + N ) N + N P N market N., P market N N P 0 0 A N m ( N) m CRTXBUXWIG20IBOV MEXBOLSTIKOSPI2HISG7225 TOPIXS&P500DAXSMI NVaRVaRm ( N)
17 m ( N) = Nλ λ =m( N) λ. λ VaR( N) m ( N) VaR VaR T ABCD VaR A AB
18 VaR VaR VaR
19 VaR 10 iid T B Basel Committee on Banking Supervision BIS Committee on the Global Financial System BIS
20 VaR
21 VaR VaRVaR
22 VaRVaR
23 iid T Bangia et al. Finger Cosandey JGB
24
25 n p=0.5q=0.5 n.i.d.normally and independently distributed i.i.d.independently and identically distributed WNwhite noise {Y n, n = 0,1, }{Z n, n = 0,1, } E[ Y n ] < E [ Y n+1 Z 0,,Z n ]=Y n, n{y n, n = 0,1, }{Z n, n = 0,1, } Z n n n +1 E [Y n+1 Z 0,,Z n ]n Y n E (ε t )=0var (ε t )=σ 2 cov(ε t, ε s )=E (ε t ε s )=0, t s
26 ε t ~NID (0,σ 2 ), ε t ~iid (0,σ 2 ), ε t ~WN (0,σ 2 ), E (ε t )=0, E (ε t )=0, cov (ε t,ε s )=0, t s, cov (ε t2, ε s2 ) 0, s t.
27 H 0 H< < H 1 StepN =5 t =1RS R = Max(X t,n ) Min(X t,n ), X t,n = Σ t (e u M N ). u=1 X t,n N e u u M N Nu= 1t StepR / S StepStepStepN=5, 6, 7, StepN log (N ) log (R / S) H H=0.647 VaR Finger
28 R AVGt 1 R AVGt = R it. p i P i=1, 2,,n t =1, 2,,T R it ti P p : P R it R AVGt θ R it (1 θ ) Rit+ θr = Rit AVGt i P. θ0 θ 1
29 R i, i Pθ = 0 θθ = 1 θp R i, i P 0 <θ < 1VaR t R t ={R 1t,R 2t, R 3t, R nt } tra R t A R = A R, t 1 θ + θ / p 1 A ij = θ / p 0 t i = j, i P i = j, i P i j, i P, j P. R i R i ΣC V t C = S Σ S t Σ = A V A, S ij, 1/ = Σ i = j ij 0. θ R 2 R 1 R 2 R 2 R 1 R 2 R 2 R 2
30 ' ' α α' α' π α α' ' ' π α ' λ R AVGt 1 = ( R ), 2 1t R 2t R 1t = ( 1 λ ) R +, 1t λ RAVGt R 2t = ( 1 λ ) R. 2t λ RAVGt λ0 λ 1 λ =0 λ λ=1 P k Q k c k
31 N VaRVaRm ( N) = N
32
33 Bangia, Anil, Francis X. Diebold, Til Schuermann and John D.Stroughair, Modeling Liquidity Risk: With Implications for Traditional Market Risk Measurement and Management, working paper, Wharton Financial Institutions Center, Bank for International Settlements, Stress Testing by Large Financial Institutions: Current Practice and Aggregation Issues, Basel Committee on Banking Supervision, Performance of Models-Based Capital Charges for Market Risk : 1 July-31 December 1998, September, Cosandey, David, Adjusting value-at-risk for market liquidity, Risk, October, 2001, pp Finger, Christopher C., A Methodology to Stress Correlation, Risk Metrics Monitor, Fourth Quarter,1997, pp Kahneman, D., and Riepe, M., Aspects of Investment Psychology, Journal of Portfolio Management, 24, 1998, pp
34 Tversky, Amos, The Psychology of Risk - in Quantifying the Market Risk Premium Phenomena for Investment Decision Making -, Institute of Chartered Financial Analysts, 1990.
Microsoft Word - 査読SP問題110510RR.doc
JAVCERM Journal [] 2 # 2011_01_Ronko 2010 1 4 2011 5 12 1 2 2 1999 National Bank of Keystone(Keystone), Pacific Thrift and Loan(PLT) FDIC CAMEAL 20 20 1 11 6 2.2 2000 Greenspan FRB 2000 IT IT Greenspan[2004]
アジアの資本移動の変化に関するクラスター分析 アジア域内の証券投資活性化に向けて
* ** 199 1 1996-97 relation * ** Seoul conference China and Emerging Asia: Reorganizing the Global Economy? held by KIEP and Seoul National University 26 5 11-12 Hugh Patrick Yung-Chul Park 26 9 9-1 East
わが国のレポ市場について―理論的整理と実証分析―
GCGC SC GCSC SC SC E-mail: [email protected] E-mail: [email protected] GC general collateralscspecial collateral Griffiths and Winters GCFF Jordan and JordanDuffie matched book GC GC SC DuffieKrishnamurthy
ヒストリカル法によるバリュー・アット・リスクの計測:市場価格変動の非定常性への実務的対応
VaR VaR VaR VaR GARCH E-mail : [email protected] VaR VaR LTCM VaR VaR VaR VaR VaR VaR VaR VaR t P(t) P(= P() P(t)) Pr[ P X] =, X t100 (1 )VaR VaR P100 P X X (1 ) VaR VaR VaR VaR VaR VaR VaR VaR
ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.
24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)
国際流動性に関する財政的側面について
IMF SDR IMF 2011 6 1 2 2011 E-mail: [email protected] / /2011.10 35 1. 2007 2009 2 Goodhart [1999] 2010 11 2. 4 1970 IMF 1960 36 /2011.10 international reserve 1 D 35 1 D 35 1960 Eichengreen [2011]
バリュー・アット・リスクのリスク指標としての妥当性について ― 理論的サーベイによる期待ショートフォールとの比較分析―
aaaab aabab VaR VaRArtzner et al. VaR VaR VaR Artzner et al.var VaR VaR VaR ρ XY ρ (X+Y ) ρ(x) + ρ(y ) XY ρ VaRArtzner et al.1999basak and Shapiro1999Danielsson2000Rootzén and Klüppelberg VaR VaR VaRVaR
伝統的な経済学では、「消費は重要ではあるが、気にしなくてもよい」と考えられてきた
2005 1 2004 SARS 2003 IMF 2004 5.0 2004 4.1 0.9 30 2005 2004 2005 2005 2005 2004 2005 IMF 2005 4.3 2004 IMF 2004 2003 3.0 4.3 2003 2 2003 2004 IT 2005 IMF 2005 2004 3.5 IT 1995 10 2.8% 10 2 1 IT IT 2004
..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A
.. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.
all.dvi
38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t
y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =
y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w
text.dvi
Abstract JP Morgan CreditMetrics (1) () (3) (4) 1 3 3 4 4 5 10 6 16 1 1 BIS 1 3 1 BIS 1 BIS 1 3 ALM (1) Value at Risk () (3) RAROC (Risk Ajusted Return On Capital) (4) 3 5 6 31 99% (= p ) ~x X Prf~x Xg
24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x
24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),
Vol.8 No (July 2015) 2/ [3] stratification / *1 2 J-REIT *2 *1 *2 J-REIT % J-REIT J-REIT 6 J-REIT J-REIT 10 J-REIT *3 J-
Vol.8 No.2 1 9 (July 2015) 1,a) 2 3 2012 1 5 2012 3 24, 2013 12 12 2 1 2 A Factor Model for Measuring Market Risk in Real Estate Investment Hiroshi Ishijima 1,a) Akira Maeda 2 Tomohiko Taniyama 3 Received:
会社法制上の資本制度の変容と企業会計上の資本概念について
IMES DISCUSSION PAPER SERIES Discussion Paper No. 2006-J-1 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 103-8660 30 http://www.imes.boj.or.jp IMES Discussion Paper Series 2006-J-1 2006 1
( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1
( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S
, 3, 1999, 4,,
1, 1992 2005,,, 10 2,, 1992 1998 1,,, 1998 2002 2,, 3,,, 2002, 2002 3 1 2 1 , 3, 1999, 4,, 3 14 11 2 I, 10,, 1992 2005, 2,, 3, 4,, II,, 1992 1998 1,, 1998 2002 2 2002 3 II-1: 1 1993 1998 90,, 1995 6850,,
nsg02-13/ky045059301600033210
φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W
II III II 1 III ( ) [2] [3] [1] 1 1:
2015 4 16 1. II III II 1 III () [2] [3] 2013 11 18 [1] 1 1: [5] [6] () [7] [1] [1] 1998 4 2008 8 2014 8 6 [1] [1] 2 3 4 5 2. 2.1. t Dt L DF t A t (2.1) A t = Dt L + Dt F (2.1) 3 2 1 2008 9 2008 8 2008
1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199
Nelson-Siegel Nelson-Siegel 1992 2007 15 1 Nelson and Siegel(1987) 2 FF VAR 1996 FF B) 1 Nelson-Siegel 15 90 1 Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel
2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =
1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,
IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN
IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 100-8630 03 IMES Discussion Paper Series 99-J- 9 -J-19 1999 6 * * [1999] *(E-mail:
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
meiji_resume_1.PDF
β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E
RMBS CDO (ABS ABS CDO IMF , , IMF, Global Financial Stability Report 1) Alt-A 4,250 A
ABS CDO ABS (CDO) ABS CDO 6 7 RMBS ABS ABS ABS CDO CDO 1 ABS CDO 2 3 4 ABS CDO (B) 1 2007 2009 RMBS CDO (ABS ABS CDO 2007 2008 IMF 2008 4 9,450 10 1.5 1 4,050 2009 2 2.2 IMF, Global Financial Stability
4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ
Mindlin -Rissnr δ εσd δ ubd+ δ utd Γ Γ εσ (.) ε σ u b t σ ε. u { σ σ σ z τ τ z τz} { ε ε εz γ γ z γ z} { u u uz} { b b bz} b t { t t tz}. ε u u u u z u u u z u u z ε + + + (.) z z z (.) u u NU (.) N U
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
082_rev2_utf8.pdf
3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)
数学の基礎訓練I
I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............
福岡大学人文論叢47-3
679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.
A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B
9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A
( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +
(.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d
自由集会時系列part2web.key
spurious correlation spurious regression xt=xt-1+n(0,σ^2) yt=yt-1+n(0,σ^2) n=20 type1error(5%)=0.4703 no trend 0 1000 2000 3000 4000 p for r xt=xt-1+n(0,σ^2) random walk random walk variable -5 0 5 variable
1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (
1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +
長岡慎介 45‐78/45‐78
HSBC http://news.bbc.co.uk/2/hi/business/5074068.stm HSBC HSBC Amanah Saadiq [CIBAFI 2005: 10; CIBAFI, 2009: 4; TheCityUK, 2013: 4; IFSB, 2013: 10; IFSB, 2014: 12] [TheCityUK 2013: 1] [UK Trade & Investment
,255 7, ,355 4,452 3,420 3,736 8,206 4, , ,992 6, ,646 4,
30 8 IT 28 1,260 3 1 11. 1101. 1102. 1103. 1 3 1,368.3 3 1,109.8 p.5,p.7 2 9,646 4,291 14.5% 10,p.11 3 3,521 8 p.13 45-49 40-44 50-54 019 5 3 1 2,891 3 6 1 3 95 1 1101 1102 1103 1101 1102 1103 1 6,255
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)
0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()
fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«
2016/3/11 Realized Volatility RV 1 RV 1 Implied Volatility IV Volatility Risk Premium VRP 1 (Fama and French(1988) Campbell and Shiller(1988)) (Hodrick(1992)) (Lettau and Ludvigson (2001)) VRP (Bollerslev
³ÎΨÏÀ
2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p
D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j
6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..
2 4 8 UFJ24 1 14 24 UFJ 3 CS 32 IT 34 37 ALM 57 58 243 59 66 69 9 92 94 117 UFJ 117 UFJ 153 UFJ 29 259 264 215229
UFJ 24 2 4 8 UFJ24 1 14 24 UFJ 3 CS 32 IT 34 37 ALM 57 58 243 59 66 69 9 92 94 117 UFJ 117 UFJ 153 UFJ 29 259 264 215229 24UFJ 247 UFJ UFJ UFJ UFJ UFJ 22 3 23 3 24 3 UFJ UFJ 13,629 13,715 11,982 1,641
野村資本市場研究所|SWF:行動規範の策定と最近の動向(PDF)
SWF 1. SWF SWF SWF 2. SWF SWF 26 IMF OECD 3. SWF IMF GIC SWF 4. SWF SWF SWF 5. SWF SWF CIC 6. SWF SWF SWF OECD IMF 145 2009 Winter Sovereign Wealth Fund SWF 2008 9 SWF 2007 2008 SWF 2008 SWF 2008 6 SWF
IMES DISCUSSION PAPER SERIES Discuss ssion Paper No. 98-J-2 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 100-8630 203 IMES Discuss ssion Paper Series 98-J-2 1998 1 VaRVWAP E-mail: [email protected]
1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1
1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp.218 223 ) 1 2 ) (i) (ii) / (iii) ( ) (i ii) 1 2 1 ( ) 3 ( ) 2, 3 Dunning(1979) ( ) 1 2 ( ) ( ) ( ) (,p.218) (
.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,
[ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +
( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n
n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz
1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x
a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552
3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n
1 1 1 [2000]
* 2000 7 26 1 1 1 [2000] 1 2 1 2 2 1 B to C 250000 億円 200000 日本米国 213,200 150000 100000 50000 0 153,600 106,900 71,100 66,620 42,700 43,860 22,500 26,940 15,340 645 3,360 7,730 1998 年 1999 年 2000 年 2001
Management Of Technology 1
Management Of Technology Management Of Technology 1 1.1 1.2 1.2.1 1.2.2 1.3 1.4 [ ] 2.1 2.1.1 2.1.2 2.2 2.3 [ : ] 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.1.1 6.1.2 6.2 2 7.1 7.2 7.3 [ ] 8.1 8.2 8.2.1 8.2.2 8.3 8.4
6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P
6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P
UFJ
UFJ UFJ () UFJ UFJ 2002 7 2 82 UFJ 2002 9 UFJ 2002 7 22 83 84 UFJ 1 2 3 4 1 2 16 15 14 90 6 5 2002 7 22 85 UFJ 1 2 DC 1 2 3 4 3 2 1 3 2 1 2 1 2002 7 22 UFJ 2002 7 22 CEO 188 2 7 2 UFJ UFJ p 86 p 18 1 2002
金融コングロマリットと範囲の経済:収益面の分析( )
3 ING 1998 2001 16 2 13 3 23 1 1 2 Herring and Santomero 1990 (1992) 3 2 Berger, Hanweck and Humphre(1987) 3 4 1 2 4 3 3 4 1 2 (2003) 3 Group of Ten (2001) 4 24 Berger, Hanweck and Humphre(1987) 1 2 3
カルマンフィルターによるベータ推定( )
β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: [email protected]., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the
