こんにちは由美子です

Size: px
Start display at page:

Download "こんにちは由美子です"

Transcription

1 1

2 2

3 . sum Variable Obs Mean Std. Dev. Min Max var

4 x 3 C 3 = x 0.29 x 3 C 2 = x x 3 C 1 = x 3 C 0 = Bernoulli P(X=x) = ncx p x (1-p) n-x Mean = np = 0.29 x 10 = 2.9 SD = np(1-p) = = 1.4 P 0.5 SD 0 1 SD P = 0.5 p = 0.2 p =

5 10 5 STATA tablesq B B(10,0.29) = 0 Pr(k == 0) = Pr(k >= 0) = Pr(k <= 0) = tablesq B B(10,0.29) = 1 Pr(k == 1) = Pr(k >= 1) = Pr(k <= 1) = tablesq B B(10,0.29) = 2 Pr(k == 2) = Pr(k >= 2) = Pr(k <= 2) = tablesq B B(10,0.29) = 3 Pr(k == 3) = Pr(k >= 3) = Pr(k <= 3) = tablesq B B(10,0.29) = 4 5

6 Pr(k == 4) = Pr(k >= 4) = Pr(k <= 4) = tablesq B B(10,0.29) = 5 Pr(k == 5) = Pr(k >= 5) = Pr(k <= 5) = tablesq B B(10,0.29) = 6 Pr(k == 6) = Pr(k >= 6) = Pr(k <= 6) = tablesq B B(10,0.29) = 7 Pr(k == 7) = Pr(k >= 7) = Pr(k <= 7) = tablesq B B(10,0.29) = 8 Pr(k == 8) = Pr(k >= 8) = Pr(k <= 8) = tablesq B B(10,0.29) = 9 Pr(k == 9) =

7 Pr(k >= 9) = Pr(k <= 9) = tablesq B B(10,0.29) = 10 Pr(k == 10) = Pr(k >= 10) = Pr(k <= 10) = (skewed) C K (0.05) k (0.95) 20-k, K = 0, 1, 2, , 1, 2, 20C 0 (0.05) 0 (0.95) 20 = C 1 (0.05) 1 (0.95) 19 = C 2 (0.05) 2 (0.95) 18 =

8 1 ( ) = cut off X ,500, X STATA. bitesti N Observed k Expected k Assumed p Observed p Pr(k >= 36) = (one-sided test) Pr(k <= 36) = (one-sided test) Pr(k <= 14 or k >= 36) = (two-sided test) 0.05 Pr(k >= 36) Person-years 28,010 19,017 47,027 28,010/47,027 p = 28,010/47,027. bitesti /47027 N Observed k Expected k Assumed p Observed p 8

9 Pr(k >= 41) = (one-sided test) Pr(k <= 41) = (one-sided test) Pr(k <= 25 or k >= 41) = (two-sided test) Two-sided test pmaximal likelihood estimate A/Nvariance A(N A)/N 3 Ncohort size) (A Doll&Hill British physicians study independence and homogeneity assumption binomial distribution cohort (case)variability pmaximal likelihood estimate A/N=1582/28698 = variance A(N A)/N 3 = 1582 x 27116/(28698) 3 95% CI = p ± 1.96var = (0.0243, ) pmaximal likelihood estimate A/N=166/5796 = variance A(N A)/N 3 = 166 x 5630/(5796) 3 95% CI = p ± 1.96var = (0.0243, ) 9

10 Binomial distribution ()

11 8 4 active, 5 inactive 0.2 active 0.0, 0.1, 0.2, , 1.0 accept N=8, p = 0.2 Pregnant probability of accept cumulative P0.2 active (0.99) P=0 P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 P=0.8 P=0.9 P=

12 1 accept true 8 4 accept accept OK accept accept accept accept Operating Characteristic Curve (OC) OC (two stage screening) 12

13 Poisson Distribution binomial situation binomial distribution 0 1-p 1 Poisson person-time Poisson distribution Poisson distributioin 2 independence assumption B A Poisson Stationary assumption Poisson 1 1 Poisson Hazard model Poisson PXx e - λ λ x /x! 0 λe= p 1 variance np λ = np = 10,000 x = 2.4 P(X=4) = e -2.4 (2.4) 4 / 4! = λ = np = 3 P(X=x) = (x 3) / 3 > (p=0.05) X =

14 Poisson distribution person-time µ = (person time) x (incidence rate) PXx e - µ µ x /x! λ: expected number of events per unit time µ: expected number of events over the time period t µ = λt µ maximal likelihood of estimate(mle) A incidence rate (IR) MLE A/person-time (PT) binomial distribution Doll & Hill Person-years (PY) MLE=1582/ = % CI = 1582 ± = (1504, 1660), incidence rate 95% CI = (1504/123436PY, 1660/123436PY) = (0.0122/PY, /PY) 95% CI = 166 ± = (141, 191) incidence rate 95% CI = (141/25250PY, 191/25250PY) = (0.0558/PY, P/Y) death variance 51.5 Outbreak gap variance Poisson distribution mean variance µ outbreak Poisson 14

15 list (injury)n Poisson distribution XYZ(1). list airline injuries n XYZowned poisson injuries XYZowned, exposure(n) irr Iteration 0: log likelihood = Iteration 1: log likelihood = Iteration 2: log likelihood = Poisson regression Number of obs = 9 LR chi2(1) = 1.77 Prob > chi2 = Log likelihood = Pseudo R2 = injuries IRR Std. Err. z P> z [95% Conf. Interval] XYZowned n (exposure)

16 . gen lnn=ln(n) XYZ 1.46 P = CI XYZ incidence rate ratio rate = e βo + β1xyzowned count = n e βo + β1xyzowned = e ln(n) + βo + β1xyzowned. poisson injuries XYZowned lnn Iteration 0: log likelihood = Iteration 1: log likelihood = Iteration 2: log likelihood = Poisson regression Number of obs = 9 LR chi2(2) = Prob > chi2 = Log likelihood = Pseudo R2 = injuries Coef. Std. Err. z P> z [95% Conf. Interval] XYZowned lnn _cons e = 1.98 point estimate

17 (normal distribution) 8 8 probability distribution (normal distribution/gaussian distribution/bell-shaped distribution) µ standard deviation (σ) 17

18 µ 0 standard deviation (SD) σ 1 standard normal distribution SD 68.2% 15.9% 15.9% -1SD +1SD µ 1SD

19 95.4% 2.3% 2.3% -2SD +2SD 2SD 2 5 Z

20 Z

21 Standard normal distribution curve 2.0SD 0.5 Distribution SD standard X = 3.0 standard normal distribution (Z) standard normal distribution X=3.0 Z SD Z = (X 2)/0.5 Z = (3 2)/0.5 = 2 21

22 4 100cm 10cm 80cm SD 2SD mmHg SD 2.5 z= (X129)/19.8 X=167.8 mmhg mmHg =(X + 129)/19.8 X = 90.2 mmhg 1.96SD % 2.5% Z -1.96SD 1.96SD 150mmHg Z = / 19.8 z=1.06, 14.5% mmHg 22

23 µ 1 =80.7, σ 1 =9.2, µ 2 =94.9, σ 2 = z = x 94.9 / 11.5, x = mmhg, z = / 9.2 = 0.06, mmHg

24 µ 24

25 20 25

26 µ / σ µ / σ µµ µ / σ µ/ σ/ σ σ / / 26

27 (confidence interval) 27

28 µσ µσ µσ σ µ σ σ µ σ µσ σ µ µ µ 28

29 µ µσ µ µ µ µσ σ µ σ 29

30 σ µ 30

31 211 mg/dl mg/dl 25 µ 0 25 µ Null hypothesis H 0 : µ 0 = µ SD 25 Ho 2 H 0 accept 25 p < 0.05 sample psample Type I error, type II error, power, sample size 31

32 25 Alternative hypothesis H A : µ 0 µ 1 µ µ µ µ σ 2 32

33 2 µ µµ µµ σ µ µ ασ µ σ 1 µ 33

34 34

35 . list BS ttest BS=100 One-sample t test

36 Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] BS Degrees of freedom: 17 Ho: mean(bs) = 100 Ha: mean < 100 Ha: mean ~= 100 Ha: mean > 100 t = t = t = P < t = P > t = P > t = µ 1 = 100 mg/dl H mg/dlp= two sided t-test row data SD. ttesti One-sample t test Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] x Degrees of freedom: 17 36

37 Ho: mean(x) = 100 Ha: mean < 100 Ha: mean ~= 100 Ha: mean > 100 t = t = t = P < t = P > t = P > t =

38 µ µ µ µ µ µ µ µ µ δµ µ δ δ) δ 38

39 β. list pre post

40 ttest pre=post Paired t test Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] pre post diff Ho: mean(pre - post) = mean(diff) = 0 Ha: mean(diff) < 0 Ha: mean(diff) ~= 0 Ha: mean(diff) > 0 t = t = t = P < t = P > t = P > t =

41 . ttest pre=post, unpaired Two-sample t test with equal variances Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] pre post combined diff Degrees of freedom: 38 Ho: mean(pre) - mean(post) = diff = 0 Ha: diff < 0 Ha: diff ~= 0 Ha: diff > 0 t = t = t = P < t = P > t = P > t = paired t test powerful 41

42 µ µ µ µ µ µ µ µ µ µ σ σ 42

43 . list AMI Chole

44 ttest Chole, by(ami) Two-sample t test with equal variances Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] combined diff Degrees of freedom: 38 Ho: mean(0) - mean(1) = diff = 0 Ha: diff < 0 Ha: diff ~= 0 Ha: diff > 0 t = t = t = P < t = P > t = P > t =

45

46 . ttest Chole, by(ami) unequal welch Two-sample t test with unequal variances Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] combined diff Welch's degrees of freedom: Ho: mean(0) - mean(1) = diff = 0 Ha: diff < 0 Ha: diff ~= 0 Ha: diff > 0 t = t = t = P < t = P > t = P > t = equal variance Nonparametric Methods 46

47 . gen d=post - pre. list pre post d Null hypothesis 1/2 binomial distribution np = n/2, variance np(1-p) = n/4 n/2 Z = [+ (n/2)]/(n/4)

48 Z = [9 5]/(10/4) = 2.53 Z 1.96 null hypothesis STATA. signtest pre=post Sign test sign observed expected positive 1 5 negative 9 5 zero all One-sided tests: Ho: median of pre - post = 0 vs. Ha: median of pre - post > 0 Pr(#positive >= 1) = Binomial(n = 10, x >= 1, p = 0.5) = Ho: median of pre - post = 0 vs. Ha: median of pre - post < 0 Pr(#negative >= 9) = Binomial(n = 10, x >= 9, p = 0.5) = Two-sided test: Ho: median of pre - post = 0 vs. Ha: median of pre - post ~= 0 Pr(#positive >= 9 or #negative >= 9) = min(1, 2*Binomial(n = 10, x >= 9, p = 0.5)) = two sided test. ttest pre=post Paired t test 48

49 Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] pre post diff Ho: mean(pre - post) = mean(diff) = 0 Ha: mean(diff) < 0 Ha: mean(diff) ~= 0 Ha: mean(diff) > 0 t = t = t = P < t = P > t = P > t = µ σ µ 49

50 σ β β. signrank pre=post Wilcoxon signed-rank test sign obs sum ranks expected positive negative zero all unadjusted variance adjustment for ties adjustment for zeros adjusted variance Ho: pre = post z = Prob > z = (Mann-Whitney test) 50

51 . ranksum EFV, by(drug) Two-sample Wilcoxon rank-sum (Mann-Whitney) test drug obs rank sum expected combined unadjusted variance adjustment for ties adjusted variance Ho: EFV(drug==0) = EFV(drug==1) z = Prob > z = Wilcoxon signed-rank test paired test unpaired test power 51

52 52

分布

分布 (normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability

More information

こんにちは由美子です

こんにちは由美子です Analysis of Variance 2 two sample t test analysis of variance (ANOVA) CO 3 3 1 EFV1 µ 1 µ 2 µ 3 H 0 H 0 : µ 1 = µ 2 = µ 3 H A : Group 1 Group 2.. Group k population mean µ 1 µ µ κ SD σ 1 σ σ κ sample mean

More information

こんにちは由美子です

こんにちは由美子です Sample size power calculation Sample Size Estimation AZTPIAIDS AIDSAZT AIDSPI AIDSRNA AZTPr (S A ) = π A, PIPr (S B ) = π B AIDS (sampling)(inference) π A, π B π A - π B = 0.20 PI 20 20AZT, PI 10 6 8 HIV-RNA

More information

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr 1 1. 2014 6 2014 6 10 10% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti 1029 0.35 0.40 One-sample test of proportion x: Number of obs = 1029 Variable Mean Std.

More information

Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 s

Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 s BR003 Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 sampsi 47 mwp-044 sdtest 54 mwp-043 signrank/signtest

More information

卒業論文

卒業論文 Y = ax 1 b1 X 2 b2...x k bk e u InY = Ina + b 1 InX 1 + b 2 InX 2 +...+ b k InX k + u X 1 Y b = ab 1 X 1 1 b 1 X 2 2...X bk k e u = b 1 (ax b1 1 X b2 2...X bk k e u ) / X 1 = b 1 Y / X 1 X 1 X 1 q YX1

More information

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,

More information

Stata User Group Meeting in Kyoto / ( / ) Stata User Group Meeting in Kyoto / 21

Stata User Group Meeting in Kyoto / ( / ) Stata User Group Meeting in Kyoto / 21 Stata User Group Meeting in Kyoto / 2017 9 16 ( / ) Stata User Group Meeting in Kyoto 2017 9 16 1 / 21 Rosenbaum and Rubin (1983) logit/probit, ATE = E [Y 1 Y 0 ] ( / ) Stata User Group Meeting in Kyoto

More information

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k 2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) [email protected] web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................

More information

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( mwp-037 regress - regress 1. 1.1 1.2 1.3 2. 3. 4. 5. 1. regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( 2, 71) = 69.75 Model 1619.2877 2 809.643849 Prob > F = 0.0000 Residual

More information

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 2 3 2 Conservative Depress. 3.1 2. SEM. 1. x SEM. Depress.

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q10-2 テキスト P191 1. 記述統計量 ( 変数 :YY95) 表示変数として 平均 中央値 最大値 最小値 標準偏差 観測値 を選択 A. 都道府県別 Descriptive Statistics for YY95 Categorized by values of PREFNUM Date: 05/11/06 Time: 14:36 Sample: 1990 2002 Included

More information

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

Rによる計量分析:データ解析と可視化 - 第3回  Rの基礎とデータ操作・管理 R 3 R 2017 Email: [email protected] October 23, 2017 (Toyama/NIHU) R ( 3 ) October 23, 2017 1 / 34 Agenda 1 2 3 4 R 5 RStudio (Toyama/NIHU) R ( 3 ) October 23, 2017 2 / 34 10/30 (Mon.) 12/11 (Mon.)

More information

第11回:線形回帰モデルのOLS推定

第11回:線形回帰モデルのOLS推定 11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i

More information

講義のーと : データ解析のための統計モデリング. 第2回

講義のーと :  データ解析のための統計モデリング. 第2回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P +

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P + Armitage 1 1.1 2 t *1 α β 1.2 µ x µ 2 2 2 α β 2.1 1 α β α ( ) β *1 t t 1 α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β 1 0 0 1 1 5 2.5 *3 2.3 *4 3 3.1 1 1 1 *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P

More information

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM .. ( ) (2) GLMM [email protected] I http://goo.gl/rrhzey 2013 08 27 : 2013 08 27 08:29 kubostat2013ou2 (http://goo.gl/rrhzey) ( ) (2) 2013 08 27 1 / 74 I.1 N k.2 binomial distribution logit link function.3.4!

More information

1 15 R Part : website:

1 15 R Part : website: 1 15 R Part 4 2017 7 24 4 : website: email: http://www3.u-toyama.ac.jp/kkarato/ [email protected] 1 2 2 3 2.1............................... 3 2.2 2................................. 4 2.3................................

More information

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls

More information

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : : kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda

More information

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or kubostat207e p. I 207 (e) GLM [email protected] https://goo.gl/z9ycjy 207 4 207 6:02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e (https://goo.gl/z9ycjy) 207 (e) 207 4

More information

オーストラリア研究紀要 36号(P)☆/3.橋本

オーストラリア研究紀要 36号(P)☆/3.橋本 36 p.9 202010 Tourism Demand and the per capita GDP : Evidence from Australia Keiji Hashimoto Otemon Gakuin University Abstract Using Australian quarterly data1981: 2 2009: 4some time-series econometrics

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q8-1 テキスト P131 Engle-Granger 検定 Dependent Variable: RM2 Date: 11/04/05 Time: 15:15 Sample: 1967Q1 1999Q1 Included observations: 129 RGDP 0.012792 0.000194 65.92203 0.0000 R -95.45715 11.33648-8.420349

More information

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation : kubostat2017b p.1 agenda I 2017 (b) probabilit distribution and maimum likelihood estimation [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 1 : 2 3? 4 kubostat2017b (http://goo.gl/76c4i)

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

自由集会時系列part2web.key

自由集会時系列part2web.key spurious correlation spurious regression xt=xt-1+n(0,σ^2) yt=yt-1+n(0,σ^2) n=20 type1error(5%)=0.4703 no trend 0 1000 2000 3000 4000 p for r xt=xt-1+n(0,σ^2) random walk random walk variable -5 0 5 variable

More information

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó 2 2015 4 20 1 (4/13) : ruby 2 / 49 2 ( ) : gnuplot 3 / 49 1 1 2014 6 IIJ / 4 / 49 1 ( ) / 5 / 49 ( ) 6 / 49 (summary statistics) : (mean) (median) (mode) : (range) (variance) (standard deviation) 7 / 49

More information

講義のーと : データ解析のための統計モデリング. 第5回

講義のーと :  データ解析のための統計モデリング. 第5回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr

.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr 3,. Cameron and Trivedi (2010) Microeconometrics Using Stata, Revised Edition, Stata Press 6 Linear instrumentalvariables regression 9 Linear panel-data models: Extensions.. GMM xtabond., GMM(Generalized

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q9-1 テキスト P166 2)VAR の推定 注 ) 各変数について ADF 検定を行った結果 和文の次数はすべて 1 である 作業手順 4 情報量基準 (AIC) によるラグ次数の選択 VAR Lag Order Selection Criteria Endogenous variables: D(IG9S) D(IP9S) D(CP9S) Exogenous variables: C Date:

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

2009 5 1...1 2...3 2.1...3 2.2...3 3...10 3.1...10 3.1.1...10 3.1.2... 11 3.2...14 3.2.1...14 3.2.2...16 3.3...18 3.4...19 3.4.1...19 3.4.2...20 3.4.3...21 4...24 4.1...24 4.2...24 4.3 WinBUGS...25 4.4...28

More information

DAA09

DAA09 > summary(dat.lm1) Call: lm(formula = sales ~ price, data = dat) Residuals: Min 1Q Median 3Q Max -55.719-19.270 4.212 16.143 73.454 Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 237.1326

More information

最小2乗法

最小2乗法 2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )

More information

2 1 Introduction

2 1 Introduction 1 24 11 26 1 E-mail: [email protected] 2 1 Introduction 5 1.1...................... 7 2 8 2.1................ 8 2.2....................... 8 2.3............................ 9 3 10 3.1.........................

More information

.001 nonsmoker smoker 0 Density 5.0e infant birthweight (grams) Graphs by 1 if mother smoked 図 2. 新生児体重のヒストグラム (

.001 nonsmoker smoker 0 Density 5.0e infant birthweight (grams) Graphs by 1 if mother smoked 図 2. 新生児体重のヒストグラム ( 第一回はじめての傾向スコア分析 これから 3 回にわたって傾向スコア分析について説明します 各回の内容は以下の通りです 第一回はじめての傾向スコア分析第二回分析後のチェック第三回 Abadie and Imbens(2011) の貢献 Stata14 をまだお持ちでない方は是非 デモ版をダウンロードしてお試しください 理屈はともかく 一度 傾向スコア分析をやってみましょう 次に示すようにコマンド ウィンドウにコマンドを直接入力して

More information

JMP V4 による生存時間分析

JMP V4 による生存時間分析 V4 1 SAS 2000.11.18 4 ( ) (Survival Time) 1 (Event) Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time Start of Study End Start of Observation Censor

More information

Use R

Use R Use R! 2008/05/23( ) Index Introduction (GLM) ( ) R. Introduction R,, PLS,,, etc. 2. Correlation coefficient (Pearson s product moment correlation) r = Sxy Sxx Syy :, Sxy, Sxx= X, Syy Y 1.96 95% R cor(x,

More information

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model 1 EViews 5 2007 7 11 2010 5 17 1 ( ) 3 1.1........................................... 4 1.2................................... 9 2 11 3 14 3.1 Pooled OLS.............................................. 14

More information

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99 218 6 219 6.11: (EQS) /EQUATIONS V1 = 30*V999 + 1F1 + E1; V2 = 25*V999 +.54*F1 + E2; V3 = 16*V999 + 1.46*F1 + E3; V4 = 10*V999 + 1F2 + E4; V5 = 19*V999 + 1.29*F2 + E5; V6 = 17*V999 + 2.22*F2 + E6; CALIS.

More information

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i Armitage.? SAS.2 µ, µ 2, µ 3 a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 µ, µ 2, µ 3 log a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 * 2 2. y t y y y Poisson y * ,, Poisson 3 3. t t y,, y n Nµ,

More information

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2005 1 1991 1996 5 i 1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2 13 *3 *4 200 1 14 2 250m :64.3km 457mm :76.4km 200 1 548mm 16 9 12 589 13 8 50m

More information

講義のーと : データ解析のための統計モデリング. 第3回

講義のーと :  データ解析のための統計モデリング. 第3回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv("h:=y=ynikkei4csv",header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n

σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv(h:=y=ynikkei4csv,header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n R 1 R R R tseries fseries 1 tseries fseries R Japan(Tokyo) R library(tseries) library(fseries) 2 t r t t 1 Ω t 1 E[r t Ω t 1 ] ɛ t r t = E[r t Ω t 1 ] + ɛ t ɛ t 2 iid (independently, identically distributed)

More information

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i kubostat2018d p.1 I 2018 (d) model selection and [email protected] http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)

More information

浜松医科大学紀要

浜松医科大学紀要 On the Statistical Bias Found in the Horse Racing Data (1) Akio NODA Mathematics Abstract: The purpose of the present paper is to report what type of statistical bias the author has found in the horse

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q4-1 テキスト P83 多重共線性が発生する回帰 320000 280000 240000 200000 6000 4000 160000 120000 2000 0-2000 -4000 74 76 78 80 82 84 86 88 90 92 94 96 98 R e s i dual A c tual Fi tted Dependent Variable: C90 Date: 10/27/05

More information

第9回 日経STOCKリーグレポート 審査委員特別賞<地域の元気がでるで賞>

第9回 日経STOCKリーグレポート 審査委員特別賞<地域の元気がでるで賞> 1/21 1 2 3 1 2 3 4 5 4 5 6 2/21 2 3 2 4 5 6 3/21 38 38 4 2007 10 471 10 10 () () () OKI () () () () () 1989 2008 4 13 10 10 1 2 3 4 1 3 1 4/21 2 3 3 2 5/21 3 100 1.5 1/2 4 () 1991 2002 10 3 1 6/21 10 6

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

201711grade2.pdf

201711grade2.pdf 2017 11 26 1 2 28 3 90 4 5 A 1 2 3 4 Web Web 6 B 10 3 10 3 7 34 8 23 9 10 1 2 3 1 (A) 3 32.14 0.65 2.82 0.93 7.48 (B) 4 6 61.30 54.68 34.86 5.25 19.07 (C) 7 13 5.89 42.18 56.51 35.80 50.28 (D) 14 20 0.35

More information

第2回:データの加工・整理

第2回:データの加工・整理 2 2018 4 13 1 / 24 1. 2. Excel 3. Stata 4. Stata 5. Stata 2 / 24 1 cross section data e.g., 47 2009 time series data e.g., 1999 2014 5 panel data e.g., 47 1999 2014 5 3 / 24 micro data aggregate data 4

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 確率的手法による構造安全性の解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/55271 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 25 7 ii Benjamin &Cornell Ang & Tang Schuëller 1973 1974 Ang Mathematica

More information

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0 7 DW 7.1 DW u 1, u,, u (DW ) u u 1 = u 1, u,, u + + + - - - - + + - - - + + u 1, u,, u + - + - + - + - + u 1, u,, u u 1, u,, u u +1 = u 1, u,, u Y = α + βx + u, u = ρu 1 + ɛ, H 0 : ρ = 0, H 1 : ρ 0 ɛ 1,

More information

Stata 11 whitepaper mwp 4 mwp mwp-028 / 41 mwp mwp mwp-079 functions 72 mwp-076 insheet 89 mwp-030 recode 94 mwp-033 reshape wide

Stata 11 whitepaper mwp 4 mwp mwp-028 / 41 mwp mwp mwp-079 functions 72 mwp-076 insheet 89 mwp-030 recode 94 mwp-033 reshape wide PS001 Stata 11 whitepaper mwp 4 mwp-027 23 mwp-028 / 41 mwp-001 51 mwp-078 62 mwp-079 functions 72 mwp-076 insheet 89 mwp-030 recode 94 mwp-033 reshape wide/long 100 mwp-036 ivregress 110 mwp-082 logistic/logit

More information