<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

Size: px
Start display at page:

Download "<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>"

Transcription

1

2 信号処理の基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

3

4 i AI

5 ii z / z 8 8

6 iii

7 iv

8 v LPF HPF BPF BEF z

9

10 t x(t) t R t t R x(t) x(t) R x(t) x(t) R, t R 1.1

11 mg mg mg x(t) g 1 (t),g 2 (t),...,g N (t) c 1,c 2,...,c N x(t) x(t) =c 1 g 1 (t)+c 2 g 2 (t)+ + c N g N (t) a analysis 1.3 b synthesis x(t) 1.1

12 filter 1.3 c g 1 (t),g 2 (t),...,g N (t)

13 4 2 2 sin cos T 0 T 0 f 0 =1/T 0 1 [s] f 0 [s 1 ] [Hz] x(t) f 0 0,f 0, 2f 0, 3f 0,...

14 2.2 5 n=0 [ ] a n cos(2πnf 0 t)+b n sin(2πnf 0 t) a n b n f e(t) n =0 cos(2π 0f 0 t)=1 sin(2π 0f 0 t)=0 x(t) x(t) =a n=1 [ ] a n cos(2πnf 0 t)+b n sin(2πnf 0 t) + e(t) x(t) cos(2πnf 0 t), sin(2πnf 0 t), n=0, 1, 2,... a n, b n, n =0, 1, 2, f 2π ω =2πf f [s 1 ] [Hz] [rad/s] 2πf 0 2.1

15 6 2 ω 0 =2πf 0 ω [ ] x(t) =a 0 1+ a n cos(nω 0 t)+b n sin(nω 0 t) + e(t) 2.2 n=1 a n b n e(t) x(t) =c 1 g 1 (t)+c 2 g 2 (t)+ + c N g N (t)+e(t) 2.3 x(t) e(t) 2 J = e 2 (t)dt 2 J c 1,...,c N 2 2 J 2.3 [ 2 N J = x(t) c n g n (t)] dt 2.4 n=1 2 J c k 2 J c 1,c 2,...,c N 2 J c k J N =2 x(t)g k (t)dt 2 c n g n (t)g k (t)dt 2.5 c k n=1 x(t)g k (t)dt = N c n g n (t)g k (t)dt, k =1, 2,...,N 2.6 n=1 x(t) y(t) x, y = x(t)y(t)dt 2.6 x, g k = 2.7 N c k g n,g k, k =1, 2,...,N 2.8 n=1

16 2.4 7 R g 1,g 1 g 2,g 1 g N,g 1 g 1,g 2 g 2,g 2 g N,g g 1,g N g 2,g N g N,g N, c c 1 c 2... c N, r x, g 1 x, g 2. x, g N Rc = r 2.10 R c c = R 1 r 2.11 c 1,c 2,...,c N g n,g k =0, n k 2.12 R 1 c k = g k,g k x, g k, k =1, 2,...,N a n b n x(t) e(t) [, ] 1 [0,T 0 ] T0 0 T0 0 T0 0 T0 0 cos(nω 0 t)dt =0, T0 cos(kω 0 t)cos(nω 0 t)dt = sin(kω 0 t)sin(nω 0 t)dt = cos(kω 0 t)sin(nω 0 t)dt =0 n, k =1, 2,... 0 sin(nω 0 t)dt =0 T 0 2, k = n 0, k n T 0 2, k = n 0, k n 2.14

17 R 2.13 a 0 = 1 T0 x(t)dt T 0 0 a n = 2 T0 x(t)cos(nω 0 t)dt T 0 0 b n = 2 T0 x(t)sin(nω 0 t)dt T a n b n x(t) T 0 f 0 ω T 0 T 0 =2[s] f 0 f 0 =1/T 0 f 0 =0.5 [Hz] ω 0 ω 0 =2πf 0 ω 0 = π[rad/s] a 0 = 1 Z T0 x(t)dt = 1»Z 1 Z 2 1dt + 0dt = 1 T a 1 = 2 Z T0 x(t)cos(ω 0 t)dt = 2»Z 1 1 cos(πt)dt + T b 1 = 2 Z T0 x(t)sin(ω 0 t)dt = 2»Z 1 Z 2 1 sin(πt)dt + T a 2 = 2 Z T0 x(t)cos(2ω 0 t)dt = 2»Z 1 1 cos(2πt)dt + T b 2 = 2 Z T0 x(t)sin(2ω 0 t)dt = 2»Z 1 1 sin(2πt)dt + T a 3 =0, b 3 = 2 3π a 4 =0, b 4 =0 a 5 =0, b 5 = 2 5π.. 8 >< a n =0, b n = >: 0, n 2 nπ, n Z 2 0 cos(πt)dt =0 0 sin(πt)dt = 2 π Z 2 1 Z cos(2πt)dt =0 0 sin(2πt)dt =0

18 T [Hz] 20 [khz] 405 [THz] 790 [THz] 2.6 i = 1 x y z = x + iy x y z 2.3 a 1 2

19 z x = Re[z], y =Im[z] z = x + iy x iy z z z A = z = x 2 + y b zz =(x + iy)(x iy) =x 2 + y 2 z = zz z ( φ =arg z =tan 1 y ) x

20 (A, φ) x = A cos φ y = A sin φ z e z e z =e x+iy =e x e iy e x e iy φ e iφ 1 φ 2.3 c e iφ =cosφ + i sin φ φ φ cos e iφ =cosφ i sin φ cos φ = eiφ +e iφ, sin φ = eiφ e iφ i z = x + iy = Ae iφ 2.3 d z 1 = A 1 e iφ 1 z 2 = A 2 e iφ 2 z 1 z 2 = A 1 A 2 e i(φ 1+φ 2 ) e iφ φ t φ =2πt e i2πt O e t =0 1+i0 t =1, 2, 3,... t =0 1[Hz] 2.16 e i2πt =cos(2πt)+i sin(2πt) 2.17 cos sin A Ae i2πft f O A 0 1 f f c ce i2πft c = c e i arg c ce i2πft = c e i arg c e i2πft i(2πft+arg c) = c e 2.18

21 12 2 ce i2πft f O c 1 f t =0 arg c 2.3 f τ =(argc)/(2πf) ce i2πft = c e i2πf(t+τ) 2.19 t = τ cos sin cos sin x(t) =a 0 + = a 0 + n=1 n=1 c n c 0 = a 0 c n c n ( an 2 einω 0t + b n 2i einω 0t + a n 2 e inω 0t b n 2i e inω 0t ) + e(t) ( an ib n e inω0t + a ) n + ib n e inω 0t + e(t) = a n ib n, n =1, 2,... 2 = a n + ib n, n =1, 2, x(t) = c n e inω0t + e(t) n= c n c n c n = 1 T0 x(t)e inω0t dt T c n c n n nω 0 nω 0 c n e inω 0t + c n e inω 0t 2.24

22 T 0 T 0 T 0 2 x(t) c n e inω 0t 3.1 n= c n = 1 T0 /2 x(t)e inω0t dt 3.2 T 0 T 0 /2 e(t) 3.2 T 0 [0,T 0 ] [ T 0 /2,T 0 /2] t τ T 0 =2π/ω 0 ω 0 =2πf 0 =2π/T

23 x(t) { T0 /2 ω0 2π n= T 0 /2 } x(τ)e inω0τ dτ e inω 0t T 0 T 0 ω 0 = 2π 0 ω 0 Δω x(t) 1 2π T 0 T0 /2 T 0 /2 f(x)dx = { x(τ) lim n= Δx 0 n= } e i(t τ)nδω Δω dτ f(nδx)δx 3.3 T 0 Δω { } lim e i(t τ)nδω Δω = e i(t τ)ω dω 3.4 Δω 0 n= 3.3 Δω x(t) 1 { } x(τ)e iωτ dτ e iωt dω 3.5 2π Fourier integral x(t) x(t) dt < (, ) 3.1 (, ) x(t) x(t) t x(t) t {x(t 0) + x(t +0)}/2

24 x(t) 3.5 (, ) x(t) t 0 x(t 0 0) x(t 0 +0) {x(t 0 0) + x(t 0 +0)}/2 x(t 0 ) 3.5 { } X(ω) =F[x(t)] = x(t)e iωt dt x(t) =F 1 [X(ω)] = 1 2π X(ω)e iωt dω x(t) 3.7 X(ω) X(ω) x(t) X(ω) X(ω) 2 arg X(ω) 3.1 x(t) (, ) x(t) t x(t) t {x(t 0) + x(t +0)}/2 x(t) 3.3 T 0 x(t) 3.1 c 3.6 X(ω) = T0 /2 T 0 /2 x(t)e iωt dt ω ω 0 =2π/T 0 ω nω 0 X(nω 0 )= T0 /2 T 0 /2 x(t)e inω 0t dt c n = 1 T 0 X(nω 0 ) 3.9 T 0 x(t) c n x(t) X(ω) ω 0 =2π/T 0 1/T x(t) 1 T 0 n= X(nω 0 )e inω 0t 3.10 x(t) X(ω) ω 0 =2π/T 0 X(nω 0 )

25 T 0 x(t) X(ω) ω = nω 0 0 2π T 0 X(nω 0 ) X(ω) = 2π T 0 X(ω), ω = nω 0, n Z 3.1 x n (t) X n (ω) 3.3 a >0 ( e at, t 0 x 1 (t) = a 0, t < 0 ( te at, t 0 x 2 (t) = b 0, t < 0 x 3 (t) =e a t c 3.3

26 a a 3.6 X(ω) = Z 0 = 1 a + iω e at e iωt dt = Z 0 he (a+iω)ti b b 3.6 Z 0 0 e (a+iω)t dt = 1 a + iω Z X(ω) = te at e iωt dt = te (a+iω)t dt 0 0» t Z 1 = a + iω e (a+iω)t 0 0 a + iω e (a+iω)t dt =0+ 1 Z e (a+iω)t 1 dt = a + iω (a + iω) 2 8 >< t n 1 x(t) = (n 1)! e at, t 0 >: 0, t < 0 1 X(ω) = (a + iω) n c c 3.6 X(ω) = = Z Z 0 e a t e iωt dt e at e iωt dt + Z 0 e at e iωt dt X(ω) = 1 a iω + 1 a + iω = 2a a 2 + ω x(t) ax(t)+by(t) F[ax(t)+by(t)] = af[x(t)] + bf[y(t)] ax(t)+by(t) a b 3.6 x(t) x( t) t τ

27 28 3 F[x( t)] = = = x( t)e iωt dt x(τ)e iω( τ) ( 1)dτ x(τ)e i( ω)τ dτ = X( ω) x( t) X(ω) 3.6 x(t) x(t/a) a >0 τ = t/a dτ =(1/a)dt dt = adτ F[x(t/a)] = = a x(t/a)e iωt dt = x(τ)e iωaτ a dτ x(τ)e iωaτ dτ = ax(ωa), a > 0 F[x( t/a)] = ax( ωa), a > 0 a F[x(t/a)] = a X(aω), a 0 a 0 x(t) X(ω) 1/a a 3.4 a x(t) X(ω) 2 b 2 a =2 1/ x(t) x(t τ) F[x(t τ)] = x(t τ)e iωt dt t τ = a F[x(t τ)] = = x(a)e iωa e iωτ da x(a)e iωa da e iωτ = X(ω)e iωτ τ x(t) X(ω) e iωτ 3.4 a

28 τ c e iωτ ω ωτ [rad] X (ω) = ω ω X ( ω) = 3.6 x (t)e iωt dt x (t)e iωt dt = F[x (t)] 3.11

29 30 3 x(t) x (t) =x(t) X ( ω) =X(ω) Re[X(ω)] = Re[X( ω)] Im[X(ω)] = Im[X( ω)] x(t) ω X(ω) ω X(ω) 3.4 x(t) e iωt =cos(ωt) i sin(ωt) Im[X(ω)] = x(t)sin(ωt) dt =0 x(t) Re[X(ω)] = x(t)cos(ωt) dt =0 3.4 a b d c a e x n (t) X n (ω) a (3.6) 3.5

30 b e a d b a x 1 (t) =1, 1/2 t 1/2 3.6 X 1 (ω) = Z 1/2 1/2 e iωt dt = 1 ˆe iωt 1/2 iω = 1 e iω/2 e iω/2 1/2 iω = 2 e iω/2 e iω/2 = 2 ω ω 2i ω sin 2 x 1 (t) b x 2 (t) x 1 (t) τ =1/2 X 2 (ω) X 1 (ω) e iτω X 2 (ω) =X 1 (ω)e iω/2 = 1 iω = i ω ( 1+e iω ) e iω/2 e iω/2 e iω/2 e iω =cos(ω) i sin(ω) Re[X 1 (ω)] = sin ω ω Im[X 1 (ω)] = 1 (cos ω 1) ω c x 3 (t) x 2 (t) X 3 (ω) =X 2 ( ω) X 3 (ω) =X 2 ( ω) = = i ω (1 eiω ) i ω ( 1+eiω ) d x 4 (t) =x 2 (t)+( 1)x 3 (t) X 4 (ω) =X 2 (ω) X 3 (ω) = i ω ( 1+e iω ) i ω (1 eiω ) = 2i (cos(ω) 1) ω x 4 (t) e x 5 (t) x 2 (t) 4 x 5 (t) =x 1 (t/4) a =1/4 X 5 (ω) = 1 ω a X 2 a = 4i ω ( 1+e 4iω )

31 t ω ω ω x( ω) = 1 2π X(t)e iωt dt 3.6 F[X(t)] = 2πx( ω) x(t) X(ω) X(t) 2πx( ω) 3.7 X(ω) X(ω a) F 1 [X(ω a)] = 1 2π X(ω a)e iωt dω ω a = b F 1 [X(ω a)] = 1 2π = x(t)e iat X(b)e iat e ibt db F[x(t)e iat ]=X(ω a) t ω a d dt x(t) = 1 2π iax(a)e iat da [ ] d F dt x(t) = 1 iax(a) F[e iat ]da 2π 3.3 e iat 2πδ(ω a) 3.25 [ ] d F dt x(t) = 1 iax(a) 2πδ(ω a) da 2π = iωx(ω) 3.15 x(t) x(t) X(ω) iω 3.7 x(t) 2 = 1 (2π) 2 X(ω)X (ω )e iωt e iω t dωdω

32 t x(t) 2 dt = 1 (2π) 2 { } X(ω)X (ω ) e iωt e iω t dt dωdω { } e iωt 2πδ(ω ω) x(t) 2 dt = 1 X(ω) 2 dω 2π x(t) y(t) z(t) X(ω) Y (ω) Z(ω) Z(ω) =X(ω)Y (ω) x(t) y(t) z(t) x(t) y(t) Z(ω) = x(t)e iωt dt y(t)e iωt dt z(t) = 1 { x(t 1 )e iωt 1 dt 1 y(t 2 )e iωt 2 dt 2 }e iωt dω 2π { 1 } = x(t 1 )y(t 2 ) e iω(t (t 1+t 2 )) dω dt 1 dt 2 2π 3.16 δ(t) F[δ(t (t 1 + t 2 ))] = 1 e iω(t 1+t 2 ) δ(t (t 1 + t 2 )) = 1 2π e iω(t 1+t 2 ) e iωt dω 3.16 { } z(t) = x(t 1 )y(t 2 )δ(t (t 1 + t 2 )) dt 1 dt 2 t 1 + t 2 = τ z(t) = x(t 1 )y(τ t 1 )δ(t τ)dt 1 dτ τ = t z(t) = x(t 1 )y(t t 1 )dt 1

33 34 3 x(t) y(t) x(τ)y(t τ) dτ 3.17 x(t) y(t) (x y)(t) 3.17 t τ = σ x(t) y(t) = y(σ)x(t σ) dσ = y(σ)x(t σ) dσ x(t) =ax 1 (t)+bx 2 (t) 3.17 z(t) =a { x 1 (t) y(t) } + b { x 2 (t) y(t) } x(t) y(t) x(t)y(t) 2π F[x(t)y(t)] = 1 X(ω) Y (ω) 2π X(ω) 2 X(ω) 2 = X(ω)X (ω) 3.18 x(t) X (ω) =X( ω) X( ω) x( t) X(ω) 2 = X(ω)X( ω) = F[x(t)]F[x( t)] = F[x(t) x( t)] [ ] = F x(t)x( (τ t)) dt [ ] = F x(t)x(t τ) dt 3.19 x(t) R(τ) = x(t)x(t τ) dt 3.20 x(t) R(τ) x(t) X(ω) 2

34 ax(t)+by(t) ax(ω)+by (ω) x( t) X( ω) x(t/a) a X(ωa) x(t τ ) X(ω)e iωτ X(t) 2πx( ω) x(t)e iat X(ω a) d dt x(t) iωx (ω) x(t) y(t) x(t)y(t) X(ω)Y (ω) 1 X(ω) Y (ω) 2π R( τ ) = x(t)x(t τ)dt X( ω) X(ω) =F[x(t)], Y (ω) =F[y(t)] a { 1, t τ P τ (t) = 0, P τ (t) F[P τ (t)] = τ τ = 1 iω 1 e iωt dt [e iωt] τ τ = 1 iω (eiτω e iτω ) =2 sin(τω) 3.21 ω sin(t)/t sinc(t) sinc(t) sinc(t) 3.21 F[P τ (t)] = 2τ sinc(τω)

35 70 5 x(t) H(s) = s +19 (s + 30)(s +9.8) y(t) G(s)I(s) X(s) X(s) = 1 s s +10 x(t) = e 20t +e 10t Y (s) =H(s)X(s) Y (s) = s s s s +30 y(t) = 0.010e 20t 2.250e 10t e 9.8t e 30t x(t) y(t) s = 19 s = 9.8 s = 20 s = 10 Y (s) y(t) 3 4 s = 9.8 s = H(s) = 1 s a x(t) =e iωt y(t) G(s)I(s) x(t) =e iω X(s) X(s) = 1 s iω Y (s) Y (s) =H(s)X(s) = 1 (s a)(s iω) = 1 iω a 1 s a + 1 «s iω y(t) = eat iω a + eiωt iω a 5.4 a

36 H(s) s x(t) y(t) h(t) h(t) dt < 5.26 s s H(s) G(s) G(s) G(s)I(s) H 1 (s) H 2 (s) H(s) H(s) =H 1 (s)h 2 (s) H 1 (s) H 2 (s) H(s) H(s) =H 1 (s)+h 2 (s) H 1 (s) H 2 (s) H(s) x(t) H n (s), n =1, 2,...,N y(t) y(t) Y (s) X(s) H n (s), n =1, 2,...,N 5.4

37 72 5 x(t) =e iωt x(t) =e iωt X(s) =1/(s iω) H(s) y(t) Y (s) =H(s)X(s)+G(s)I(s) = H(s) s iω + G(s)I(s) iω H(s) Y (s) = A, t s iω A 4.27 A = H(s) s iω (s iω) s=iω = H(s) s=iω y(t) =H(s) s=iω e iωt, t H(s) s=iω h(t) H(s) s = iω H(ω) H(ω) t ω 2.6 e iωt H(ω) arg H(ω) H(ω) H(ω) arg H(ω) a<0 H(ω) eiωt 5.8 a eat iω a a <0 t iω a e iωt H(ω) =1/(iω a)

38 a t = y(t) = h(τ)x(t τ) dτ 5.31 y(t) h(t) x(t) Y (ω) H(ω) X(ω) 5.31 Y (ω) =H(ω)X(ω) 5.32 X(ω) ω H(ω) Y (ω) H(ω) H(ω) H(ω) arg H(ω) x(t) y(t) =x 2 (t) 5.5 1[rad/s] x(t) =cos(t) y(t) = (cos(2t)+1)/2 2[rad/s] 5.10 H(s) H(ω) H(ω) ( 1, 0 t T h(t) = 0, h(t) H(s) = Z T 0 1 e st dt = 1 s (1 est ) H(s) s = iω H(ω) = 1 iω (1 eiωt )

39 74 5 H(ω) = 1 ω 1 eiωt 1/ ω 1 e iωt 5.10 a b H(ω) ω 0 c 5.10 H(ω) RC 4.4 A v A (t) i(t) B v B (t) v A (t) = 1 C Z t v B (t) =Ri(t) i(τ) dτ + Ri(t) 5.11 CR v A (t) v B (t) H(s) H(ω) R =10 6 [Ω] C =10 6 [F] H(ω) arg H(ω)

40 «1 V A (s) = sc + R I(s), V B (s) =RI(s) H(s) = V B(s) V A (s) = R 1/(sC)+R = 1 1+1/(sRC) s = iω H(ω) = H(ω) = 1 1+1/(iωRC) 1 p 1+1/( ω 2 R 2 C 2 ) ω 1/(RC) H(ω) 1 ω 1/(RC) H(ω) ω RC ω 1 ω ω a b arg H(ω) =arg1 arg 1+ 1 «iωrc =0 arg 1 i «ωrc = tan 1 1 «ωrc «1 =tan 1 ωrc 5.12 H(ω) arg H(ω) 5

41 76 5 t =0 t =0 H(s) s H(s) s s = iω H(ω) ω H(ω) RLC 4.4 A v A (t) i(t) B v B (t) v A (t) = 1 C Z t i(τ) dτ + Ri(t)+Li (t) v B (t) =Li (t) i (t) i(t) v A (t) v B (t) 5 1 H(s) 2 3 L C R ω c 5 L =1[mH] C =1[ F] R 0Ω 70 Ω 6 2 R R 7 R = [Ω] 5.13 LCR

42 H(ω) H(s) H(s) =H (s ) H(ω) H(s) s = iω H(ω) =H ( ω) H(ω) ω arg H(ω) ω 0 H(ω) arg H(ω) ω 0 H(ω) ω H(ω) arg H(ω) gain [db] H(s) =1/s 6.1 H(ω) =1/(iω) = i/ω ω 0

43 H(s) =1/s ω 0 90 [deg] 20 [db/dec] [db] 1/10 H(s) =s 6.2 H(s) 6.2 H(s) =s

44 H(s) =P M (s β k ) k=1 N (s α k ) k=1 6.1 H αk (s) =1/(s α k ) H βk (s) =(s β k ) α k β k 6.1 { M }{ N } H(s) =P H βk (s) H αk (s) 6.2 k=1 k=1 H(s) s = iω H(ω) M N 20 log 10 H(ω) =20log 10 P + 20 log 10 H βk (ω) + 20 log 10 H αk (ω) k=1 k=1 6.3 M N arg H(ω) = arg H βk (ω)+ arg H αk (ω) k=1 k=1 6.4 α k β k α β α H(s) = α /(s α) α 1 H(s) = α /(s α) 6.3 α = 10 2 H(s) = α 2 /(s α) 2 α = H(s) = α 2 /((s α)(s α )) α = 10e i5π/6 α = 10e i5π/ a d 10 a 1 1 b c d ω <10 H(ω) =1 10 [rad/s] 10 [rad/s]

45 H(s) = α /(s α) α = H(s) = α 2 /(s α) 2 α = ω 20 [db/dec] 2 40 [db/dec] [db] 2 1 ω =0 0[deg] ω

46 H(s) = α 2 /((s α)(s α )) α = 10e i5π/ H(s) = α 2 /((s α)(s α )) α = 10e i5π/ s

47 [deg] [deg] 1 ω iπ/2 0 2 π 0 N Nπ/2[rad] β = 10 H(s) =(s β)/ β 6.8 β = 10e i5π/9 H(s) =((s β)(s β ))/ β β = 10 H(s) =(s β)/ β 6.9 β = 10e i5π/9 H(s) =((s β)(s β ))/ β 2

48 N Nπ/2[rad] H(s) H(s) = H(s) = α 1 α 2 2 (s α 1 )(s α 2 )(s α 2 ) a α 1 = 1, α 2 = 100e i5π/6 α 1 2 α 2 (s β 1 ) β 1 (s α 1 )(s α 1 )(s α 2) α 1 =e i3π/4, α 2 = 100, β 1 = 10 b 6.10 a b 6.10 a H(s) s = [rad/s] 20 [db/dec] 90 [deg] s = 100e ±i5π/ [rad/s] 40 [db/dec] 180 [deg] b H(s) s =e ±i3π/ [rad/s] 40 [db/dec] 180 [deg] s = [rad/s] 20 [db/dec] 90 [deg] s = [rad/s] 20 [db/dec] 90 [deg]

49 a b a b

50 LPF HPF BPF BEF APF h(t) =δ(t τ) δ(t) 1 τ e iτω H(ω) =e iτω

51 H(ω) =1, arg H(ω) =τω ω arg H(ω) =τω ω 6.15 a arg H(ω) = 0.1ω b 0.1 [s] arg H(ω) = 0.1 ω c arg H(ω) ω d(ω) =argh(ω)/ω [s] ω 6.15

52 H(ω) =1 2. H(ω) =0 1 2 H(ω) [db/dec] [db/dec] s ω c n LPF s ω c n n [ ( 2k 1 α k = ω c exp i 2n π + π )], k =1,...,n H(s) = P n (s α k ) k=1 6.6 P H(0) = 1 P = n k=1 α k h(t) 2 h(t) = n A k e αkt,, A k =(s α k )H(s) k=1 s=αk 6.7 ω c = 1 [rad/s] 10 LPF 6.16 a ω c = 1 [rad/s] n =2, 3,...,10 LPF b d

53 LPF 20n [db/dec] α k ( ( )) 1 1 Re(α k ) Re(α k )sinh n sinh Rip/5 1 Rip [db] H(s) h(t) P H(ω c ) =1/ 2 ω c = 1 [rad/s] 10 LPF 6.17 a ω c =1 [rad/s] n =2, 3,...,10 LPF b d

54 LPF 6.18 LPF ω c n LPF s n

55 90 6 α k = R( cos(sin 1 (p k )) + ip k ), k =1, 2,...,n 6.9 p k = 1 2k +1 n H(s) h(t) R P H(0) =1 ω c = 1 [rad/s] 10 LPF 6.18 a ω c S = 1 [rad/s] n =2, 3,...,10 LPF b d 6.4 LPF HPF BPF BEF LPF LPF HPF BPF BEF HPF HPF BPF BEF LPF 6.19 a 20 [db/dec] LPF b c HPF 1 HPF LPF n s n HPF HPF LPF 6.19 LPF HPF

56 2013 Printed in Japan ISBN

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

sikepuri.dvi

sikepuri.dvi 2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

main.dvi

main.dvi 5 IIR IIR z 5.1 5.1.1 1. 2. IIR(Infinite Impulse Response) FIR(Finite Impulse Response) 3. 4. 5. 5.1.2 IIR FIR 5.1 5.1 5.2 104 5. IIR 5.1 IIR FIR IIR FIR H(z) = a 0 +a 1 z 1 +a 2 z 2 1+b 1 z 1 +b 2 z 2

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a 13/7/1 II ( / A: ) (1) 1 [] (, ) ( ) ( ) ( ) etc. etc. 1. 1 [1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin

More information

main.dvi

main.dvi 6 FIR FIR FIR FIR 6.1 FIR 6.1.1 H(e jω ) H(e jω )= H(e jω ) e jθ(ω) = H(e jω ) (cos θ(ω)+jsin θ(ω)) (6.1) H(e jω ) θ(ω) θ(ω) = KωT, K > 0 (6.2) 6.1.2 6.1 6.1 FIR 123 6.1 H(e jω 1, ω

More information

v_-3_+2_1.eps

v_-3_+2_1.eps I 9-9 (3) 9 9, x, x (t)+a(t)x (t)+b(t)x(t) = f(t) (9), a(t), b(t), f(t),,, f(t),, a(t), b(t),,, x (t)+ax (t)+bx(t) = (9),, x (t)+ax (t)+bx(t) = f(t) (93), b(t),, b(t) 9 x (t), x (t), x (t)+a(t)x (t)+b(t)x(t)

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

画像工学特論

画像工学特論 .? (x i, y i )? (x(t), y(t))? (x(t)) (X(ω)) Wiener-Khintchine 35/97 . : x(t) = X(ω)e jωt dω () π X(ω) = x(t)e jωt dt () X(ω) S(ω) = lim (3) ω S(ω)dω X(ω) : F of x : [X] [ = ] [x t] Power spectral density

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 常微分方程式の局所漸近解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/007651 このサンプルページの内容は, 初版 1 刷発行当時のものです. i Leibniz ydy = y 2 /2 1675 11 11 [6] 100 Bernoulli Riccati 19 Fuchs

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

35

35 D: 0.BUN 7 8 4 B5 6 36 6....................................... 36 6.................................... 37 6.3................................... 38 6.3....................................... 38 6.4..........................................

More information

2012 September 21, 2012, Rev.2.2

2012 September 21, 2012, Rev.2.2 212 September 21, 212, Rev.2.2 4................. 4 1 6 1.1.................. 6 1.2.................... 7 1.3 s................... 8 1.4....................... 9 1.5..................... 11 2 12 2.1.........................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

.. p.2/5

.. p.2/5 IV. p./5 .. p.2/5 .. 8 >< >: d dt y = a, y + a,2 y 2 + + a,n y n + f (t) d dt y 2 = a 2, y + a 2,2 y 2 + + a 2,n y n + f 2 (t). d dt y n = a n, y + a n,2 y 2 + + a n,n y n + f n (t) (a i,j ) p.2/5 .. 8

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o = RC LC RC 5 2 RC 2 2. /sc sl ( ) s = jω j j ω [rad/s] : C L R sc sl R 2.2 T (s) ( T (s) = = /CR ) + scr s + /CR () 0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db(

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 入門モーター工学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/074351 このサンプルページの内容は, 初版 1 刷発行当時のものです. 10 kw 21 20 50 2 20 IGBT IGBT IGBT 21 (1) 1 2 (2) (3) ii 20 2013 2 iii iv...

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14 B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) f(x 1,...,x n ) (x 1 x 0,...,x n 0), (x 1,...,x n ) i x i f xi

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt 3.4.7 [.] =e j(t+/4), =5e j(t+/3), 3 =3e j(t+/6) ~ = ~ + ~ + ~ 3 = e j(t+φ) =(e 4 j +5e 3 j +3e 6 j )e jt = e jφ e jt cos φ =cos 4 +5cos 3 +3cos 6 =.69 sin φ =sin 4 +5sin 3 +3sin 6 =.9 =.69 +.9 =7.74 [.]

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63> スピントロニクスの基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077461 このサンプルページの内容は, 初版 1 刷発行時のものです. i 1 2 ii 3 5 4 AMR (anisotropic magnetoresistance effect) GMR (giant magnetoresistance

More information

main.dvi

main.dvi 3 Discrete Fourie Transform: DFT DFT 3.1 3.1.1 x(n) X(e jω ) X(e jω )= x(n)e jωnt (3.1) n= X(e jω ) N X(k) ωt f 2π f s N X(k) =X(e j2πk/n )= x(n)e j2πnk/n, k N 1 (3.2) n= X(k) δ X(e jω )= X(k)δ(ωT 2πk

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

2 0.1 Introduction NMR 70% 1/2

2 0.1 Introduction NMR 70% 1/2 Y. Kondo 2010 1 22 2 0.1 Introduction NMR 70% 1/2 3 0.1 Introduction......................... 2 1 7 1.1.................... 7 1.2............................ 11 1.3................... 12 1.4..........................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009631 このサンプルページの内容は, 初版 1 刷発行時のものです. Excel URL http://www.morikita.co.jp/books/mid/009631 i Microsoft Windows

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information