Size: px
Start display at page:

Download ""

Transcription

1 ( ) :

2

3 ii All Rights Reserved (c) Yoichi OKABE 1998-present. ( ) ( ) Web

4 iii

5 iv ( ) (G) : : TeX : : : : :

6 v

7 vi

8 vii

9 viii

10 1 1 ski snow board parallel turn carving turn 1.1

11 2 1 natural stance vertical equal weighting central weighting TOK *1 4 4 *1

12 edge edging

13 TOK 1.2

14 ( ) 15deg

15 TOP DO LET

16 1.3 7 * 2 regular stance goofy stance 1.4 * SAJ SAJ

17 TOK

18 === ===

19

20 *3 sin cos 1.7 *3 :

21

22 1.8 13

23 Newton law ( ) 1. law of uniform velocity motion : 2. law of accelaration : m a F i

24 ma = F = i F i (2.1) 3. - law of action and reaction : force point of action mass kg weight gravity N F = 0 0 balance - -

25 flat ground - law of action and reaction Newton law ( ) action reaction point of action

26 ) ( - gravity center of gravity

27 *1 5 ( ) arch ( ) - arch - cm *1

28 /10 0 ( ) ( ) weighting weighting axis 5

29 20 2 body axis weighting point 0 2.2

30

31 backward weighting

32 ( ) ( ) 2.4

33 24 2 mg sin θ mg equal weighting neutral position

34 heel weighting toe weighting backward leaning position forward leaning position thumb ball thumb ball

35 26 2 rigid body moment of force torque N i = F i (r i r g ) (2.2) (r i r g ) I d2 θ dt 2 = N = i N i (2.3) angular accelaration m I I I = i m i (r i r g ) 2 (2.4)

36 cm 60 kg 60 kg (0.25 m) 2 = 4 kgm 2 70 cm 25 kgm 2 5kg 50cm 1 km 2

37 28 2 Iω spin 2.4

38 29 3 ( ) ( ) 3.1 flat bahn fall line schuss 3.1

39 backward leaning position forward leaning position arch vertical normal

40 θ mg sin θ m d2 l = mg sin θ (3.1) dt2 l g sin θ t = 0 l = 1 2 g sin θt2 (3.2) ( ) 2.3

41 ( ) a 0 a ma = F + ma 0 (3.3) a = 0 a 0 = a F + F a = 0 (3.4) F a F a = ma (3.5) F a inertia force 0 0 inertia system ma

42 ma terminal velocity

43

44

45

46 absorption

47 38 3 top lowering anticipation ( ) ( )

48

49 speed velocity vector constant speed uniform motion vector uniform circular motion

50 R centripetal force turn centrifugal force

51 42 4 a 0 a ma = F + ma 0 (4.1) a = 0 a 0 = a F + F a = 0 (4.2) F a F a = ma (4.3) F a inertia force 0 0 centrifugal force

52 z h z x θ mg cos θ

53 44 4 mg sin θ mg sin θ 4.3 mg sin θ

54 (m/s) v = 2gh (m) m/s 50km/h v = mgh m 14 m/s=50 km/h

55

56 v z 1 2 mv2 + mgz = E (const) (5.1) F = mdv/dt = mg dr

57 48 5 e =1 e =0.5 e =0 5.1 e 4.4 z = h ( ) v = 2gh (5.2) restitution coefficient e 5.1 e 1 e = 0

58 e = absorption

59 impact force I = dtf impulse F = dp dt (5.3) I = dtf = p (5.4) F I 5.2

60 z x u w 0 ( ) (x, y, z) (u, v, w) u 0 u x = ut (5.5) z = 1 2 gt2 + w 0 t (5.6) w 0 > 0 ( stretching ) stretching jump pressing

61 52 5 up unweighting up unweighting w 0 < 0 ( bending ) bending jump down unweighting down unweighting unweighting w 0 = 0 flat jump x 5.3 H L

62 (m) (m) 5.3 (L=2m H=1m) L H T L = ut (5.7) H = 1 2 gt 2 + w 0 T (5.8) T = L/u u w 0 = gl 2u H u L (5.9) w 0 u u = L ( ) w0 2 2H + 2gH w 0 (5.10)

63 (m/s) (m/s) 5.4 (L=2m H=1m) 5.4 w 0 > 0 w 0 < 0 u L/u T = 1 g ( ) w gH + w 0 (5.11) 5.5 1m 0.45s 0.5s 45 2m/s 30 3m/s

64 (s) (m/s) 5.5 (L=2m H=1m) (m/s) (m/s) 5.6 (L=2m H=1m)

65 (m/s) (m) 5.7 T = L/u = 0.5s (L=2m u=4m/s) w = gt + w 0 = w gH (5.12) 5.11 T H L 5.6 w 0 0 T L u

66 (kgws) (m/s) 5.8 (L=2m H=1m m=70kg) w w 0 = gl 2u Hu L (5.13) H w 0 H 5.4

67 58 5 m w 0 w = w gH m I ( ) I = m w 0 + w gH (5.14) T m/g T mg T mgt I mgt = I 5.8 w 0 > 0 w 0 < 0 I = m 2gH L sin θ = gl/2v 2

68 (m) (m) /1000(kgW) (s) 5.9 6m/s τ = 0.2s m = 70kg 650kgW 15 v =10km/h L =0.41m v =20km/h L =1.6m 30 v =10km/h L =0.79m v =20km/h L =3.2m 45 v =10km/h L =1.1m v =20km/h L =4.4m

69 τ w0 w = w 0 cos(πt/τ) z = w 0 (τ/π) sin(πt/τ) + z 0 m F = mw 0 (π/τ) sin(πt/τ) kgW 10 F mg m(dv/dt) = mg F τ m v = mgτ I v I F τ mgτ I ( )

70 (m) /1000(kgW) (s) ( )

71 (m) /1000(kgW) (s) I/T T = I/mg I/T = mg

72 impulse 0 ( ) ( ) 5.6

73 64 5 n

74 edging edge sliding

75 66 6 angulation 6.1 0

76 friction

77

78

79

80 cm 3m skating

81 ( ) 0

82 F = ma 0 10 cm pinciple of weighting normal to edge

83 ( ) 6.5 (

84 )

85 (a) (c) (b) (a) (b) (c) 6.6

86 (b) (a) (c) 6.7

87 snow board front turn back turn traverse

88

89

90 z x y α 7.1 edging flat bahn x y z

91 garland,girlande (G)

92 γ β α 7.2 yz yz yz x y y z jump turn 7.3 ( ) ( )

93 y x y z parallel turn

94 α β γ I x, y, z α = 0 β = 0 γ x, y, z (0, I sin γ, I cos γ) z β ( I sin β sin γ, I cos β sin γ, I cos γ) α I x = I(cos α sin β sin γ + sin α cos γ) I y = I cos β sin γ I z = I(cos α cos γ sin α sin β sin γ) (7.1) yz I x = 0 sin β = tan α tan γ (7.2) γ y sin γ cos γ α z -cos γ sin α x cos γ cos α (cos γ cos α, sin γ, cos γ sin α) (7.3)

95 86 7 ( ) ( ) 7.4 ( ) x cos γ cos α + y sin γ z cos γ sin α = 0 (7.4) yz (0, I y, I z ) I y sin γ I z cos γ sin α = 0 (7.5) tan γ = sin α I z I y = 0 (7.6) θ z y

96 α γ γ = arctan(sin α/ 3) x 60

97 check

98 89 8 check 8.1 0

99 x 5 F (t) mg F (t) T 0 F (t) I T = I mg (8.1) mgt T

100 wavy.step.tps T ( F = F sin 2πt ) T (8.2) 0 F 0 = mg mg sin(2πt/t ) g(t/2π) 2 sin(2πt/t ) 8.1

101 T w w = gt/2π H T = H/ w w = gh/2π 5 2π 8.2 5

102

103 angulation 8.4

104 y y 8.5 unweighting pressing 0

105 96 8 fig/straight.downweight.eps down unweighting fig/straight.upweight.eps up unweighting

106

107

108

109

110 z x x x 5 x

111 102 9 x x yz yz x x α γ x cos γ cos α + y sin γ z cos γ sin α = 0 (9.1) (I z, I y, I x ) I x cos γ cos α + I y sin γ I z cos γ sin α = 0 (9.2) I x I x cos α = I z sin α I y tan γ cos α (9.3)

112 I x I z I y I y I z I z I y I x tan γ I z I y I x

113 normal ski carving ski curve

114 carve 2010 rocker ski camber rocker rock rocker 20cm cm 10.2 carving turn ( )

115 ( :, : ) 10.1

116 ( :, : ) / 10.1 ( ) 10.2

117 cant bank bend ( ) 10.3

118 ski edge cant

119 *1 *1

120 deg step turn 0 parallel turn

121 ( ) ( ) 10.5 cross over

122 O ( neutral position ) m-20m m m bend 20-30cm 20cm 170cm 30cm 120cm 5

123 normal

124 straight ski normal ski turn spin

125 skid turn drift turn slide turn ( ) 11.1

126 F F a = F 0 skid spin centrifugal force top bend plow (plough) spin

127 tail slide twist spin 11.2 /

128

129 step turn parallel turn jump turn 7

130 twist spin short turn

131 carving turn

132 123 TV cm

133 S S 12.1 bump 12.1 S

134 S ( 23 )

135 S X S S m 4m 4m 23 bump bahn S S

136

137 S 1 saucer throat outfall natural line mogul line

138 sliding pivot spin slide turn *1 skid turn *1 :! 1-12

139 pivot spin flat step cm 50cm 1m 12.3

140 ( )

141 (0) (1) (2) (1-2-3 ) (0)

142 (0-)

143 f f 1 f

144 (f) ( ) bending (f) (1) ( ) (2) (3)

145 f f 1 f ( )

146 bending absorption top lowering

147 CG surface N

148

149 bank turn * *2! 1-5

150 ( )

151 S X 12.8 dolphin turn 12.6

152 ( )

153

154 (3) (0) (1) (2) (3) (0) ( ) (1) (2) (3) porpois turn new line

155

156 *3 S S S reverse turn *3 :

157

158 scoot turn X 12.9 floating turn quick turn 12.11

159 150 12

160 deep snow fresh [virgin] snow powder snow asprin snow 13.1

161 ( ) 13.1 ( ) 13.1 ( )

162

163

164

165 156.1 Web *1 ( ) ( )27M 1/6model 285mm 1710mm 1/6 1 *1 :

166 mm (10-30mm ) Holbein Art Materials Inc. No. CD R L R L 0-200mm

167 158 L= mm R R L (L)1600mm 110mm 70mm 90mm (R)14000mm ( ) ( ) 60mm(-3.7%) 20-25mm 260mm 310mm 110mm 10mm 130mm 300mm 60mm.3 R mm mm R mm 0-5% (L)1500mm 294mm 246mm 281mm (R)8400mm

168 ( ) ( ) 35mm(-2.3%) (tan α ) 20 30

169 160 A absorption , 49, 137 action angular accelaration angulation , 94 anticipation arch , 30 asprin snow B back turn backward leaning position. 25, 30 backward weighting balance bank turn bank bend , 113 bending , 135 bending jump bending body axis bump bahn bump C camber cant carving ski carving turn.... 1, 105, 122 center of gravity central weighting centrifugal force. 41, 42, 117 centripetal force check , 89 constant speed cross over D deep snow dolphin turn down unweighting.. 52, 96 down unweighting.. 52 drift turn E edge , 65 edging , 65, 81 equal weighting , 24 F fall line flat bahn , 81 flat ground flat jump flat step floating turn force forward leaning position.. 25, 30 fresh [virgin] snow friction front turn G garland,girlande (G) 82 goofy stance.. 7 gravity , 17 H heel weighting

170 161 I impact force impulse , 63 inertia force , 42 inertia system J jump turn... 83, 120 L law of accelaration. 14 law of action and reaction , 16 law of uniform velocity motion M mass mogul line moment of force. 26 N natural line natural stance 2 neutral position neutral position new line Newton law 14, 16 normal normal ski. 104, 115 normal O outfall P parallel turn.. 1, 84, 111, 120 pinciple of weighting normal to edge pivot spin.. 129, 130 plow (plough) spin 117 point of action , 16 porpois turn powder snow pressing , 95 Q quick turn R reaction regular stance. 7 restitution coefficient.. 48 reverse turn rigid body rocker ski rocker S saucer schuss scoot turn short turn skating ski skid spin skid turn.. 116, 129 slide turn.. 116, 129 sliding , 129 snow board , 78 speed spin , 115 step turn.. 111, 120 straight ski stretching stretching jump T tail slide terminal velocity throat thumb ball thumb ball toe weighting top bend top lowering , 137 torque traverse turn , 115 twist spin , 121 U uniform circular motion. 40

171 162 uniform motion unweighting , 95 up unweighting , 96 up unweighting.. 52 V vector velocity vertical , 30 W weight weighting weighting axis weighting point (asprin snow) saucer (edge) , 65 pinciple of weighting normal to edge 73 (edging) , 65, 81 centrifugal force. 41, 42, 117 vertical , 30 outfall weight (carving ski) (carving turn) 1, 105, 122 spin , 115 down unweighting.. 52 heel weighting angular accelaration pressing , 95 weighting weighting axis weighting point law of accelaration. 14 inertia system inertia force , 42 (cant) (camber) absorption , 49, 137 (garland,girlande (G)).. 82 equal weighting , 24 (quick turn) (goofy stance) bending , 135 bending jump down unweighting.. 52, 96 angulation , 94 (cross over) impact force backward leaning position. 25, 30 centripetal force rigid body backward weighting (bump) bump bahn top lowering , 137 action point of action , 16 - law of action and reaction , 16 mass traverse (jump turn) , 120 center of gravity terminal velocity gravity , 17 (short turn) stretching stretching jump up unweighting , 96 fresh [virgin] snow deep snow normal flat jump (ski) plow (plough) spin 117 skid spin (skid turn) , 129 (scoot turn) (skating) (step turn) , 120 (straight ski) (snow board) , 78 (slide turn) , 129 forward leaning position.. 25, 30

172 163 anticipation velocity (turn) , 115 body axis up unweighting.. 52 (check) , 89 force moment of force. 26 central weighting neutral position schuss arch , 30 toe weighting (tail slide) constant speed uniform circular motion. 40 uniform motion law of uniform velocity motion (top bend) (drift turn) (torque) (dolphin turn) (natural stance).. 2 (natural line) (neutral position) Newton law 14, 16 (new line) twist spin , 121 (normal) (normal ski) , 115 throat reaction restitution coefficient.. 48 pivot spin.. 129, 130 flat step (fall line) , 114, 119 (flat bahn) , 81 (floating turn) 149 (front turn) balance flat ground (vector) (bending) (bend) , 113 (porpois turn) thumb ball thumb ball friction (mogul line) sliding , 129 impulse , 63 (reverse turn) (regular stance).. 7 (rocker) (rocker ski) (powder snow) (back turn) unweighting , 95 speed (parallel turn)... 1, 84, 111, 120 (bank) (bank turn)

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O : 2014 4 10 1 2 2 3 2.1...................................... 3 2.2....................................... 4 2.3....................................... 4 2.4................................ 5 2.5 Free-Body

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 : 2016 4 1 1 2 1.1......................................... 2 1.2................................... 2 2 2 2.1........................................ 2 2.2......................................... 3 2.3.........................................

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

untitled

untitled i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51

More information

2

2 1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

All Rights Reserved (c) Yoichi OKABE 1998-present. [ HTML ] [ PDF ] [ ] [ ] [ Web ] [ ]

All Rights Reserved (c) Yoichi OKABE 1998-present. [ HTML ] [ PDF ] [ ] [ ] [ Web ] [ ] ( ) 2010 10 9 : 2003 3 18 All Rights Reserved (c) Yoichi OKABE 1998-present. [ HTML ] [ PDF ] [ ] [ ] [ Web ] [ ] 1 1.1 ( ) Y 1.2 ( ) 20cm 4km/hr 400m/hr 400m/4km 1/10 ( 5 ) 2 1/2.5 (20 ) 1/2.5 (20 ) 400m/hr

More information

建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/050043 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 1 38 2 15 2 1 2 2 1 2 2 1977 2007 2015 10 ii F P = mα g =

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

untitled

untitled 1998 6 25 ( ) 1 10 1982 10 28 37/7 1990 12 14 45/94 (WHO) 1 1989 12 8 NGO (ECE) 3 1995 10 25 ECE 1991 2 25 1992 3 17 1998 6 4 1 2 1. 2. a b c (a) (b) d 17 3. a b (a) c (b) 4. 5. 3 1. 2. 3. 4. 5. 6. 7.

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

Untitled

Untitled http://www.ike-dyn.ritsumei.ac.jp/ hyoo/dynamics.html 1 (i) (ii) 2 (i) (ii) (*) [1] 2 1 3 1.1................................ 3 1.2..................................... 3 2 4 2.1....................................

More information

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D> i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

More information

SC-85X2取説

SC-85X2取説 I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13

More information

かんたん操作ガイド

かんたん操作ガイド 1-2 i ii iii iv v vi vii viii 1Chapter 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1 3 2 4 1-8 1-9 1-10 2Chapter 2-1 2-2 Check! 2-3 Point 2-4 Point 2-5 Point 2-6 1 a a b c 2 a b c b 2-7 c 5 3 4 6 a 2-8 b b c b 7 a c a

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 2.2 1 2.2 2.2.1 (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 kpc, Θ 0 = 220 km s 1. (2.1) R 0 7kpc 8kpc Θ 0 180 km s 1 270

More information

3 5 18 3 5000 1 2 7 8 120 1 9 1954 29 18 12 30 700 4km 1.5 100 50 6 13 5 99 93 34 17 2 2002 04 14 16 6000 12 57 60 1986 55 3 3 3 500 350 4 5 250 18 19 1590 1591 250 100 500 20 800 20 55 3 3 3 18 19 1590

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2 212 1 6 1. (212.8.14) 1 1.1............................................. 1 1.2 Newmark β....................... 1 1.3.................................... 2 1.4 (212.8.19)..................................

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

これわかWord2010_第1部_100710.indd

これわかWord2010_第1部_100710.indd i 1 1 2 3 6 6 7 8 10 10 11 12 12 12 13 2 15 15 16 17 17 18 19 20 20 21 ii CONTENTS 25 26 26 28 28 29 30 30 31 32 35 35 35 36 37 40 42 44 44 45 46 49 50 50 51 iii 52 52 52 53 55 56 56 57 58 58 60 60 iv

More information

パワポカバー入稿用.indd

パワポカバー入稿用.indd i 1 1 2 2 3 3 4 4 4 5 7 8 8 9 9 10 11 13 14 15 16 17 19 ii CONTENTS 2 21 21 22 25 26 32 37 38 39 39 41 41 43 43 43 44 45 46 47 47 49 52 54 56 56 iii 57 59 62 64 64 66 67 68 71 72 72 73 74 74 77 79 81 84

More information

これでわかるAccess2010

これでわかるAccess2010 i 1 1 1 2 2 2 3 4 4 5 6 7 7 9 10 11 12 13 14 15 17 ii CONTENTS 2 19 19 20 23 24 25 25 26 29 29 31 31 33 35 36 36 39 39 41 44 45 46 48 iii 50 50 52 54 55 57 57 59 61 63 64 66 66 67 70 70 73 74 74 77 77

More information

MultiPASS Suite 3.20 使用説明書

MultiPASS Suite 3.20 使用説明書 TM MultiPASS Suite Ver.3.20 for Windows ii iii Copyright 2000 Canon Inc. ALL RIGHTS RESERVED iv v vi vii viii ix x 1 1 1-1 1 1 2 3 1-2 4 5 1 1-3 1 6 1-4 7 1 8 9 1-5 10 1 11 1-6 1 1-7 1 1-8 2 1 1-9 1 1

More information

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J 26 1 22 10 1 2 3 4 5 6 30.0 cm 1.59 kg 110kPa, 42.1 C, 18.0m/s 107kPa c p =1.02kJ/kgK 278J/kgK 30.0 C, 250kPa (c p = 1.02kJ/kgK, R = 287J/kgK) 18.0 C m/s 16.9 C 320kPa 270 m/s C c p = 1.02kJ/kgK, R = 292J/kgK

More information

I

I I II III IV V VI VII VIII IX X XI XII XIII XIV 1. 2 3 4 5 2. 6 7 8 3. 1 2 3 9 4 5 10 6 11 4. 1 2 3 1 2 12 1 2 3 1 2 3 13 14 1 2 1 15 16 1. 20 1 21 1 22 23 1 2 3 4 24 1 2 ok 25 1 2 26 1 2 3 27 2. 28

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

2 3 4 mdv/dt = F cos(-)-mg sin- D -T- B cos mv d/dt = F sin(-)-mg cos+ L- B sin I d 2 /dt 2 = Ms + Md+ Mn FMsMd MnBTm DLg 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Hm H h

More information

平成18年版 男女共同参画白書

平成18年版 男女共同参画白書 i ii iii iv v vi vii viii ix 3 4 5 6 7 8 9 Column 10 11 12 13 14 15 Column 16 17 18 19 20 21 22 23 24 25 26 Column 27 28 29 30 Column 31 32 33 34 35 36 Column 37 Column 38 39 40 Column 41 42 43 44 45

More information

III

III III 1 1 2 1 2 3 1 3 4 1 3 1 4 1 3 2 4 1 3 3 6 1 4 6 1 4 1 6 1 4 2 8 1 4 3 9 1 5 10 1 5 1 10 1 5 2 12 1 5 3 12 1 5 4 13 1 6 15 2 1 18 2 1 1 18 2 1 2 19 2 2 20 2 3 22 2 3 1 22 2 3 2 24 2 4 25 2 4 1 25 2

More information

iii iv v vi vii viii ix 1 1-1 1-2 1-3 2 2-1 3 3-1 3-2 3-3 3-4 4 4-1 4-2 5 5-1 5-2 5-3 5-4 5-5 5-6 5-7 6 6-1 6-2 6-3 6-4 6-5 6 6-1 6-2 6-3 6-4 6-5 7 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-10 7-11 8 8-1

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n

More information

MultiPASS B-20 MultiPASS Suite 3.10使用説明書

MultiPASS B-20 MultiPASS Suite 3.10使用説明書 TM MultiPASS Suite Ver.3.10 for Windows ii iii Copyright 1999 Canon Inc. ALL RIGHTS RESERVED iv v vi vii viii ix x 1 2 3 4 5 6 7 8 9 xi xii 1 1 1-1 1 2 3 1-2 4 5 1 1-3 6 1-4 1 7 8 1-5 9 10 11 1-6 1 1-7

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

...J......1803.QX

...J......1803.QX 5 7 9 11 13 15 17 19 21 23 45-1111 48-2314 1 I II 100,000 80,000 60,000 40,000 20,000 0 272,437 80,348 82,207 81,393 82,293 83,696 84,028 82,232 248,983 80,411 4,615 4,757 248,434 248,688 76,708 6,299

More information

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク 2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,

More information

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク 2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

エクセルカバー入稿用.indd

エクセルカバー入稿用.indd i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

ONLINE_MANUAL

ONLINE_MANUAL JPN ii iii iv v 6 vi vii viii 1 CHAPTER 1-1 1 2 1-2 1 2 3 4 5 1-3 6 7 1-4 2 CHAPTER 2-1 2-2 2-3 1 2 3 4 5 2-4 6 7 8 2-5 9 10 2-6 11 2-7 1 2 2-8 3 (A) 4 5 6 2-9 1 2-10 2 3 2-11 4 5 2-12 1 2 2-13 3 4 5

More information

ONLINE_MANUAL

ONLINE_MANUAL JPN ii iii iv v vi 6 vii viii 1 CHAPTER 1-1 1 2 1-2 1 2 3 1-3 4 5 6 7 1-4 2 CHAPTER 2-1 2-2 2-3 1 2 3 4 5 2-4 6 7 8 2-5 9 10 2-6 11 2-7 1 2 2-8 3 (A) 4 5 6 2-9 1 2-10 2 3 2-11 4 5 2-12 1 2 2-13 3 4 5

More information

01_.g.r..

01_.g.r.. I II III IV V VI VII VIII IX X XI I II III IV V I I I II II II I I YS-1 I YS-2 I YS-3 I YS-4 I YS-5 I YS-6 I YS-7 II II YS-1 II YS-2 II YS-3 II YS-4 II YS-5 II YS-6 II YS-7 III III YS-1 III YS-2

More information

untitled

untitled I...1 II...2...2 III...3...3...7 IV...15...15...20 V...23...23...24...25 VI...31...31...32...33...40...47 VII...62...62...67 VIII...70 1 2 3 4 m 3 m 3 m 3 m 3 m 3 m 3 5 6 () 17 18 7 () 17 () 17 8 9 ()

More information

NETES No.CG V

NETES No.CG V 1 2006 6 NETES No.CG-050001-V 2007 5 2 1 2 1 19 5 1 2 19 8 2 i 1 1 1.1 1 1.2 2 1.3 2 2 3 2.1 3 2.2 8 3 9 3.1 9 3.2 10 3.3 13 3.3.1 13 3.3.2 14 3.3.3 14 3.3.4 16 3.3.5 17 3.3.6 18 3.3.7 21 3.3.8 22 3.4

More information

18 A Study on the Running and Jumping by a One-leg Robot ( )

18 A Study on the Running and Jumping by a One-leg Robot ( ) 18 A Study on the Running and Jumping by a One-leg Robot ( ) 109535 1...3 1.1...3 1....4 1.3...4...5.1...5....6 3...7 3.1 CAD...7 3.1.1...7 3.1.CAD...7 3.1.3...9 3.1.4...10 3.1.5... 11 3.1.6...1 3....1

More information

2 g g = GM R 2 = 980 cm s ;1 M m potential energy E r E = ; GMm r (1.4) potential = E m = ;GM r (1.5) r F E F = ; de dr (1.6) g g = ; d dr (1.7) g g g

2 g g = GM R 2 = 980 cm s ;1 M m potential energy E r E = ; GMm r (1.4) potential = E m = ;GM r (1.5) r F E F = ; de dr (1.6) g g = ; d dr (1.7) g g g 1 1 (gravitation) 1.1 m F a ma = F (1.1) F a m F 1.1 m F a (1.1) m a F m F a m a F F a m 0 0 1.2 (universal gravitation) (potential) M m gravitational force F r F = ; GMm r 2 (1.2) G = 6:67 10 ;8 dyn cm

More information

ii iii iv CON T E N T S iii iv v Chapter1 Chapter2 Chapter 1 002 1.1 004 1.2 004 1.2.1 007 1.2.2 009 1.3 009 1.3.1 010 1.3.2 012 1.4 012 1.4.1 014 1.4.2 015 1.5 Chapter3 Chapter4 Chapter5 Chapter6 Chapter7

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

mt_4.dvi

mt_4.dvi ( ) 2006 1 PI 1 1 1.1................................. 1 1.2................................... 1 2 2 2.1...................................... 2 2.1.1.......................... 2 2.1.2..............................

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

活用ガイド (ソフトウェア編)

活用ガイド (ソフトウェア編) (Windows 95 ) ii iii iv NEC Corporation 1999 v P A R T 1 vi P A R T 2 vii P A R T 3 P A R T 4 viii P A R T 5 ix x P A R T 1 2 3 1 1 2 4 1 2 3 4 5 1 1 2 3 4 6 5 6 7 7 1 1 2 8 1 9 1 1 2 3 4 5 6 1 2 3 4

More information

廃棄物処理施設生活環境影響調査指針

廃棄物処理施設生活環境影響調査指針 - - 0.04ppm 0.1ppm 10ppm 0ppm 0.10mg/m 3 0.0 mg/m 3 0.06ppm 0.04ppm 0.06ppm 0.003 mg/m 3 0. mg/m 3 0. mg/m 3 0.15 mg/m 3 - -1 - 0.6pg-TEQ/m 3 53 3 1 0.10.ppm 0.0ppm 5 6 16 136 0.0ppm 7 15 7 31 0.04g-Hg/m

More information

困ったときのQ&A

困ったときのQ&A ii iii iv NEC Corporation 1997 v P A R T 1 vi vii P A R T 2 viii P A R T 3 ix x xi 1P A R T 2 1 3 4 1 5 6 1 7 8 1 9 1 2 3 4 10 1 11 12 1 13 14 1 1 2 15 16 1 2 1 1 2 3 4 5 17 18 1 2 3 1 19 20 1 21 22 1

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

2004 2 1 3 1.1..................... 3 1.1.1................... 3 1.1.2.................... 4 1.2................... 6 1.3........................ 8 1.4................... 9 1.4.1..................... 9

More information