11-4 地震波の伝播と強震動生成のシミュレーション
|
|
|
- せいごろう かやぬま
- 6 years ago
- Views:
Transcription
1 11-4 地震波の伝播と強震動生成のシミュレーション Numerical Simulation of Seismic Wave Propagation and the Generation of Strong Ground Motions 東京大学地震研究所古村孝志 Earthquake Research Institute, University of Tokyo はじめに 将来発生が予想される大地震に対し, 予めコンピュータシミュレーションにより強震動を精度良く推定することは, 地震災害軽減のための重要な課題である 地震動は震源放射特性, 伝播経路の付近質性, そして表層地盤の増幅特性の影響を受けているため, 強震動シミュレーションにはこの 3 つの影響の適切なモデル化が不可欠である 3 次元不均質場での波動場の評価には, 有限要素法や差分法などの数値計算法が一般に用いられている これらの手法を用いた強震動予測シミュレーションの実用化には, 近年コンピュータ性能の飛躍的な向上と並列計算技術の進歩が大きく寄与している ここでは,1995 年兵庫県南部地震と 2000 年鳥取県西部地震の 2 つを中心に波動伝播 強震動生成シミュレーションに関わる最近の成果を述べる また,2002 年 3 月に運用が開始された, 世界最速の超並列ベクトル計算機 地球シミュレータ を用いて進行中の南海トラフ巨大地震の強震動計算についても紹介する 1995 年兵庫県南部地震 : 基盤構造と 震災の帯 兵庫県南部地震では, 神戸市須磨区から西宮市にかけての, 幅 1~2km 長さ 20km 以上にわたる狭い帯状の範囲に被害が集中したこと ( 震災の帯 ) が特徴である ( 第 1 図 ) 神戸 阪神地域の地下では六甲山から大阪湾にかけて基盤面が階段状に落ち込んでおり, その上には軟弱な堆積層が厚く覆っていることから, 震災の帯の生成には, この不均質基盤構造が大きく関係していると考えられる 神戸市街地の 3 次元地下構造モデルと震源断層モデルを組み込んだ数値シミュレーション ( 第 2 図 ) により,I) 断層から放射された地震波が破壊先端に強いディレクティビティパルスを生成し, II) これが基盤と堆積層境界で強い増幅 干渉を起し, そしてIII) 地表に局所的に強震域 ( 震災の帯 ) を生成する一連のプロセスが確認された 1 )2) 2000 年鳥取県西部地震 : 観測とシミュレーション 強震観測網 (K-NET と KiK-net) の整備により, 現在では日本列島を地震波が伝播する様子を直接眺めることが可能になった 鳥取県西部地震では 521 観測点で強震波形記録が得られており, これらを空間補間することにより波動伝播のアニメーションを合成することができた ( 第 3 図 ) これをより, 周期 8~10 秒の Love 波が西南日本を 2.6~2.8km/s の群速度で伝播していく様子が確認でき -568-
2 る また, 平野部の表層地盤で強く増幅され, 長時間にわたって地震動が継続することもわかる 次に, 観測された波動伝播の特徴の, 計算機シミュレーションによる再現を試みた 西南日本の 820*410*122km の領域を 0.8km の格子間隔で分割し, 各格子点に地殻 上部マントル構造の物性値 (Vp, Vs, Ro, Q) を与えた ここで Vp 値は人工地震探査や走時トモグラフィーの結果をもとに決めた また Vs 値は資料が少ないため, 観測された Love 波の形状を良く説明するようにモデルの修正と波動計算を繰り返し行って決定した 計算は東大情報基盤センターの SR8000/MPP を用いて行ない,16CPU を用いた並列計算には約 1 時間を要した 計算結果をもとに作成した波動伝播のアニメーションには, 断層面上の浅い (h=4km) アスペリティーから放射されたSH 波が大振幅のLove 波を生成し, これが西南日本を伝播していく様子がよく現れている ( 第 4 図 ) また,Love 波が平野の表層地盤で強く増幅されるとともに, 散乱や分散により地動が長く続く様子も良く再現されている 3) 地球シミュレータによる大規模計算 : 南海トラフ地震の強震動シミュレーション このように, 観測とシミュレーションとの比較から, 地下構造モデルの最適化が進められ 最終的に得られた日本列島のモデルは, 将来発生が予想される南海トラフ地震の強震動の評価に利用できる また, 地球シミュレータ (5120CPU, 40Tflops) の完成により, 大規模な地震波動伝播シミュレーションが実現可能となった 第 5 図は地球シミュレータを用いて求められた 1944 年東南海地震の地震動と震度分布である 計算では最大 1.5Hzまでの波動伝播を評価している 計算結果は観測記録をよく説明していることがわかる ( 第 6 図 ) これまでは計算機の制限から, 計算可能な周波数が 0.5Hz 程度以下に限られており, たとえば震度のように, 数 Hz 程度までの高周波が関与する現象を正しく再現することが難しかった 4) 本計算では, まだ地球シミュレータの 1% 程度の資源 (64CPU) を利用しているに過ぎない 今後地下構造探査や震源モデルの研究の進展とともに, 詳細な地下構造 震源モデルを用いた, より高精度な波動伝播 強震動評価が十分に実現可能になったことを意味している 参考文献 1) Furumura, T. and K. Koketsh (1998): Specific distribution of ground motion during The 1995 Kobe earthquake and its generation mechanism, Geophys. Res. Lett.. 25, ) Furumura, T. and K. Koketsu, (2000): Paralel 3-D Simulation of ground motion for the 1995 Kobe earthquake, Pure and Applied Geophysics, 157, ) Furumura T., B.L.N. Kennett, K. Koketu (2002): Visualization of 3-D wave propagation from the 2000 Tottori-ken Seibu, Japan earthquake: Observation and numerical simulation, Bull. Seiem. Soc. in press. 4) Furumura, T. (2002): Parallel simulation of seismic wave propagation, High Performance Computing, in Lecture Notes Computer Sciences, Eds. H. P. Zima et al., , Springer
3 1995 Fig.1 Damage belt of the 1995 Hyogo-ken Nanbu Earthquake. Tick black lines indicate the fault and the area painted in pink denotes the area of JMA intensity 7 (damage belt). a-c Fig.2 Snapshots of seismic wave propagation during the Hyogo-ken Nanbu earthquake derived from numerical simulation of strong ground motion. Simulation results (peak ground velocity) explain the damage belt fairly well.
4 K-Net, KiK-net Fig.3 Wave propagation character during the 2000 Tottori-ken Seibu Earthquake derived from an interpolation of waveforms at 521 K-net and KiK-net stations. 4 Fig.4 Distribution of ground velocity motions during the 2000 Tottori-ken Seibu earthquake, comparing the observation (left) and simulation (right).
5 Fig.5 Numerical simulation of strong ground motions for the 1944 Tonankai earthquake. A snapshot of seismic wave propagation for the earthquake, simulated (cal) and observation (obs.) waveforms at three stations. 6 (a)1944 (b) Fig.6 (a) Distribution of seismic intensities for the 1944 Tonankai earthquake derived by computer simulation and (b) observed JMA intensity.
資料 1 南海トラフの巨大地震モデル検討会 第 6 回会合 深部地盤モデルの作成の考え方 平成 23 年 12 月 12 日 1. 震度分布の推計方法 中央防災会議 (2003) 1 は 強震波形計算によって求められた地表の震度と経験的手法によって求められた地表の震度を比較検討し 強震波形計算による結果を主に それにより表現できていないところについては 経験的手法による結果も加えて 最終的な震度分布を求めている
/ / M. km km. m 図 1 CMT Hi-net CMT F-net CMT 図 1 PGV K-NET KiK-net 2. 地震および地震動の概要 / M JMA. / M JMA. 図 1 CMT PGV
J. JSNDS 35-2 77-86 2016 平成 28 年 (2016 年 ) 熊本地震の概要と益城町周辺における余震 常時微動観測 宮本崇 1 飯山かほり 2 後藤浩之 3 盛川仁 2 Summary of the Kumamoto Earthquake and aftershock/microtremer observations in and around Mashiki town Takashi
SEISMIC HAZARD ESTIMATION BASED ON ACTIVE FAULT DATA AND HISTORICAL EARTHQUAKE DATA By Hiroyuki KAMEDA and Toshihiko OKUMURA A method is presented for using historical earthquake data and active fault
07 別冊③三次元差分法を用いた長周期地震動の推計手法
別冊 3 三次元差分法を用いた 長周期地震動の推計手法 平成 7 年 月 南海トラフの巨大地震モデル検討会 首都直下地震モデル検討会 . 長周期地震動に用いる計算手法.... スタッガード グリッドによる 3 次元差分法の概要... 3 3. 深い地盤構造モデル (3 次元速度層モデル )... 7 . 長周期地震動に用いる計算手法 長周期地震動を再現する計算手法は Graes ) や Piarka
7-1 2007年新潟県中越沖地震(M6.8)の予測について
M. On Forecast of the Niigata Chuetsu-oki Earthquake (M. Kiyoo Mogi (M. ) M. (Mogi, ) M. M. - 327 - (M. ) M. M AB CD (a) AB A B (b) C D M M. M - - 328 - M. (M. ) (M. ) (Ohta et al., ) (Mogi, ) L M Log
強震動委員会中原恒 ( 東北大学大学院理学研究科 ) 震源から放射された地震動の振幅は, 通常は伝播距離とともに減衰する. 波面が広がることに起因する部分は幾何減衰と呼ばれる. 幾何減衰を除いた部分は, 伝播距離あるいは伝播時間とともに指数関数的に減衰するものと表現され, その減衰を特徴づける量が
強震動委員会中原恒 ( 東北大学大学院理学研究科 ) 震源から放射された地震動の振幅は, 通常は伝播距離とともに減衰する. 波面が広がることに起因する部分は幾何減衰と呼ばれる. 幾何減衰を除いた部分は, 伝播距離あるいは伝播時間とともに指数関数的に減衰するものと表現され, その減衰を特徴づける量が Q 値である.Q 値には, 内部減衰 ( 最終的に熱エネルギーに変換する部分 ) と散乱減衰 ( 地下の不均質構造により直達地震波が散乱波になる部分
<4D F736F F F696E74202D AD482C682E882DC82C682DF90E096BE8E9197BF C C C816A2E B93C782DD8EE682E890EA97705D>
南海トラフの巨大地震モデル検討会中間とりまとめポイント はじめに Ⅰ 章 中間とりまとめの位置づけ 南海トラフの巨大地震モデルの想定震源域 想定津波波源域の設定の考え方や最終とりまとめに向けた検討内容等をとりまとめたもの 南海トラフの最大クラスの巨大な地震 津波に関する検討スタンス Ⅱ 章 これまでの対象地震 津波の考え方 過去数百年間に発生した地震の記録 (1707 年宝永地震以降の 5 地震 )
Key Words: probabilisic scenario earthquake, active fault data, Great Hanshin earthquake, low frequency-high impact earthquake motion, seismic hazard map 3) Cornell, C. A.: Engineering Seismic
Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)
Journal of the Geodetic Society of Japan Vol. 27, No. 3, (1981), pp. 183-191 Research on Fault Movement by means of Aero-Triangulation ( T) (An experiment on the earthquake fault of the Izu-Oshima Kinkai
Microsoft Word doc
. 正規線形モデルのベイズ推定翠川 大竹距離減衰式 (PGA(Midorikawa, S., and Ohtake, Y. (, Attenuation relationships of peak ground acceleration and velocity considering attenuation characteristics for shallow and deeper earthquakes,
地質調査総合センター研究資料集, no. 586 日本列島の地殻温度構造と粘弾性構造の 3 次元モデルおよび地殻活動シミュレーションに関する数値データ Digital data of three-dimensional models of thermal and viscoelastic crust
地質調査総合センター研究資料集, no. 586 日本列島の地殻温度構造と粘弾性構造の 3 次元モデルおよび地殻活動シミュレーションに関する数値データ Digital data of three-dimensional models of thermal and viscoelastic crustal structures of the Japanese Islands and related data
目 次 1. 想定する巨大地震 強震断層モデルと震度分布... 2 (1) 推計の考え方... 2 (2) 震度分布の推計結果 津波断層モデルと津波高 浸水域等... 8 (1) 推計の考え方... 8 (2) 津波高等の推計結果 時間差を持って地震が
別添資料 1 南海トラフ巨大地震対策について ( 最終報告 ) ~ 南海トラフ巨大地震の地震像 ~ 平成 25 年 5 月 中央防災会議 防災対策推進検討会議 南海トラフ巨大地震対策検討ワーキンググループ 目 次 1. 想定する巨大地震... 1 2. 強震断層モデルと震度分布... 2 (1) 推計の考え方... 2 (2) 震度分布の推計結果... 2 3. 津波断層モデルと津波高 浸水域等...
地震の大きさの予測可能性と緊急地震速報
12-1 地震の大きさの予測可能性と緊急地震速報 Predictability of Earthquake Magnitude and Earthquake Early Warning 気象庁 Japan Meteorological Agency 緊急地震速報は, 震源近傍の地震計で捉えた P 波を迅速に解析し, 予想される震度及び S 波の予想到達時刻を推定して大きく揺れ始める前に伝えることにより,
1. 目的 日本は 4 つのプレートがぶつかり合う地域に位置しているため 地震が多く発生し 古くから地震 災害に悩まされてきた 地震による被害を軽減するためには あらかじめ起こりうる被害を予測して おき 予測結果に基づいた対策を講じておくことが重要である 計算技術の向上に伴い 地震波の伝 播や地盤応
地震時の大規模平野の地盤挙動と斜面崩壊シミュレーション 技術の開発 プロジェクト責任者 栗山利男株式会社構造計画研究所 著 者 司 宏俊 * 1 西條 裕介 * 1 正月 俊行 * 1 内山 不二男 * 1 諸遊 克己 * 1 嶋村 洋介 * 1. 戸井 隆 * 1 渡辺 高志 * 1 廣川 雄一 * 2 *1 株式会社 構造計画研究所 *2 独立行政法人海洋研究開発機構 利用施設 : 利用期間 :
日本海溝海底地震津波観測網の整備と緊急津波速報 ( 仮称 ) システムの現状と将来像 < 日本海溝海底地震津波観測網の整備 > 地震情報 津波情報 その他 ( 研究活動に必要な情報等 ) 海底観測網の整備及び活用の現状 陸域と比べ海域の観測点 ( 地震計 ) は少ない ( 陸上 : 1378 点海域
資料 2 総合科学技術会議評価専門調査会 日本海溝海底地震津波観測網の整備及び緊急津波速報 ( 仮称 ) に係るシステム開発 評価検討会 ( 第 2 回 ) 資料 平成 23 年 11 月 10 日 文部科学省 研究開発局地震 防災研究課 日本海溝海底地震津波観測網の整備と緊急津波速報 ( 仮称 ) システムの現状と将来像 < 日本海溝海底地震津波観測網の整備 > 地震情報 津波情報 その他 ( 研究活動に必要な情報等
(1) 2
- - 1 2 34 5 1192-0397 1-1 E-mail:[email protected] 2270-1194 1646 E-mail:[email protected] 2270-1194 1646 E-mail: [email protected] 4270-1194 1646 E-mail: [email protected]
2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録
遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数
スーパーコンピュータ「京」を用いた防災・減災研究
Studies for Prevention and Mitigation of Natural Disasters Using the K computer 上原均 安藤和人 あらまし HPCI 3 3 Abstract Japan has often been hit by serious natural disasters. To prevent and mitigate disasters,
概論 : 人工の爆発と自然地震の違い ~ 波形の違いを調べる前に ~ 人為起源の爆発が起こり得ない場所がある 震源決定の結果から 人為起源の爆発ではない事象が ある程度ふるい分けられる 1 深い場所 ( 深さ約 2km 以上での爆発は困難 ) 2 海底下 ( 海底下での爆発は技術的に困難 ) 海中や
地震波からみた自然地震と爆発の 識別について 平成 22 年 9 月 9 日 ( 財 ) 日本気象協会 NDC-1 概論 : 人工の爆発と自然地震の違い ~ 波形の違いを調べる前に ~ 人為起源の爆発が起こり得ない場所がある 震源決定の結果から 人為起源の爆発ではない事象が ある程度ふるい分けられる 1 深い場所 ( 深さ約 2km 以上での爆発は困難 ) 2 海底下 ( 海底下での爆発は技術的に困難
国土技術政策総合研究所 研究資料
3. 解析モデルの作成汎用ソフトFEMAP(Ver.9.0) を用いて, ダムおよび基礎岩盤の有限要素メッシュを8 節点要素により作成した また, 貯水池の基本寸法および分割数を規定し,UNIVERSE 2) により差分メッシュを作成した 3.1 メッシュサイズと時間刻みの設定基準解析結果の精度を確保するために, 堤体 基礎岩盤 貯水池を有限要素でモデル化する際に, 要素メッシュの最大サイズならびに解析時間刻みは,
Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Departmen
Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Department of Earth Sciences, Nagoya University (Received January
陦ィ邏・3
研 究 ニ ュ ー ス 地震波で覗いた マントル最下部まで沈んだ 表面地殻の岩石質 ロバート ゲラー 地球惑星科学専攻 教授 私たちの立っている地殻のもとには D" 層はマントル対流における熱境界層 行った 図 1 その結果 他の地域で 地球の全体積の 8 割を超える 岩石で であり そこでは温度の不均質や組成の の D 領域構造と異なる S 波速度の 構成されているマントル そしてさらに 分化の可能性が示唆されており
<4D F736F F F696E74202D2091E63489F15F436F6D C982E682E992B48D8291AC92B489B F090CD2888F38DFC E B8CDD8
Web キャンパス資料 超音波シミュレーションの基礎 ~ 第 4 回 ComWAVEによる超高速超音波解析 ~ 科学システム開発部 Copyright (c)2006 ITOCHU Techno-Solutions Corporation 本日の説明内容 ComWAVEの概要および特徴 GPGPUとは GPGPUによる解析事例 CAE POWER 超音波研究会開催 (10 月 3 日 ) のご紹介
untitled
48 B 17 4 Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 48 B, 2005 (CO 2 ) (2003) Sim-CYCLE(Ito and Oikawa, 2000) CO 2 CO 2 Figure 1 CO 2 0 (Denning et al., 1995) CO 2 (2004) Sim-CYCLE CO 2 CO 2
On the Detectability of Earthquakes and Crustal Movements in and around the Tohoku District (Northeastern Honshu) (I) Microearthquakes Hiroshi Ismi an
On the Detectability of Earthquakes and Crustal Movements in and around the Tohoku District (Northeastern Honshu) (I) Microearthquakes Hiroshi Ismi and Akio TAKAGI Observation Center for Earthquake Prediction,
地震動予測手法の現状
[email protected] 3 4) ( ) / 5) 6) 7) 8) 995 G 地震動の大きさ 性能レベル グレード Ⅰ グレード Ⅱ グレード Ⅲ Q 基準法稀地震 基準法極稀地震 軽微な被害 ~ 小破 ~ 中破 レベル クライテリア 内陸直下型地震 軽微な被害 ~ 小破 ~ 中破 軽微な被害 ~ 小破 ~ 中破 の領域の検証法の提案を目指す 耐力劣化点 レベル
Microsoft PowerPoint - 科学ワインバー#6
インドネシア Wayang Windu 地熱地域 (2018 年 7 月撮影 ) Wayang Windu 1 Transmitter and Receiver Loop (Coincident Loop) 20m x 20m Site WW09 Main Unit (TEM-FAST48) 1.3kg weight 2 Final Result (Subsurface structure derived
Microsoft Word - 0_0_表紙.doc
2km Local Forecast Model; LFM Local Analysis; LA 2010 11 2.1.1 2010a LFM 2.1.1 2011 3 11 2.1.1 2011 5 2010 6 1 8 3 1 LFM LFM MSM LFM FT=2 2009; 2010 MSM RMSE RMSE MSM RMSE 2010 1 8 3 2010 6 2010 6 8 2010
プレス発表資料 平成 27 年 3 月 10 日独立行政法人防災科学技術研究所 インドネシア フィリピン チリにおけるリアルタイム 津波予測システムを公開 独立行政法人防災科学技術研究所 ( 理事長 : 岡田義光 以下 防災科研 ) は インドネシア フィリピン チリにおけるリアルタイム地震パラメー
プレス発表資料 平成 27 年 3 月 10 日独立行政法人防災科学技術研究所 インドネシア フィリピン チリにおけるリアルタイム 津波予測システムを公開 独立行政法人防災科学技術研究所 ( 理事長 : 岡田義光 以下 防災科研 ) は インドネシア フィリピン チリにおけるリアルタイム地震パラメータ推定システム (SWIFT) と連動した津波予測システムを公開します 今回公開するのは SWIFT
7-3 2004年新潟県中越地震
04 Mid Niigata earthquake Earthquake Research Institute, University of Tokyo. 04 23 17 6 M6.8 7 18 12 M6.018 34 M6. 6 27 40 M6.1 11 8 11 1 M.9 30km M6 1 14 1) 2 RMS P 0.17 0.074 S 0.476 0.166 900 P 3 S
目 次 要旨 3 1. はじめに 4 2. SPGAモデルおよびSMGAモデルから計算される地震動の特徴 震源モデル 地震動算定条件 地震動算定結果 6 3. 南海トラフの地震を対象としたSPGAモデルの設定 対象とする地震 SPGAのパラ
目 次 要旨 3 1. はじめに 4 2. SPGAモデルおよびSMGAモデルから計算される地震動の特徴 4 2.1 震源モデル 5 2.2 地震動算定条件 6 2.3 地震動算定結果 6 3. 南海トラフの地震を対象としたSPGAモデルの設定 8 3.1 対象とする地震 8 3.2 SPGAのパラメターとその配置 8 4. 地震動算定条件 15 5. 地震動算定結果と考察 15 5.1 PSI 値の空間的な分布
REPORT OF HYDROGRAPHIC AND OCEANOGRAPHIC RESEARCHES JAPAN COAST GUARD TOKYO, JAPAN Older issues http://www1.kaiho.mlit.go.jp/kikaku/kenkyu/liste.html Azusa NISHIZAWA, Tomozo ONO, Noboru SASAHARA, Hiroshi
* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R
38 2002 7 2000 9 * Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National Research Institute for Earth Science and Disaster Prevention,
Microsoft PowerPoint - matsu_AIJRScom06.ppt
日本の地形 地盤デジタル マップと表層地盤特性 松岡昌志 防災科学技術研究所地震防災フロンティア研究センター 1 巨大地震の想定震源域 東南海地震 (M J 8.1) 南海地震 (M J 8.4) 東海地震 (M J 8.0) ( 内閣府中央防災会議 ) 0 200 km 南海トラフ 2 推定震度分布 ( 内閣府中央防災会議 ) 3 地震動予測地図 ( 確率論的地震動予測地図 ) ( 地震調査研究推進本部
咲洲地区における 地震動作成方法
資料 1 咲洲地区における地震動 1 前回ミーティングでのご意見 (1) 意見 1 地表 / 地中のフーリエスペクトル比が観測記録と整合しているか? 意見 2 N319E 成分と N229E 成分の卓越周期の違いが観測記録にもみられるか? 2 前回ミーティングでのご意見 (2) 意見 1 地表 / 地中のフーリエスペクトル比が観測記録と整合しているか? N319E( 長辺方向 ) N229E( 短辺方向
風力発電インデックスの算出方法について 1. 風力発電インデックスについて風力発電インデックスは 気象庁 GPV(RSM) 1 局地気象モデル 2 (ANEMOS:LAWEPS-1 次領域モデル ) マスコンモデル 3 により 1km メッシュの地上高 70m における 24 時間の毎時風速を予測し
風力発電インデックスの算出方法について 1. 風力発電インデックスについて風力発電インデックスは 気象庁 GPV(RSM) 1 局地気象モデル 2 (ANEMOS:LAWEPS-1 次領域モデル ) マスコンモデル 3 により 1km メッシュの地上高 70m における 24 時間の毎時風速を予測し 2000kW 定格風車の設備利用率として表示させたものです 数値は風車の定格出力 (2000kW)
2016年熊本地震 地震調査委員会の報告
プレス ブリーフィング 熊本地震と日本の地震活動 The 2016 Kumamoto Earthquake and Japanese Seismic Activity 東京大学地震研究所地震予知研究センター平田直 2016/4/27 FPCJ プレスプレス ブリーフィング 1 益城町で震度 7 を記録した熊本地方の二つの地震 Two large earthquakes with seismic intensity
< C46967B926E906B8C9A95A BBF E518D6C95B68CA382CC82DD2D332E786477>
資料 15-4- Ⅲ.7 2016 年熊本地震で生じた地表地震断層による影響 頁 1 2 3 4 5 7 13 17 23 31 35 (3) 参考文献 1) 香川 吉田 上野, 2016 年熊本地震の益城町郊外に生じた地表地震断層近傍における震動被害に関する考察, 日本地震学会 2016 年度秋季大会, S21-31, 2016 年 2) 香川 上野 吉田, 2016 年熊本地震で被災した益城町中心部における南北測線の微動特性,
日本海地震・津波調査プロジェクト
(1) (a) (b) (c) (d) 1) 2) 3) 4) 5) 6) 7) 8) (e) (2) (a) (b) 1) (c) (d) (e) (f) (3) 131 (1) (a) 2.2.2 (b) (c) (d) 1) 6 2) 6 3) 6 132 4) 1 3 5 6 6) 1 6 7) 1 6 8 1 3 (e) 6 (2) (a) 133 (1) 27 26 8 27 8 6 27
Autodesk Inventor Skill Builders Autodesk Inventor 2010 構造解析の精度改良 メッシュリファインメントによる収束計算 予想作業時間:15 分 対象のバージョン:Inventor 2010 もしくはそれ以降のバージョン シミュレーションを設定する際
Autodesk Inventor Skill Builders Autodesk Inventor 2010 構造解析の精度改良 メッシュリファインメントによる収束計算 予想作業時間:15 分 対象のバージョン:Inventor 2010 もしくはそれ以降のバージョン シミュレーションを設定する際に 収束判定に関するデフォルトの設定をそのまま使うか 修正をします 応力解析ソルバーでは計算の終了を判断するときにこの設定を使います
3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考
3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる
技術資料 JARI Research Journal OpenFOAM を用いた沿道大気質モデルの開発 Development of a Roadside Air Quality Model with OpenFOAM 木村真 *1 Shin KIMURA 伊藤晃佳 *2 Akiy
技術資料 176 OpenFOAM を用いた沿道大気質モデルの開発 Development of a Roadside Air Quality Model with OpenFOAM 木村真 *1 Shin KIMURA 伊藤晃佳 *2 Akiyoshi ITO 1. はじめに自動車排出ガスの環境影響は, 道路沿道で大きく, 建物など構造物が複雑な気流を形成するため, 沿道大気中の自動車排出ガス濃度分布も複雑になる.
スライド 1
P.1 NUMO の確率論的評価手法の開発 原子力学会バックエンド部会第 30 回 バックエンド 夏期セミナー 2014 年 8 月 7 日 ( 木 ) ビッグパレットふくしま 原子力発電環境整備機構技術部後藤淳一 確率論的アプローチの検討の背景 P.2 プレート運動の安定性を前提に, 過去 ~ 現在の自然現象の変動傾向を将来に外挿し, 地層の著しい変動を回避 ( 決定論的アプローチ ) 回避してもなお残る不確実性が存在
