|
|
|
- さみ みうら
- 6 years ago
- Views:
Transcription
1 09 8 9
2
3 3 Chebyshev Chebyshev-Gauss Gauss Chebyshev-Gauss Chebyshev Chebyshev-Gauss-Lobatto Gauss-Lobatto Chebyshev-Gauss-Lobatto Chebyshev [z b, z t ]
4 Chebyshev Chebyshev-Gauss-Lobatto Gegenbauer 9. Rodrigues Gegenbauer Laplace Hermite Hermite Rodrigues Hermite
5 5 Chebyshev * Fourier. x T m x cos[m arccosx]. cos mθ cos θ m T m x m T m. T m m.3 max T mx.4 x. π n m 0 T m xt n x π/ n m 0 x 0 n m.5 * Chebyshev Tschebyscheff Wikipedia Chebyshev
6 x cos θ π T m xt n x cosmθ cosnθdθ x 0 π 0 π n m 0 π n m 0 0 n m {cos[m + nθ] + cos[m nθ]} dθ.6.3 m x cos θ T m cosmθ.7 T 0 T cos θ x T cos θ Re iθ Rcos θ + i sin θ cos θ sin θ cos θ x T 3 cos 3θ Re 3iθ Rcos θ + i sin θ 3 cos 3 θ 3 cos θ sin θ 4 cos 3 θ 3 cos θ 4x 3 3x T 4 cos 4θ Re 4iθ Rcos θ + i sin θ 4 cos 4 θ 6 cos θ sin θ + sin 4 θ cos 4 θ 6 cos θ cos θ + cos θ 8 cos 4 θ 8 cos θ + 8x 4 8x + T 5 cos 5θ Re 5iθ Rcos θ + i sin θ 5 cos 5 θ 0 cos 3 θ sin θ + 5 cos θ sin 4 θ cos 5 θ 0 cos 3 θ cos θ + 5 cos θ cos θ 6 cos 5 θ 0 cos 3 θ + 5 cos θ 6x 5 0x 3 + 5x.8 6
7 Wikipedia Chebyshev polynomials T 0 x.9 T x x.0 T x x. T 3 x 4x 3 3x. T 4 x 8x 4 8x +.3 T 5 x 6x 5 0x 3 + 5x.4 m T m cos mθ Re imθ Rcos θ + i sin θ m m/ k0 m/ k0 m/ k0 m/ k0 m k m k m k k l0 k cos m k θ sin k θ k cos m k θ cos θ k k cos m k θ m k k l k l k l l0 k l cos m k l θ cos l θ.5 α α n k l l n T m m/ n0 m/ kn m k k n Gould, 00 m/ kn m k k n mm n m n n m/ m 0 * T m m m m/ n0 m/ n0 m/ n0 m m n m m n n n cos m n θ.6 m n n n cos m n θ n m n! n!m n! n cos θ m n n m n! n!m n! n x m n * m 0 m n
8 m T m+ x cos[m + arccosx].9 T m x cos[m arccosx].0 T m+ x + T m x cos[m arccosx] cos[arccosx] xt m x. T m+ x xt m x T m x. T 0 x.3 T x x.4 m T 0 x.5 T x x.6 T x x.7 T 3 x 4x 3 3x.8 T 4 x 8x 4 8x +.9 T 5 x 6x 5 0x 3 + 5x.30. T n+m x cos[n + m arccosx].3 T n m x cos[n m arccosx].3 T n+m x + T n m x cos[n arccosx] cos[m arccosx] T n xt m x.33 T n+m x + T n m x T n xt m x.34 8
9 dt m+ T m + x dt m dt m.35 dt dt.37 d T m+ 4 dt m + T m xd d T m.38 d T d T T m x cos[m arccosx].4 x d T sin[m arccosx] mx m x.4 T m+ x cos[m + arccosx].43 T m x cos[m arccosx].44 T m+ x T m x sin[m arccosx] sin[arccosx] sin[m arccosx] x.45 x d T mx m [T m x T m+ x].46 9
10 m m 0 dt x d T mx x d T mx m [ d T m x d ] T m+x x d T mx m x x [T m x T m+ x] m 4 x [m {T m x T m x} m + {T m x T m+ x}].49 4 x d T mx m [m T m x + 4xT m x mt m x 4xT m+ x + m + T m+ x].50 m m 0, d T d T dt m+ m + dt m m T m+ cos[m + θ].53 T m cos[m θ].54 x cosθ.55 {sin[m + θ] sin[m θ]} sin θ cosmθ.56 T m 0
11 m 0, T 0 dt dt T T m m + dt m+ dt m m m.57 dt m mt m + m dt m m [ T m x SmT m x x + m x d ] T m x.59 [ T m+ x S mt + m x x m x d ] T m x T 0 x T x + C.6 T x 4 T x + C.6 T m x [ Tm+ x m + T m x m ] + C m.63 C. m T m x T m x m m T m+x x m T mx + C.64 x m + T mx m m T m x + C.65
12 m 0, T 0 x T T.66 T x 4 T T 0.67 m T m x [ Tm+ T m+ T ] m T m m + m [ m+ ] m m + m [ m+ ] m { m even m 0 odd m x F x *3 F x f 0 T 0 x + f m T m x.69 m f m π F xt m x x.70 x cos θ f m π π 0 F cos θt m cos θdθ.7.5. *3
13 dt n x dθ dt n cos θ dθ sin θ d cosnθ dθ n sinnθ sin θ n einθ e inθ e iθ e iθ n [e in θ + e in 3θ + + e in 3θ + e in θ] { n [cosn θ + cosn 3θ + + cos θ] even n n [ ] cosn θ + cosn 3θ + + cos θ + odd n { n [Tn x + T n 3 x + + T x] even n n [ T n x + T n 3 x + + T x + T 0x ] odd n { n n j,odd [ T jx even n n ] n j,even T jx + T 0x odd n T 0 { d T n n n dt j x j,odd even n { n n j,even dt j x odd n n [ n j,odd j j k,even T kx + T 0x even n n n j,even j j k,odd T kx odd n [ n n k,even n k,odd { 4n jk+,odd jt kx + ] n j j,odd T 0x even n 4n n jk+,even jt kx odd n { [ n ] 4n k,even n k 4 T k x + n 8 T 0x even n 4n n k,odd n k 4 T k x odd n { [ n ] n k,even n k T k x + n T 0x even n n n k,odd n k T k x odd n ] Lagrange sampling points collocation points Gauss Gauss-Lobatto Gauss Gauss-Lobatto Gauss-Lobatto 3
14 minimax Lagrange Runge Gibbs FFT.6. Chebyshev-Gauss.6.. Gauss N T N cosnθ.74 x cos θ.75 Gauss Chebyshev-Gauss grid points k,..., N N k + θ k π.76 N N k + x k cos π.77 N N θ [π, 0] m 0 m N T m cosmθ.78 x cos θ.79 Gauss N k + T m x k cos m π N.80 0 n, m N N N n m 0 T m x k T n x k N/ n m 0 k 0 n m.8 4
15 N T m x k T n x k k N k cos m N k + cos N k + π cos n N [ cos m + n m n N k + N ] N k + π N N k + π N π.8 cosine l < l < N N k N k + cos l π N R N cos l k N π N R exp il k N π N exp il k N π k k k Re il/nπ e ilπ e il/nπ l R e il/nπ e il/nπ [ l ]R i sinl/nπ 0.83 cosine l 0 n m 0 N T m x k T n x k k N k + cos [ cos m + n m n N k + N ] N k + π N N n m 0 N/ n m 0 0 n m π Chebyshev-Gauss x F x F N x f 0T 0 x + 5 N m f m T m x.85
16 Gauss x k k,..., N F N x k F x k.86 F x k f 0T 0 x k + f m N m f m T m x k.87 f m N N F x k T m x k.88 k FFT.6..3 Chebyshev f m π π Gauss 0 F cos θt m cos θdθ.89 f m N F cos θ k T m cos θ k θ.90 π k Gauss θ θ π N.9 f m N N F x k T m x k.9 k.6. Chebyshev-Gauss-Lobatto.6.. Gauss-Lobatto N T N cos[n θ].93 x cos θ.94 x dt N x dθ dt N dθ N sin[n θ].95 6
17 Gauss-Lobatto Chebyshev-Gauss-Lobatto grid points k,..., N θ k N k N π.96 N k x k cos N π.97 N θ [π, 0] T N x k cos[n kπ] N k.98 m 0 m N T m cosmθ.99 x cos θ.00 Gauss-Lobatto T m x k cos m N k N π 0 n, m N.0 T mx T n x + N k T m x k T n x k + T mx N T n x N N n m 0, N N / n m 0, N 0 n m N T mx T n x + T m x k T n x k + T mx N T n x N k T m T n + N k cos m N k N π cos n N k N π + T mt n.0.03 m + n m + n T m T n T m T n N T mx T n x + T m x k T n x k + T mx N T n x N 0 N k N k k cos m N k N π cos n N k N π [ cos m + n N k N π + cos m n N k ] N π.04 7
18 l k N k + cos l N k N π N N k + + cos l π N cos lπ l k N π + cos l k N π [coslπ + ] cos l k N π [ l + ] cos l k N π 0.05 N k N + / N N + / l cos l π cos N π 0.06 l m + n T m T n T m T n N T mx T n x + T m x k T n x k + T mx N T n x N N k k cos m N k N π N k cos n N k N π [ cos m + n N k N π + cos m n N k ] N π N n m 0, N N / n m 0, N 0 n m cosine 0 l < l < N N cos l N k N N π k cos l N π k k0 N k R exp il N π k0 N k R exp il N π k0 e ilπ R e i[l/n ]π k k N / l e ilθ e ilθ N / 8
19 k k N m + n m + n k k N /.6.. Chebyshev-Gauss-Lobatto x F x F N x f 0T 0 x + N m Gauss-Lobatto x k k,..., N F x k f 0T 0 x k + f m T m x + f N T N x.09 F N x k F x k.0 N m f m T m x k + f N T N x k. f m [ ] f m N N F x T m x + F x k T m x k + F x N T m x N k FFT Chebyshev f m π π 0 F cos θt m cos θdθ.3 Gauss-Lobatto Gauss Gauss-Lobatto f m π N F cos θ k T m cos θ k θ.4 k Gauss-Lobatto θ θ π N [ ] f m N N F T m + F x k T m x k + F T m k 9.5.6
20 F x f 0 T 0 x + N m f m T m x.7 m N /.7.7. [z b, z t ] F z [z b, z t ] z z b + z t z b + x.8 x z z b z t z b.9 z x x [, ] F x F x F x f 0 T 0 x + m f m T m x.0.7 dt n x { n n j,odd [ T jx even n n ] n j,even T jx + T 0x odd n. 0
21 F x T 0 df m n f m dt m x dt n x dt n x f n + f n n n n f n n T j x + T 0x + f n 4n j n f n T 0 x + n 4n f n T j x + j nj n f n T 0 x + n j nj+ n n T j x j n f n T j x j + n f j+n T j x j n. df x df 0 T 0 x + m df m T m x.3 df m m + n f m+n.4 n df m m + n f m+n + m + f m+ n m + + n f m++n + m + f m+ n.5 df m+ + m + f m+ m d T n { [ n ] n k,even n k T k x + n T 0x even n n n k,odd n k T k x odd n.6
22 F x T 0 d F m n n + f m d T m x f n d T n x + n f n dt nx n f n n {n j }T j x n j n f n n {n j }T j x + n T 0 x j 4n 3 fn T 0 x + + n j j nj+ nj+ 4n 3 fn T 0 x + n 4n 3 fn T 0 x + n 4 n {n j } f n T j x n{n j } f n T j x n 3 fn T 0 x + n j nj+,n j even nn j f n T j x j + n[j + n j ] f j+n T j x j j n 4 nj + nj + n f j+n T j x n.7 d F x ddf 0 T 0 x + m ddf m T m x.8 ddf m 4 nm + nm + n f m+n.9 n
23 T 0 dt dt T T m m + dt m+ dt m m m.30 F x x F x f 0 T 0 x + m df x df 0 T 0 x + f m T m x.3 m T 0.3 df m T m x.3 df x m f m dt m.33.3 [ df x dt df 0 + [ dt df 0 + m df dt + m df dt + m3 [ dfm m df ] dtm m { dt m+ df m m + m dt df m m m df m+ m m } ] dt m ] dt m.34 f m [ dfm m df m+].35 m df m df m+ + m + f m+.36 3
24 x [, ] u t u x.37 u, t u b.38 u, t u t Chebyshev u.37.9 dũ m dt ddu m.40 4 nm + nm + nũ m+n n n ũ n u b.4 n0 ũ n u t.4 n0 n N 0 n N 0 m N dũ m dt N m/ 4 nm + nm + nũ m+n.43 n 4
25 α α ] N ũ N ũ N [u N b n ũ n ũ N + ũ N u t N n0 n0.44 ũ n.45 N N ũ N u t u b ũ N u t + u b + N 3 n,odd N n0,even ũ n.46 ũ n.47 N ũ N u t + u b ũ N u t u b + N 3 n,even N n0,odd ũ n.48 ũ n Chebyshev-Gauss-Lobatto Gauss-Lobatto θ k N k N π.50 N k x k cos N π.5 k,..., N T m;k T m x k.5 T m;k d T m x k.53 5
26 u N u N x k, t T 0;ku 0 t + N m T m;k u m t + T N ;ku N t.54 d u N x k, t N T 0;ku 0 t + T m;ku m t + T N ;ku N t.55 m.37 T du 0 0;k N dt t + m T m;k du m dt t + T N ;k du N t dt N T 0;ku 0 t + T m;ku m t + T N ;ku N t m.56 k,..., N k, N N T 0;u 0 t + T m; u m t + T N ;u N t u b.57 m N T 0;N u 0 t + T m;n u m t + T N ;N u N t u t.58 m u m t + t Euler T 0; T ;... T N ; T N ; u 0 t + t T 0; T ;... T N ; T N ; u t + t T 0;N T ;N... T N ;N T. N ;N u N t + t T 0;N T ;N... T N ;N T N ;N u N t + t u b rhs. rhs N u t.59 rhs m t u m t T 0; T 0;... T 0;N T 0;N T ; T ;... T ;N T ;N N T N ; T N ;... T N ;N T N ;N T N ; T N ;... T N ;N T N ;N 6.60
27 u 0 t + t u t + t. u N t + t u N t + t T 0; T 0;... T 0;N T 0;N T ; T ;... T ;N T ;N. N T N ; T N ;... T N ;N T N ;N T N ; T N ;... T N ;N T N ;N u b rhs. rhs N u t.6.9 Doman, Brian George Spencer 06 The Classical Orthogonal Polynomials, World Scientific 5 Glatzmaier, Gary A. 04 Introduction to Modeling Convection in Planets and Stars, Prenceton University Press 9.4 Gould, H.W. 00 Combinatorial Identities: Table III: Binomial Identities Derived from Trigonometric and Exponential Series ed., Jocelyn Quaintance, 004, I Protas, Bartosz 004 Topics in Numerical Analysis Spectral Methods III Chebyshev Spectral Methods, 7
28
29 9 Gegenbauer Gegenbauer Legendre Chebyshev Gegenbauer Chandrasekhar Rodrigues Xµ µ µ + µ. ρ α µ µ α. n Fn α µ d n ρ α µ dµ n [ρ αµxµ n ].3 Rodrigues n 0 F α 0 µ.4 F α n µ [, ] n Π n µ F α n, Π n ρ α µf α n µπ n µdµ Π n µ dn dµ n [ρ αµxµ n ]dµ ] [Π n µ dn dµ n [ρ αµxµ n ] Π n µ dn dµ n [ρ αµxµ n ]dµ.5
30 .. Gegenbauer µ + µ 0 0 n F α n, Π n n Π n n µ[ρ αµxµ n ]dµ.6 n Π n µ n 0 0 F α n, Π n 0.7 F α 0, F α,..., F α n n F α n, F α l 0 l,,..., n.8 Fl α, Fk α ρ α µfl α µfk α µdµ 0 l k.9 Fn α [, ] F 0 α F α F 0 α ρ α Fn α F 0 α, F α,..., Fn α ρ α n F α n F α n n Fn α d n lim µ µ α dµ n [ µn+α + µ n+α ].0 µ µ n+α n + µ n+α F α n n n + αn + α α + n n n α + n. Pochhammer β n β n ββ + β + n Γβ + n Γβ.. Gegenbauer Gegenbauer F α n µ C α+ n µ n Γα + Γn + α + n n! Γα + Γn + α + F n α µ.3 Cn α µ n Γα + /Γn + α n n! ΓαΓn + α + / F α n µ.4 30
31 α + /.6 n 0 µ C α n n! C α 0 µ.5 Γn + α Γα m + / C m+ n µ n n n! m!n + m! m!n + m! m 0 Legendre α n n!.6 d n µ m dµ n [ µ n+m ].7 P n x C n µ n d n n n! dµ n [ µ n ].8 Chandrasekhar 98 6 m C 3 n µ n n + n+ n! µ d n dµ n [ µ n+ ].9 Chebyshev 0 Gegenbauer Γ0 T n µ Cnµ 0 n Γ/Γn + n n! ΓΓn + / F n µ n n n! n n n! π Γn + / F n µ π Γn + / F n µ n n F n µ / n.0 Chebyshev Gegenbauer U n µ C nµ..3 Gegenbauer I α+ n [ ρ α µ C α+ n µ] dµ n Γα + Γn + α + n n! Γα + Γn + α + [ ] C α+ d n n µ dµ n [ρ αµxµ n ]dµ. 3
32 n I α+ n Γα + Γn + α + n n! Γα + Γn + α + d n [ ] dµ n C α+ n µ [ρ α µxµ n ]dµ.3 C α+ n µ n n µ n k n k n Γα + Γn + α + dn n µ n+α µ n+α n! Γα + Γn + α + dµ n Γα + Γn + α + Γn + α + n n! Γα + Γn + α + Γn + α + Γα + Γn + α + n n! Γα + Γn + α +.4 I α+ n k n Γα + Γn + α + n n! Γα + Γn + α + k n n Γα + Γn + α + Γα + Γn + α + k n n Γα + Γn + α + Γα + Γn + α + d n dµ n xn [ρ α µxµ n ]dµ [ρ α µxµ n ]dµ µ n+α dµ.5 ξ + µ.6 µ n+α dµ n+α+ ξ n+α ξ n+α dξ 0 n+α+ Bn + α +, n + α +.7 n+α+ [Γn + α + ] Γn + α + I α+ n Γα + Γn + α + n n! Γα + Γn + α + Γα + Γn + α + n Γα + Γn + α + n+α+ [Γn + α + ] Γn + α + α+ [Γα + ] Γn + α + n!n + α + [Γα + ].8 α 0 Legendre I n [P n µ] dµ n +.9 3
33 α I 3 n [ ] µ C 3 3 n +! n µ dµ n!n + 3 n + n + n F α n µ n Gegenbauer C α+ n µ d F α n dµ α + µdf α n dµ + n n + α + F α n 0.3 F α n Cα n µ d C α n dµ α + µdcα n dµ + n n + α Cα n 0.3 α / Legendre µ d P n dµ µdp n dµ + nn + P nµ 0.33 α 3/ Gegenbauer µ d C 3 n 3 n dµ 4µ dc dµ + nn + 3C 3 n µ
34 Xµ d n+ [ dµ n+ Xµ d ] dµ [ρ αµxµ n ] Xµ dn+ dµ n+ [ρ αµxµ n ] + n + X µ dn+ dµ n+ [ρ αµxµ n ] nn + + X µ dn dµ n [ρ αµxµ n ] Xµ d d n dµ dµ n [ρ αµxµ n ] + n + X µ d d n dµ dµ n [ρ αµxµ n ] nn + + X µ dn dµ n [ρ αµxµ n ] Xµ d dµ [ρ αµfn α µ] + n + X µ d dµ [ρ αµfn α µ] nn + + X µ [ρ α µfn α µ] µ d [ µ dµ α Fn α µ ] n + µ d [ µ α Fn α µ ] dµ nn + [ µ α Fn α µ ] { µ α µ d Fn α α dµ n + α + µdf n dµ [ ] } 4αα + nµ + µ nn + α Fn α µ.35 34
35 .5. Laplace d n+ [ dµ n+ Xµ d dn+ dµ n+ dn+ dµ n+ ] dµ [ρ αµxµ n ] [ Xµ d dµ [ ρα µxµ Xµ n ]] [ Xµ n d dµ [ρ αµxµ] + n Xµ n ρ α µx µ dn+ dµ n+ [Xµn ρ α µf α µ + n Xµ n ρ α µx µ] dn+ dµ n+ [{F α µ + n X µ} ρ α µxµ n ] {F α µ + n X µ} dn+ dµ n+ [ρ αµxµ n ] + n + {F α µ + n X µ} dn dµ n [ρ αµxµ n ] {F α µ + n X µ} d d n dµ dµ n [ρ αµxµ n ] + n + {F α µ + n X µ} dn dµ n [ρ αµxµ n ] {F α µ + n X µ} d dµ [ρ αµfn α µ] + n + {F α µ + n X µ} [ρ α µfn α µ] µα + n d dµ α + n µ α { µ df α n dµ + [ µ α F α n µ ] n + α + n [ µ α F α n µ ] ] } [n + αµ µ Fn α ] µ d F α n dµ α + µdf α n dµ + nn + α + F α n µ Laplace Gegenbauer C N/ n N N zonal N N x i i.38 35
36 .5. Laplace N x r cos θ.39 x r sin θ cos θ.40 x 3 r sin θ sin θ cos θ x N r sin θ sin θ sin N cos θ N.43 x N r sin θ sin θ sin N sin θ N.44 0 θ i π for i,,..., N 0 θ N π 0 N r + N N r r + r N r N r r i + ρ i N i θ i + N i tan θ i ρ i sin θ i N i θ i [ sin θ i N i ].45 θ i θ i { r i ρ i r i l sin θ l i.46 N H 0 H r θ i i zonal Zr, θ { r N r N + r r r sin θ N [ sin θ N θ θ ]} Z 0.47 Zr, θ RrΘθ.48 d Rr N 3 r dr N dr d dr Θsin θ N dθ [ sin θ N dθ dθ ].49 r θ λ Θ Θ [ ] d N dθ sin θ N sin θ + λθ 0.50 dθ dθ µ cos θ.5 36
37 .5. Laplace Mµ Θθ.5 M µ d M N µdm dµ dµ + λm 0.53 N 5 Chandrasekhar 6 α N.54 µ d M α + µdm dµ dµ + λm 0.55 n λ nn + α M a n µ n.56 n0 µ nn a n µ n α + µ na n µ n + λ a n µ n 0.57 n0 n0 n0 µ n 0 n + n + a n+ nn a n α + na n + λa n 0.58 a n+ a n nn + α λ n + n +.59 µ lim n a n+ /a n µ < µ Gauss Bressoud 006 u m a m u m+ u m mm + α λ m + m + m + αm λ/4 m + 3/m + /.60 Gauss m m α < / α / Chandrasekhar 6 α 3/ λ nn + α n n n 37
38 Gegenbauer C α n µ N Gegenbauer Cn N/ µ Gegenbauer.6 Gegenbauer α 0 wµ, h µ wµ, h µ wµ, h µh + h α.6 αh µh + h α+.6 4αα + h µh + h α+.63 wµ, h αh µ h µh + h α+.64 h α { } α+ wµ, h h αh [ α + µh µ α + α + h + α + µ ] h h µh + h α+.65 µ wµ, h wµ, h µ α + µ µ h α { α+ wµ, h h h h }.66 wµ, h µh + h α h n ϕ n µ.67 n0 ϕ n µ µ n.66 n0 { h n µ d ϕ n µ dµ α + µ dϕ } nµ dµ h n nn + αh n ϕ n x.68 µ d ϕ n µ dµ α + µ dϕ nµ + nn + αϕ n x 0.69 dµ Gegenbauer.3 ϕ n Gegenbauer C α n.67 n0 38
39 µ h n ϕ n h α α n n0.6 n0 n0 n0 h n αα + α + n h n n! α n h n n! ϕ n α n n!.70.7 Cn α µ ϕ n µ.7 µh + h α h n Cn α µ.73 Gegenbauer Gegenbauer n0.7 Goursat fz n f n z n! πi C t z C ft dt.74 t z n+ Gegenbauer C α+ n µ n Γα + Γn + α + d n n n! Γα + Γn + α + µ α dµ n [ µ α+n ].75 C α+ n µ n Γα + Γn + α + n πi Γα + Γn + α + Γα + Γn + α + πi Γα + Γn + α + C 39 µ α [ t t µ C ] n [ t µ t α+n t µ ] α dt t µ n+ dt.76
40 t h h t t µ.77 ht t + µ h 0.78 t h µh + h.79 dt dh h µh + h + µ h h dh µh + h µh µh + h h dh µh + h.80 t µ h µh µh + h.8 dt t µ h dh.8 µh + h t µ µh + µh + h.83 Goursat C α+ n µ Γα + Γn + α + πi Γα + Γn + α + α µh + dh µh + h α µh + h h n+ around h0 Γα + Γn + α + Γα + Γn + α + [ ] d n α n! dh n µh + µh + h α µh + h h0.84 α µh + µh + h α µh + h Γα + Γn + α + Γα + Γn + α + Cα+ n µh n α + n C α+ n µh n α + n n0 n
41 α / µh + µh + h α / µh + h n0 n0 ΓαΓn + α + / Γα + /Γn + α Cα n µh n α + / n α n Cn α µh n.86 / Legendre C n µh n P n µh n.87 µh + h n0 n0.8 Bressoud, David M. 006 Gauss s Test, Appendix to A Radical Approach to Real Analysis, nd ed., Chandrasekhar, S. 98, Dover edition; 96, original Hydrodynamics and Hydromagnetic Stability, Dover. Doman, Brian George Spencer 06 The Classical Orthogonal Polynomials, World Scientific 9 96, 5 0 n, 4
42
43 43 3 Hermite 3. Hermite Rodrigues Hermite Rodrigues H m x m e x dm m e x 3. m 0 m 5 H 0 x e x e x 3.a H x e x H x e x H 3 x e x H 4 x e x d e x d e x d3 3 e x d4 4 e x e x xe x x 3.b e x [4x e x ] 4x 3.c e x [ 8x 3 + xe x ] 8x 3 x 3.d e x [6x 4 48x + e x ] 6x 4 48x + 3.e H 5 x e x d5 5 e x e x [ 3x x 3 0xe x ] 3x 5 60x 3 + 0x 3.f 3. Rodrigues e x H m xh l x 0 m l 3.3
44 3.3. Hermite m > l m < l e x H m xh l x m d m m e x H l x { [ d m m e x H m l x m+ m 0 ] d m e x d m H lx e x dm m H lx } d m e x d m H lx 3.4 H l l m> l Hermite Rodrigues Hermite Hermite d H m x dh m + mh m m dm m e x e x H m x 3.6 m dm+ e x e x xh m+ m x + dh mx 3.7 e x H m x d e x H m x d [e x xh m x + dh ] mx 4x e x H m x 4xe x dh mx e x [ 4x H m x 4x dh mx + e x d H m x ] + d H m x
45 d e x H m x m dm+ m+ e x m dm+ m+ xe x m [ m + dm m e x x dm+ m+ e x] m + m dm m e x x m dm+ m+ e x m + e x H m x xe x xh m x + dh mx [ e x 4x m H m x x dh ] mx 3.9 4x H m x 4x dh mx + d H m x 4x m H m x x dh mx 3.0 d H m x dh m + mh m Φ m x e x / H m/ m x m / ex dm m/ m e x 3. A ± d + x A + Φ m Φ m+ A Φ m Φ m a 3.4b 45
46 ] A + Φ m m+ d [e x / dm m+/ m e x + m / xex dm m+/ m e x m+ / ex dm+ e x + m+ / xex dm m+/ m+ m+/ m e x + m / xex dm m+/ m e x / ex dm+ m+/ m+ Φ m+ e x m+ ] A Φ m m d [e x / dm m+/ m e x + m / xex dm m+/ m e x m / ex dm+ e x + m / xex dm m+/ m+ m+/ m e x + m / xex dm m+/ m e x m / ex dm m+/ m xe x / ex dm m / m Φ m e x m + m / xex dm m / m e x SGC 6, 46
II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2
II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh
(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou
(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.
30 I .............................................2........................................3................................................4.......................................... 2.5..........................................
構造と連続体の力学基礎
II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton
() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (
3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc
I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google
I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
2011de.dvi
211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)
3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d
S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....
4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................
Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona
Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,
30
3 ............................................2 2...........................................2....................................2.2...................................2.3..............................
x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s
... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx
29
9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n
II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re
II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.
A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c
(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y
[ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
untitled
( 9:: 3:6: (k 3 45 k F m tan 45 k 45 k F m tan S S F m tan( 6.8k tan k F m ( + k tan 373 S S + Σ Σ 3 + Σ os( sin( + Σ sin( os( + sin( os( p z ( γ z + K pzdz γ + K γ K + γ + 9 ( 9 (+ sin( sin { 9 ( } 4
2000年度『数学展望 I』講義録
2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53
LLG-R8.Nisus.pdf
d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt
S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............
1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100
7 7., ) Q, 7. Q ) 7. Z = R +jx Z / Z 7. 7. Abs. admittance x -3 S) 5 4 3 R Series ircuit Y R = Ω = mh = uf Q = 5 5 5 V) Z = R + jx 7. Z 7. ) R = Ω = mh = µf ) 7 V) R Z s = R + j ) 7.3 R =. 7.4) ) f = π.
V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H
199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)
i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35
z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy
z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z
I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT
I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345
Untitled
II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j
I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co
16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)
0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()
i
i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =
[ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =
( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (
6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b
webkaitou.dvi
( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin
M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -
M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................
Z: Q: R: C: 3. Green Cauchy
7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................
(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)
2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x
ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d
A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9
2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta
009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n
IA [email protected] Last updated: January,......................................................................................................................................................................................
液晶の物理1:連続体理論(弾性,粘性)
The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers
[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt
3.4.7 [.] =e j(t+/4), =5e j(t+/3), 3 =3e j(t+/6) ~ = ~ + ~ + ~ 3 = e j(t+φ) =(e 4 j +5e 3 j +3e 6 j )e jt = e jφ e jt cos φ =cos 4 +5cos 3 +3cos 6 =.69 sin φ =sin 4 +5sin 3 +3sin 6 =.9 =.69 +.9 =7.74 [.]
B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia
B2 ( 19) Lebesgue ( ) ( 19 7 12 ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purposes. i Riemann f n : [0, 1] R 1, x = k (1 m
Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x
University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )
20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................
X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2
1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.
Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=
1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h
IB IIA 1 1 r, θ, φ 1 (r, θ, φ)., r, θ, φ 0 r
v er.1/ c /(21)
12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t
Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence
Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................
数学の基礎訓練I
I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
0 0. 0
60 0 ( ) Web http://www.phys.u-ryukyu.ac.jp/~maeno/wave00/index.html Java Web maeno sci.u-ryukyu.ac.jp () () (3) 0 0. 0 0.. 3 () () (3) () () (3) () (3) () 0. 3 0Hz 0000Hz Hz 4 3 4 Hertz 4 0 A 4 440Hz
prime number theorem
For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................
1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV
sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.
08 No. : No. : No.3 : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No.0 : No. : sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin
= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k
7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.
phs.dvi
483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....
I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.
I 0 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No.0 : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd
