<8E9197BF2D375F8DC489748FF389BB82CC8C9F93A295FB964081A695CF8D5882C882B52E786477>
|
|
|
- いちえい のあき
- 6 years ago
- Views:
Transcription
1 再液状化の検討方法 1. 液状化の判定方法 液状化の判定は 建築基礎構造設計指針 ( 日本建築学会 ) に準拠して実施する (1) 液状化判定フロー 液状化判定フローを図 -7.1 に示す START (2) 判定対象土層 資料 -7 液状化の判定を行う必要がある飽和土層は 一般に地表面から 20m 程度以浅の沖積層で 考慮すべき土の種類は 細粒分含有率が 35% 以下の土とする ただし 埋立地盤など人口造成地盤では 細粒分含有率が 35% 以上の低塑性シルト 液性限界に近い含水比を持ったシルトなどが液状化した事例も報告されているので 粘土分 (0.005 mm以下の粒径を持つ土粒子 ) 含有率が 10% 以下 または塑性指数が 15% 以下の埋立あるいは盛土地盤については液状化の検討を行う 細粒土を含む礫や透水性の低い土層に囲まれた礫は液状化の可能性が否定できないので そのような場合にも液状化の検討を行う (3) 検討地点の地盤内の各深さに発生する等価な繰返しせん断応力比の算定 1) 地表面加速度より算定 ( 簡易法 ) 判定対象土層の設定 地盤内各深さの等価な繰返しせん断応力比の算定 地表面加速度より算定 地震応答解析により算定液状化抵抗比の算定各深さにおける液状化安全率 FL の算定 FL>1.0 : 液状化しない FL 1.0 : 液状化する地点における液状化危険度 PL の算定 END 図 -7.1 液状化判定フロー ここに τd : 水平面に生じる等価な一定繰返しせん断応力振幅 (kn/m 2 ) γn : 等価な繰返し回数に関する補正係数で γn=0.1*(m-1) M は地震のマグニチュード σz : 検討深さにおける有効土被り圧 ( 鉛直有効応力 )(kn/m 2 ) σz : 検討深さにおける全土被り圧 ( 鉛直全応力 )(kn/m 2 ) αmax : 地表面における設計用水平加速度 (gal) g : 重力加速度 (980gal) γd : 地盤が剛体でないことによる低減係数で ( z) zは メートル単位で表した地表面からの検討深さ 2) 地震応答解析により算定 τd/σz =γn*τmax/σz ここに τd : 水平面に生じる等価な一定繰返しせん断応力振幅 (kn/m 2 ) γn : 等価な繰返し回数に関する補正係数で γn=0.1*(m-1) M は地震のマグニチュード τmax : 地震応答解析により算定した最大せん断応力 (kn/m 2 ) σz : 地震応答解析で用いた有効土被り圧 ( 鉛直有効応力 )(kn/m 2 ) 3) 地震応答解析手法 ( 詳細法 ) 地震応答解析は 地盤条件や地震動の特性を詳細に反映できる手法であるが 種々の方法が提案されている 本検討では 地盤の地震応答解析手法として比較的用よく用いられている以下の手法について解析を実施し適切な手法を選定する 1 重複反射理論による等価線形解析 ( 解析コード :SHAKE) 2 重複反射理論によるひずみの周波数依存性を考慮した等価線形解析 ( 解析コード :FDEL) 3 有効応力法による時刻歴応答解析 ( 解析コード :FLIP) 7-1
2 (4) 液状化抵抗比の算定 1) 対応する深度の補正 N 値 (Na) を次式から算定 Nl=CN*N CN= 98/σz Na=Nl+ Nf ここに Na : 補正 N 値 Nl : 換算 N 値 Nf : 細粒分含有率 Fc に応じた補正 N 値増分で図 -7.2 による CN : 拘束圧に関する換算係数 (5) 液状化安全率 F L の算定 各深さにおける液状化発生に対する安全率 FL を次式により算定する ここに F L > 1.0 : 液状化しない F L 1.0 : 液状化する (6) 地点における液状化危険度 P L の算定 図 -7.2 細粒分含有率と N 値の補正係数 2) 液状化抵抗比 R の算定図 -7.3 の限界せん断ひずみ振幅曲線 5% を用いて 補正 N 値 (Na) に対する飽和土層の液状化抵抗比 R をもとめる R = τl/σz ここに R : 液状化抵抗比 τl : 水平面における液状化抵抗 σz : 検討深さにおける有効土被り圧 (kn/m 2 ) 図 -7.3 補正 N 値と液状化抵抗 動的せん断ひずみの関係 7-2
3 2. 液状化に伴う地盤変形量の予測 液状化に伴う地盤変形量の予測は 以下の 2 つの方法について実施する 1 建築基礎構造設計指針 による方法 2 高圧ガス設備等耐震設計指針 による方法 (1) 建築基礎構造設計指針による地盤変形量の算定 沈下量は 以下の手順で算定する 1 図 -7.4 を用い補正 N 値とせん断応力比に対応した繰返しせん断ひずみγcy を求め これを体積ひずみと読み替え 各層の体積ひずみを推定する 2 各層の体積ひずみを鉛直方向に積分して 地表面沈下量を算定する 図 -7.4 補正 N 値と繰り返しせん断ひずみの関係 地表変位を Dcy とし液状化程度の指標とする 液状化の程度は Dcy の値により表 -7.1 のように設定する 表 -7.1 Dcy と液状化程度の関係 Dcy(cm) 液状化の程度 0 なし -05 軽微 小 中 大 40- 甚大 7-3
4 (2) 高圧ガス設備等耐震設計指針による地盤沈下量の算定 地震時の液状化に伴う砂地盤の沈下量予測 ( 第 26 回土質工学研究発表会 石原研而 吉嶺充俊 ) による地震による砂の液状化安全率と液状化後の排水に伴う体積ひずみの関係より沈下量を算定する 1) 砂の液状化安全率と体積ひずみの関係図 -7.5 に砂の体積ひずみと最大せん断ひずみの関係を 図 -7.6 に砂の液状化安全率と最大せん断ひずみの関係を示す また これらを組み合わせた砂の液状化安全率と体積ひずみの関係を図 -7.7 に示す 図 -7.5 砂の体積ひずみ - 最大せん断ひずみ関係 図 -7.7 砂の液状化安全率 - 体積ひずみ関係 2) 地盤沈下量の算定地盤沈下量は 対象土層の相対密度と液状化抵抗率に対する体積圧縮ひずみを図 -6.6 より求め 液状化判定対象層について積分し算定する Dcy=Σ(εvi Hi) ここに Dcy : 地表面沈下量 εvi : i 番目の土層の体積圧縮ひずみ Hi : i 番目の土層の層厚 図 -7.6 砂の液状化安全率 - 最大せん断ひずみ関係 なお 相対密度が得られていない場合は 以下の示すマイヤホッフの式により算定する 液状化安全率は建築基礎構造設計指針の方法により算定する Dr=21(Nl/1.7) 0.5 Nl=1.7N/(σv'+0.7) ここに Dr : 相対密度 (%) Nl : 正規化 N 値 N : 実測 N 値 σv' : 有効上載圧 (kg/cm 2 ) 7-4
5 3. 再液状化の検討に用いる地震動 (1) 再液状化の検討として設定する地震動 1) 対象とする地震再液状化の検討では 将来発生が想定される地震に対して再度の液状化が生じるかどうかの判定を行うための地震動を設定する 表 -7.2 対象地震検討目的対象地震再液状化の検討再度液状化するか検討を行うための将来発生が想定される地震を対象とする 2) 検討対象地点検討地点により地震動は異なる 本検討対象は 大きく以下の4 地区に分かれており 各地区ごとに地震動を設定する 表 -7.3 検討対象地区対象対象地点旭地区飯岡地区海上地区干潟地区 4) 液状化の検討として設定する地震動 液状化の検討として設定する地震動を表 -7.5 に示す 表 -7.5 液状化の検討として設定する地震動 検討目的 再液状化の検討 対象地震 将来発生が想定される地震 簡易法 旭地区 地表面加速度とマグニチュード 飯岡地区 地表面加速度とマグニチュード 海上地区 地表面加速度とマグニチュード 干潟地区 地表面加速度とマグニチュード 詳細法 旭地区 工学的基盤面での加速度時刻歴波形 ( 地震応答解析 ) 飯岡地区 工学的基盤面での加速度時刻歴波形 海上地区 工学的基盤面での加速度時刻歴波形 干潟地区 工学的基盤面での加速度時刻歴波形 3) 解析法に応じた地震動本検討では 液状化判定を行うための地震時の地中発生せん断力を地表面加速度より設定する簡易法と地震応答解析により求める詳細法の 2 つの方法を用いる これらの方法に対して用いる地震動は異なるため 以下のように設定する 表 -7.4 解析法に応じた設定地震動解析法設定する地震動簡易法地表最大加速度と地震のマグニチュード詳細法 ( 地震応答解析 ) 工学的基盤面における加速度時刻歴波形 7-5
6 (2) 再液状化の検討に用いる地震動 1) 再液状化の検討に用いる地震動の設定方針再液状化における地盤沈下量予測での検討地震動について 東日本大震災による液状化被災市街地の復興に向けた検討 調査について ( ガイダンス ( 案 )) の中で以下のように示されている 出典 : 東日本大震災による液状化被災市街地の復興に向けた検討 調査について ( ガイダンス ( 案 )) また 平成 19 年度千葉県地震被害想定調査報告書 ( 平成 20 年 3 月 ) では 以下の想定地震動が示されている ( 平成 19 年度千葉県地震被害想定調査報告書 ( 平成 20 年 3 月 : 千葉県 )) より引用 本検討では ガイダンス案に示された3タイプの地震動および千葉県地震被害想定調査での想定地震の中で 検討地点に影響の大きい地震動を選定し 検討地震動とする 再液状化の検討に用いる地震動 1 タイプ1:200gal M7.5( 中地震による中程度の揺れ ) 2 タイプ2:200gal M9.0( 巨大地震による中程度の揺れ ) 3 タイプ3:350gal M7.5( 直下型地震による大きな揺れ ) 4 千葉県地震被害想定で想定された当該地点に影響の大きい地震 7-6
7 2) 簡易法に用いる地震動簡易法に用いる地震動は 地表面最大加速度と地震のマグニチュードで設定する これらは ガイダンス案で示された以下のものを用いる なお 千葉県地震被害想定調査における地震動は 基盤面での加速度時刻歴として設定されているものであり 詳細法での検討のみとする 表 -7.6 再液状化の検討における簡易法に用いる地震動地震動タイプ地表最大加速度と地震のマグニチュードタイプ1( 中地震による中程度の揺れ ) 200gal M7.5 タイプ2( 巨大地震による中程度の揺れ ) 200gal M9.0 タイプ3( 直下型地震による大きな揺れ ) 350gal M7.5 千葉県地震被害想定での地震 - 3) 詳細法 ( 地震応答解析 ) に用いる地震動詳細法 ( 地震応答解析 ) に用いる地震動は 工学的基盤面での加速度時刻歴波形として設定する ガイダンス案では タイプ1 タイプ2 タイプ3の基盤面における加速度時刻歴波形は 示されていない この内 タイプ1 タイプ3については 建築基礎構造設計指針 で示されている損傷限界状態検討用及び終局限界状態検討用地震動に相当すると考えられる これらについては 工学的基盤面での加速度応答スペクトルとして設定できることから 応答スペクトルに適合する模擬地震波を作成し これを用いる事とする 工学的基盤での応答スペクトル例を図 -7.8 に示す なお 適合波作成に用いる素材波は 検討対象地点の地盤特性を考慮できることから東日本大震災における検討地点近傍の地震観測記録を用いることとする タイプ2については 東日本大震災相当の地震動と考えられる事から液状化の検証に用いる地震動として設定した地震動を用いる事とする 千葉県の地震被害想定での地震動については 千葉県において県内を 250 メートルのメッシュに区切り 各メッシュの工学的基盤面における加速度時刻歴波形を作成しており これを用いる事とする 図 -7.8 工学的基盤での応答スペクトル例 ( 出典 : 建築基礎構造設計指針 ) 7-7
8 (4) 液状化の検討として設定する地震動のまとめ 表 -7.7 液状化の検討として用いる地震動一覧表 対象地震 検討地区 簡易法 詳細法 ( 地震応答解析 ) 液状化の検証 東日本大震災 旭 市役所での観測記録の地表最大加速度 (αmax=221gal) 市役所の地表での観測記録を基盤面に引き戻した波形 飯岡 飯岡支所での観測記録の地表最大加速度 (αmax=265gal) 飯岡支所の地表での観測記録を基盤面に引き戻した波形 海上 海上支所での観測記録の地表最大加速度 (αmax=206gal) 海上支所の地表での観測記録を基盤面に引き戻した波形 干潟 干潟支所での観測記録の地表最大加速度 (αmax=287gal) 干潟支所の地表での観測記録を基盤面に引き戻した波形 再液状化の検討タイプ1( 中地震による中程度の揺れ ) 旭 地表最大加速度 200gal M7.5 建築基礎構造設計指針 ( 損傷限界状態検討用 ) 飯岡 地表最大加速度 200gal M7.5 建築基礎構造設計指針 ( 損傷限界状態検討用 ) 海上 地表最大加速度 200gal M7.5 建築基礎構造設計指針 ( 損傷限界状態検討用 ) 干潟 地表最大加速度 200gal M7.5 建築基礎構造設計指針 ( 損傷限界状態検討用 ) タイプ2( 巨大地震による中程度の揺れ旭 地表最大加速度 200gal M9.0 液状化の検証用加速度時刻歴波形 飯岡 地表最大加速度 200gal M9.0 液状化の検証用加速度時刻歴波形 海上 地表最大加速度 200gal M9.0 液状化の検証用加速度時刻歴波形 干潟 地表最大加速度 200gal M9.0 液状化の検証用加速度時刻歴波形 タイプ3( 直下型地震による大きな揺れ旭 地表最大加速度 350gal M7.5 建築基礎構造設計指針 ( 終局限界状態検討用 ) 飯岡 地表最大加速度 350gal M7.5 建築基礎構造設計指針 ( 終局限界状態検討用 ) 海上 地表最大加速度 350gal M7.5 建築基礎構造設計指針 ( 終局限界状態検討用 ) 干潟 地表最大加速度 350gal M7.5 建築基礎構造設計指針 ( 終局限界状態検討用 ) 千葉県地震被害想定での想定地震 旭 - 千葉県作成の250mメッシュの基盤面での加速度時刻歴波形 飯岡 - 千葉県作成の250mメッシュの基盤面での加速度時刻歴波形 海上 - 千葉県作成の250mメッシュの基盤面での加速度時刻歴波形 干潟 - 千葉県作成の250mメッシュの基盤面での加速度時刻歴波形 7-8
177 箇所名 那珂市 -1 都道府県茨城県 市区町村那珂市 地区 瓜連, 鹿島 2/6 発生面積 中 地形分類自然堤防 氾濫平野 液状化発生履歴 なし 土地改変履歴 大正 4 年測量の地形図では 那珂川右岸の支流が直線化された以外は ほぼ現在の地形となっている 被害概要 瓜連では気象庁震度 6 強
177 箇所名 那珂市 -1 都道府県茨城県 市区町村那珂市 地区 瓜連, 鹿島 1/6 発生面積 中 地形分類自然堤防 氾濫平野 液状化発生履歴 なし 土地改変履歴 大正 4 年測量の地形図では 那珂川右岸の支流が直線化された以外は ほぼ現在の地形となっている 被害概要 瓜連では気象庁震度 6 強を記録し 地震動が強い マンホールの浮上または周辺地盤の沈下 液状化によるものかどうかは明瞭でないが
(Microsoft Word - \221\346\202Q\211\361\216\221\227\277-\202P-2.doc)
資料 -1-2 液状化危険度 土砂災害危険度土砂災害危険度の評価評価手法 1 液状化危険度の評価... 3 1.1 液状化危険度の評価手法... 3 1.1.1 内閣府の手法との比較... 3 1.1.2 PL 値と地表加速度の関係の設定... 5 1.1.3 前回調査の手法との相違 ( 評価対象の基準 )... 6 1.1.4 液状化危険度の評価結果... 6 1.2 液状化に伴う地盤の沈下量...
液状化判定計算(道示編)V20-正規版.xls
道路橋示方書対応版 液状化の判定計算 (LIQCAL-D) シェアウエア 正規版 液状化判定基準 : 道路橋示方書 同解説 Ⅴ 耐震設計編 ( 平成 14 年 3 月 ) 最初にお読み下さい 計算へ進む > Ver 2.0 (2008.04.07) ( 有 ) シビルテック 本ソフトはシェアウエアソフト ( 有料 ) です 本ソフトは試用版として利用できますが 土の重量 ( 飽和重量と湿潤重量 )
01宅地液状化沈下(161008)
造成宅地の液状化沈下量の推定 目次 (1) 基本方針 1, 本解析の説明 2 2, 構造諸元 2 3, 本解析の概要 2 4, 本解析の内容 3 5, 本解析の目的 3 6, 設計方針及び参考文献 3 7. 使用プログラム 3 8, 変形解析のフロー 3 9, 概要図 4 (2) 概要 1, 地盤の概説 5 2, 設計外力 5 3, 液状化の判定 5 (3)ALID 解析の概要 1,ALIDによる自重変形解析法の概説
マンホール浮き上がり検討例
マンホールの地震時液状化浮き上がり解析 ( 地震時せん断応力は 略算 で算定 ) 目次 (1) 基本方針 1, 本解析の背景 2 2, 構造諸元 2 3, 本解析の内容 2 4, 本解析の目的 2 5, 設計方針及び参考文献 2 6. 使用プログラム 3 7, 変形解析のフロー 3 8, 概要図 3 (2) 地盤概要 1, 地盤の概説 5 ( 一部省略 ) 2, ボーリング調査結果 5 3, 設計外力
Microsoft PowerPoint - H24 aragane.pptx
海上人工島の経年品質変化 研究背景 目的 解析条件 ( 境界条件 構成モデル 施工履歴 材料パラメータ ) 実測値と解析値の比較 ( 沈下量 ) 将来の不等沈下予測 ケーススタディー ( 埋土施工前に地盤改良を行う : 一面に海上 SD を打設 ) 研究背景 目的 解析条件 ( 境界条件 構成モデル 施工履歴 材料パラメータ ) 実測値と解析値の比較 ( 沈下量 ) 将来の不等沈下予測 ケーススタディー
Microsoft Word - 4_構造特性係数の設定方法に関する検討.doc
第 4 章 構造特性係数の設定方法に関する検討 4. はじめに 平成 年度 年度の時刻歴応答解析を実施した結果 課題として以下の点が指摘 された * ) 脆性壁の評価法の問題 時刻歴応答解析により 初期剛性が高く脆性的な壁については現在の構造特性係数 Ds 評価が危険であることが判明した 脆性壁では.5 倍程度必要保有耐力が大きくなる * ) 併用構造の Ds の設定の問題 異なる荷重変形関係を持つ壁の
土木建設技術シンポジウム2002
軟弱地盤上の盛土工事における圧密後の地盤性状について 赤塚光洋 正会員戸田建設株式会社土木工事技術部 ( 4-8388 東京都中央区京橋 -7-) 軟弱地盤上の盛土工事において, 供用開始後の残留沈下を抑制する目的でバーチカルドレーンによる圧密沈下促進工法が用いられることが多い. また, 粘性土地盤は圧密によって強度が増加するので, バーチカルドレーン工法は盛土基礎地盤の強度発現を早める安定対策としても用いられている.
4. 粘土の圧密 4.1 圧密試験 沈下量 問 1 以下の問いに答えよ 1) 図中の括弧内に入る適切な語句を答えよ 2) C v( 圧密係数 ) を 圧密試験の結果から求める方法には 圧密度 U=90% の時間 t 90 から求める ( 5 ) 法と 一次圧密理論曲線を描いて作成される ( 6 )
4. 粘土の圧密 4. 圧密試験 沈下量 問 以下の問いに答えよ ) 図中の括弧内に入る適切な語句を答えよ ) ( 圧密係数 ) を 圧密試験の結果から求める方法には 圧密度 U9% の時間 9 から求める ( 5 ) 法と 一次圧密理論曲線を描いて作成される ( 6 ) と実験曲線を重ね合わせて圧密度 5% の 5 を決定する ( 6 ) 法がある ) 層厚 の粘土層がある この粘土層上の載荷重により粘土層の初期間隙比.
3. 入力データおよび出力データ エクセルシートは 入力地震波 解析条件 地盤データ ひずみ依存特性 ユーザ指定 ひずみ依存特性 出力 収束剛性 最大値深度分布 相対変位最大時深度分布 伝達関数+ 入力 伝達関数 入力 加速度時刻歴+ 出力 加速度時刻歴 出力 変位時刻歴 せん断応力時刻歴 および
成層地盤の地震応答計算プログラム エクセルマクロ について 日中構造研究所松原勝己同上梁生鈿. はじめに地上構造物の耐震解析に使用する入力地震動を地盤の影響を考慮して設定する場合や 地下構造物の耐震解析において地盤変位 周面せん断力および躯体慣性力など地震時外力の設定を行う場合に 当該地盤を成層構造と仮定し一次元地盤応答解析によって地盤の地震応答を算出することがあります この計算には SAK などの解析ソフトや他の市販ソフトが使用されるのが一般的です
Microsoft PowerPoint - ppt8.pptx
地盤材料 学 地盤材料 6/11 1:3 12: 地盤材料 3 授業計画 ( 案 ) 曜 2 限 : 地盤材料 学 ( 藏 )W2-319 第 1 回 (4/9) 授業の概要 第 2 回 (4/16) 砂と粘 ( 圧縮特性 ) 第 3 回 (4/23) 砂と粘 ( 圧縮特性, クリープ, 応 緩和 ) 第 4 回 (5/7) 砂と粘 ( 排 条件とせん断挙動 ) 第 5 回 (5/14) 砂と粘 (
「発電用原子炉施設に関する耐震設計審査指針」の改訂に伴う島根原子力発電所3号機の耐震安全性評価結果中間報告書の提出について
平成 年 9 月 日中国電力株式会社 発電用原子炉施設に関する耐震設計審査指針 の改訂に伴う島根原子力発電所 号機の耐震安全性評価結果中間報告書の提出について 当社は本日, 発電用原子炉施設に関する耐震設計審査指針 の改訂に伴う島根原子力発電所 号機の耐震安全性評価結果中間報告書を経済産業省原子力安全 保安院に提出しました また, 原子力安全 保安院の指示に基づく島根原子力発電所 号機原子炉建物の弾性設計用地震動
土の段階載荷による圧密試験
J I S A 1 1 7 土の段階載荷による圧密試験 ( 計算書 ) サンプルデータ試験年月日平成 6 年 9 月 6 日 試料番号 ( 深さ ) T1- (14.00~14.85m) 試験者藤代哲也初試験機 No. 1 直径 D cm 6.000 含水比 w0 % 5.3 供期最低 ~ 最高室温 0.5~1.0断面積 A cm 8.7 間隙比 e 0, 体積比 f 0 0.930 状土質名称粘性土まじり砂質礫
地盤情報DBの利用と活用方法
地盤モデルと DYNEQ CKC-Liq を利用した解析演習 地盤工学会関東支部関東地域における地盤情報の社会的 工学的活用法の検討委員会 ( 委員長 : 龍岡文夫 副委員長 : 安田進 幹事長 : 清木隆文 ) 中央開発株式会社王寺秀介 1 1. 地震応答解析の実施例 電子地盤図の地盤モデルを用いた地震応答解析の実施例を紹介する この事例は 地盤モデルの TXT ファイルを地震応答解析プログラム
既存の高越ガス設備の耐震性向上対策について
経済産業省 20140519 商局第 1 号 平成 26 年 5 月 21 日 各都道府県知事殿 経済産業省大臣官房商務流通保安審議官 既存の高圧ガス設備の耐震性向上対策について 高圧ガス設備については 高圧ガス保安法及び液化石油ガスの保安の確保及び取引の適正化に関する法律 ( 以下 高圧ガス保安法 という ) に基づき 耐震設計を義務付けているところです こうした中で 平成 23 年東北地方太平洋沖地震の災害
<926E906B8E9E2D958282AB8FE382AA82E882CC8C9F93A22E626376>
ボックスカルバートの地震時設計 浮き上がりの検討. 設計条件 () 設計地震動 地震動 レベル () 概要図 400 3900 3000 3000 4000 (3) ボックスカルバート条件 ) 寸法諸元形状 内幅 B(mm) 内高 H(mm) 頂版厚 T(mm) 底版厚 T(mm) 左側壁厚 T3(mm) 右側壁厚 T4(mm) 外幅 B0(mm) 外高 H0(mm) 頂版ハンチ高 C(mm) 底版ハンチ高
Microsoft Word - CPTカタログ.doc
新しい地盤調査法のすすめ CPT( 電気式静的コーン貫入試験 ) による地盤調査 2002 年 5 月 ( 初編 ) 2010 年 9 月 ( 改訂 ) 株式会社タカラエンジニアリング 1. CPT(Cone Peneraion Tesing) の概要日本の地盤調査法は 地盤ボーリングと標準貫入試験 ( 写真 -1.1) をもとに土質柱状図と N 値グラフを作成する ボーリング孔内より不攪乱試料を採取して室内土質試験をおこない土の物理
<897E8C F80837D A815B838B81458FE395948ECE95C7817B8145>
円形標準マンホール 上部斜壁 + 床版タイプ 浮上がりの検討. 設計条件 () 設計地震動 地震動レベル () 概要図 呼び方内径 都型 ( 内径 0cm) 00 00 0 600 0 0.00.0 0.0 0.0.0.70 0 60 00 60 60 00.0.0 00 00 00 00 00 P () マンホール条件 ) 寸法諸元 6 7 種類 呼び名 高さ モル 上部 下部 タル 外径 内径
FC 正面 1. 地震入力 1-1. 設計基準 準拠基準は以下による 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV =
FC 正面 1. 地震入力 1-1. 設計基準 準拠基準は以下による 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV = (1/2) KH Z : 地域係数 KS: 設計用標準震度 KV: 設計用鉛直震度 1-2. 設計条件耐震クラス
土の三軸圧縮試験
J G S 5 土の三軸試験の供試体作製 設置 サンプルデータ試験年月日平成 6 年 9 月 6 日 試料番号 ( 深さ ) T- (8.~8.7m) 試験者藤代哲也 供試体を用いる試験の基準番号と名称 試料の状態 供試体の作製 土質名称 置 飽和過程圧密前(試験前供試体 No. 直径 平均直径 D i 初高さ 期平均高さ H i 状体積 V i 含水比 w i 質量 m i 態) 湿潤密度 ρ ti
<94F E4F8EB25F >
JGS 5 土の三軸試験の供試体作製 設置 初期状態% 設)炉容器 No. 後供試体を用いる試験の基準番号と名称 JGS 51-9 土の繰返し非排水三軸試験 試 料 の 状 態 1) 乱さない 土粒子の密度 ρ s g/cm 供 試 体 の 作 製 ) トリミング 液 性 限 界 w L ) % 土 質 名 称 礫まじり粘土質砂 塑 性 限 界 w P ) % 1 5.1.96.98 質量 m i
<4D F736F F D208E9197BF A082C68E7B8D A815B82CC8D5C91A28AEE8F C4816A2E646F63>
資料 9 液化石油ガス法施行規則関係技術基準 (KHK0739) 地上設置式バルク貯槽に係るあと施工アンカーの構造等 ( 案 ) 地盤面上に設置するバルク貯槽を基礎と固定する方法として あと施工アンカーにより行う 場合の構造 設計 施工等は次の基準によるものとする 1. あと施工アンカーの構造及び種類あと施工アンカーとは アンカー本体又はアンカー筋の一端をコンクリート製の基礎に埋め込み バルク貯槽の支柱やサドル等に定着することで
Microsoft PowerPoint - 2_6_shibata.ppt [互換モード]
圧密問題への逆問題の適用 一次元圧密と神戸空港の沈下予測 1. 一次元圧密の解析 2. 二次元圧密問題への適用 3. 神戸空港の沈下予測 1. 一次元圧密の解析 一次元圧密の実験 試験システムの概要 分割型圧密試験 逆解析の条件 未知量 ( 同定パラメータ ) 圧縮指数 :, 透水係数 :k 初期体積ひずみ速度 : 二次圧密係数 : 観測量沈下量 ( 計 4 点 ) 逆解析手法 粒子フィルタ (SIS)
GEH-1011ARS-K GEH-1011BRS-K 1. 地震入力 参考 1-1. 設計基準 使用ワッシャー 準拠基準は以下による M10 Φ 30 内径 11 t2 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH =
GEH-1011ARS-K GEH-1011BRS-K 1. 地震入力 参考 1-1. 設計基準 使用ワッシャー 準拠基準は以下による M10 Φ 30 内径 11 t2 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV =
6
6. 圧密理論 6. 圧密理論 6.. 圧密方程式の誘導 粘土層の圧密原因とメカニズム 地下水位の低下 盛土建設 最終圧縮量と圧縮速度 6. 圧密理論 記号の統一間隙水圧 ( 絶対圧 ): u 間隙水圧 (gauge 圧 ): u u p a ( 大気圧 ) 過剰間隙水圧 : Δu ( 教科書は これを u と記している 初期状態が u p a で u の時で uδu の状態を対象にしている ) 微小の増分
資料 1 南海トラフの巨大地震モデル検討会 第 6 回会合 深部地盤モデルの作成の考え方 平成 23 年 12 月 12 日 1. 震度分布の推計方法 中央防災会議 (2003) 1 は 強震波形計算によって求められた地表の震度と経験的手法によって求められた地表の震度を比較検討し 強震波形計算による結果を主に それにより表現できていないところについては 経験的手法による結果も加えて 最終的な震度分布を求めている
Taro-H22年度最終報告書巻末資料
巻末資料 資料 1 : 想定南海地震の地震動 液状化危険度 斜面崩壊危険度の予測手順 資料 2 : アンケート用紙及び結果 資料 1 : 想定南海地震の地震動 液状化危険度 斜面崩壊危険度の予測手順 巻末資料 1 想定南海地震の地震動 液状化危険度 斜面崩壊危険度の予測手順 2 地盤データとファイル 2.1 鉛直 1 次元地盤柱状モデル用 Excel ファイル 1 処理手順のフロー及び必要なファイル群
土木学会論文集の完全版下投稿用
ダムにおける耐震性能照査について 安里司 1 我喜屋靖 2 1 沖縄総合事務局北部ダム統合管理事務所管理課長 ( 905-0019 沖縄県名護市大北 3-19-8) 2 沖縄総合事務局北部ダム統合管理事務所管理係長 ( 905-0019 沖縄県名護市大北 3-19-8) ダムの耐震設計は河川管理施設等構造令に基づき設計を行っているところであるが 阪神淡路大震災以降に 大規模地震に対するダム耐震性の照査指針
Microsoft PowerPoint - 宅地液状化_印刷用
戸建て住宅地の液状化被害メカニズムの解明と対策工の検討 名古屋大学大学院工学研究科社会基盤工学専攻中井健太郎 名古屋大学連携研究センター野田利弘 平成 27 年 11 月 14 日第 9 回 NIED-NU 研究交流会 1. 背景 目的 2. 建物による被害影響 材料定数, 境界条件 高さ 重量の影響 地盤層序と固有周期の影響 3. 被害に及ぼす隣接建物の影響 2 棟隣接時の隣接距離と傾斜方向の関係
国土技術政策総合研究所資料
5. 鉄筋コンクリート橋脚の耐震補強設計における考え方 5.1 平成 24 年の道路橋示方書における鉄筋コンクリート橋脚に関する規定の改定のねらい H24 道示 Ⅴの改定においては, 橋の耐震性能と部材に求められる限界状態の関係をより明確にすることによる耐震設計の説明性の向上を図るとともに, 次の2 点に対応するために, 耐震性能に応じた限界状態に相当する変位を直接的に算出する方法に見直した 1)
別添資料 地下階の耐震安全性確保の検討方法 大地震動に対する地下階の耐震安全性の検討手法は 以下のとおりとする BQ U > I BQ UN I : 重要度係数で構造体の耐震安全性の分類 Ⅰ 類の場合は.50 Ⅱ 類の場合は.25 Ⅲ 類の場合は.00 とする BQ U : 地下階の保有
別添資料 4-4- 大地震動時の層間変形角の検討方法 大地震動時の層間変形角の算定方法は 次のとおりとする 保有水平耐力計算により構造設計を行う場合には 構造体の変形能力を考慮し 一次設計時の層間変形角より推定する 推定の方法としては 下式に示すエネルギー一定則に基づく方法を原則とする なお 変位一定則に基づく方法による場合は 適用の妥当性を検証すること δ D δ δp: 大地震動時における建築物の最大水平変形
集水桝の構造計算(固定版編)V1-正規版.xls
集水桝の構造計算 集水桝 3.0.5 3.15 横断方向断面の計算 1. 計算条件 11. 集水桝の寸法 内空幅 B = 3.000 (m) 内空奥行き L =.500 (m) 内空高さ H = 3.150 (m) 側壁厚 T = 0.300 (m) 底版厚 Tb = 0.400 (m) 1. 土質条件 土の単位体積重量 γs = 18.000 (kn/m 3 ) 土の内部摩擦角 φ = 30.000
<4D F736F F D E682568FCD CC82B982F192668BAD93785F F2E646F63>
7. 粘土のせん断強度 ( 続き ) 盛土 Y τ X 掘削 飽和粘土地盤 せん断応力 τ( 最大値はせん断強度 τ f ) 直応力 σ(σ) 一面せん断 図 強固な地盤 2 建物の建設 現在の水平な地表面 ( 建物が建設されている過程では 地下水面の位置は常に一定とする ) 堆積 Y 鉛直全応力 σ ( σ ) 水平全応力 σ ( σ ) 間隙水圧 図 2 鉛直全応力 σ ( σ ) 水平全応力
残存耐力有無の閾値となる変形率に対象施設の桟橋高さを乗じることにより, 残留水平 変位に関する残存耐力評価指標を予め算出する. 算出した残存耐力評価指標と被災後の外 観調査で得られる施設天端の残留水平変位と比較することにより, 速やかに鋼部材の応力 状態の概要を把握することができる. dir = 残
参考資料 2 係留施設の残存耐力評価指標について 1. 概要港湾施設は大規模地震発生直後の緊急物資輸送や復旧工事の拠点として重要な役割を担っているため, 地震発生後速やかに施設の健全度を判断し暫定供用の可否を判断することが求められている. しかし, 桟橋式岸壁および矢板式岸壁は鋼部材を含む施設であり, 外観調査等から速やかに鋼部材のを把握することは困難である. そこで, 外観調査で得られる施設天端の残留水平変位から速やかに鋼部材のを判断する残存耐力評価指標を作成した.
H23 基礎地盤力学演習 演習問題
せん断応力 τ (kn/m ) H6 応用地盤力学及び演習演習問題 4 年月日. 強度定数の算定 ある試料について一面せん断試験 ( 供試体の直径 D=6.cm, 高さ H=.cm) を行い 表に示す データを得た この土の強度定数 c, φ を求めよ 垂直応力 P (N) 4 せん断力 S (N) 5 8 < 解答 > 供試体の断面積 A=πD /4 とすると 垂直応力 σ=p/a 最大せん断応力
耐雪型歩道柵 (P 種 )H=1.1m ランク 3 ( 基礎ブロック ) 平成年月日
耐雪型歩道柵 (P 種 )H=1.1m ランク 3 ( 基礎ブロック ) 平成年月日 目 次 1. 目的 1 2. 耐雪型の設置計画 1 3. 構造諸元 1 4. 許容応力度 1 4-1 使用部材の許容応力度 ( SS400,STK410 相当 1 4-2 無筋コンクリートの引張応力度 1 4-3 地盤の耐荷力 1 5. 設計荷重 2 5-1 鉛直力 ( 沈降力 ) 2 5-2) 水平力 ( クリープ力
Microsoft PowerPoint - 知財報告会H20kobayakawa.ppt [互換モード]
亀裂の変形特性を考慮した数値解析による岩盤物性評価法 地球工学研究所地圏科学領域小早川博亮 1 岩盤構造物の安定性評価 ( 斜面の例 ) 代表要素 代表要素の応力ひずみ関係 変形: 弾性体の場合 :E,ν 強度: モールクーロン破壊規準 :c,φ Rock Mech. Rock Engng. (2007) 40 (4), 363 382 原位置試験 せん断試験, 平板載荷試験 原位置三軸試験 室内試験
<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>
地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味
杭の事前打ち込み解析
杭の事前打ち込み解析 株式会社シーズエンジニアリング はじめに杭の事前打込み解析 ( : Pile Driving Prediction) は, ハンマー打撃時の杭の挙動と地盤抵抗をシミュレートする解析方法である 打ち込み工法の妥当性を検討する方法で, 杭施工に最適なハンマー, 杭の肉厚 材質等の仕様等を決めることができる < 特徴 > 杭施工に最適なハンマーを選定することができる 杭の肉厚 材質等の仕様を選定することができる
国土技術政策総合研究所 研究資料
3. 解析モデルの作成汎用ソフトFEMAP(Ver.9.0) を用いて, ダムおよび基礎岩盤の有限要素メッシュを8 節点要素により作成した また, 貯水池の基本寸法および分割数を規定し,UNIVERSE 2) により差分メッシュを作成した 3.1 メッシュサイズと時間刻みの設定基準解析結果の精度を確保するために, 堤体 基礎岩盤 貯水池を有限要素でモデル化する際に, 要素メッシュの最大サイズならびに解析時間刻みは,
分野毎の検討における体制・検討フロー(案)
資料 2 熊本地震による道路構造物の被災等を踏まえた対応 Ministry of Land, Infrastructure, Transport and Tourism 1 熊本地震による道路構造物の被災等を踏まえた対応 課題 論点 6/24 技術小委員会 今回の技術小委員会での調査検討事項 兵庫県南部地震より前の基準を適用した橋梁における耐震補強等の効果の検証 緊急輸送道路等の重要な橋について 被災後速やかに機能を回復できるよう耐震補強を加速化
砂防堰堤設計計算 透過型砂防堰堤
1 砂防堰堤設計計算 透過型砂防堰堤 目次 2 1 設計条件 1 2 設計流量の算出 2 2-1 渓床勾配 2 2-2 土石流濃度 2 2-3 土石流ピーク流量 2 3 水通しの設計 3 3-1 開口部の設定 3 3-2 土石流ピーク流量 (Qsp) に対する越流水深 6 3-3 設計水深 8 4 水通し断面 8 5 越流部の安定計算 9 5-1 安定条件 9 5-2 設計外力の組合せ 9 5-3
技術解説_有田.indd
Acceleration / G 2 18 16 14 12 1 8 6 4 2 Damping : 1. Period / s XY.1.1 1. 6533 283 3333 423 155 15 (X) 26.12 Hz 15 12 (Y) 28.32 Hz (Z) 43.98 Hz GS Yuasa Technical Report 211 年 6 月 第8巻 水平方向 X_3G 1.7e+7
<95F18D908F912E4F5554>
1 基礎設計書 山田太郎様邸新築工事 2014 年 7 月 1 日 株式会社設計室ソイル 目次 2 1 建物条件 2 1-1 建物概要 2 1-2 平面図 2 1-2-1 基礎の節点座標 3 1-2-2 基礎外周の節点番号 3 1-2-3 スラブを示す4 点の節点番号 3 1-3 荷重条件 4 1-3-1 基礎寸法 4 1-3-2 荷重条件 4 2 スウェーデン式サウンディング試験 5 2-1 調査点
国土技術政策総合研究所 研究資料
参考資料 崩壊の恐れのある土層厚の空間分布を考慮したがけ崩れ対策に関する検討 参考資料 崩壊の恐れのある土層厚の空間分布を考慮したがけ崩れ対策に関する検討 ここでは 5 章で示した方法により急傾斜地における崩壊する恐れがある層厚の面的分布が明らかとなった場合のがけ崩れ対策手法について検討する 崩壊する恐れがある層厚の面的な分布は 1 土砂災害警戒区域等における土砂災害防止対策の推進に関する法律( 以下
Microsoft PowerPoint - zairiki_3
材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,
<4D F736F F D2081A E682568FCD926E94D592B28DB E94D589FC97C78C7689E62E646F63>
第 7 章 地盤調査 地盤改良計画 第 1 節地盤調査 1 地盤調査擁壁の構造計算や大規模盛土造成地の斜面安定計算等に用いる土質定数を求める場合は 平成 13 年 7 月 2 日国土交通省告示第 1113 号地盤の許容応力度及び基礎ぐいの許容支持力を求めるための地盤調査の方法並びにその結果に基づき地盤の許容応力度及び基礎ぐいの許容支持力を定める方法等を定める件 ( 以下 この章において 告示 という
Microsoft PowerPoint - 01_内田 先生.pptx
平成 24 年度 SCOPE 研究開発助成成果報告会 ( 平成 22 年度採択 ) 塩害劣化した RC スラブの一例 非破壊評価を援用した港湾コンクリート構造物の塩害劣化予測手法の開発 かぶりコンクリートのはく落 大阪大学大学院鎌田敏郎佐賀大学大学院 内田慎哉 の腐食によりコンクリート表面に発生したひび割れ ( 腐食ひび割れ ) コンクリート構造物の合理的な維持管理 ( 理想 ) 開発した手法 点検
検討の背景 10Hz を超える地震動成分の扱いに関する日 - 米の相違 米国 OBE (SSE ) EXCEEDANCE CRITERIA 観測された地震動が設計基準地震動を超えたか否かの判定振動数範囲 : 1Hz - 10Hz (10Hz 以上は評価対象外 ) 地震ハザードのスクリーニング (Ne
第 14 回日本地震工学シンポジウム G011-Fri-6 10Hz を超える地震動成分と機械設備の健全性 に関する考察 2014 年 12 月 5 日 落合兼寛 ( 一般社団法人 ) 原子力安全推進協会 Copyright 2012 by. All Rights Reserved. 検討の背景 10Hz を超える地震動成分の扱いに関する日 - 米の相違 米国 OBE (SSE ) EXCEEDANCE
(1) 擁壁の設計 東京都 H=2.0m < 常時に関する計算 > 2000 PV w1 w2 w3 PH GL 350 1800 97 4 土の重量 16.0, コンクリートの重量 24.0 摩擦係数 0.30, 表面載荷 9.8 ( 土圧係数は直接入力による ) 安定計算用の土圧係数 0.500 壁体計算用の土圧係数 0.500 W1 = 12.6, W2 = 12.3, W3 = 78.1 PH
構造力学Ⅰ第12回
第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB
PowerPoint プレゼンテーション
不飽和土の力学を用いた 締固めメカニズムの解明 締固めとは 土に力を加え 間隙中の空気を追い出すことで土の密度を高めること 不飽和土 圧縮性の減少透水性の減少せん断 変形抵抗の増大 などに効果あり 締固め土は土構造物の材料として用いられている 研究背景 現場締固め管理 締固め必須基準 D 値 施工含水比 施工層厚 水平まきだし ( ρdf ) 盛土の乾燥密度 D値 = 室内締固め試験による最大乾燥密度
Microsoft PowerPoint kiban_web.pptx
地質調査の役割 基盤技術設計論 建設 Construction 地質調査 清田隆 ( 生産技術研究所 ) 基礎の種類 ( 杭基礎 or 直接基礎?) 支持力 地耐力 ( 計画構造物を支えられるか?) 地下ライフライン工事計画に必要な地盤強度 地質調査の役割 地質調査の役割 地盤挙動予測 Prediction 地盤災害メカニズム Damage survey 近接施工による周辺地盤への影響盛土時の沈下地震時の地盤の振動液状化の可能性斜面崩壊の可能性
土留め工の設計サンプルデータ 概略出力例 Mix3+2 鉄道標準 慣用法と弾塑性法の設計計算例切梁 アンカー併用工法のサンプルデータ
土留め工の設計サンプルデータ 概略出力例 Mix+ 鉄道標準 慣用法と塑法の設計計算例切梁 アンカー併用工法のサンプルデータ 目次 章 慣用法. 右壁の設計.. 最終掘削時 ()検討条件 )検討条件 )地盤条件 ()根入れ長の計算 )結果要旨 ()断力の計算 )結果要旨 4 4 )土留め壁の剛の検討 (4)支保工反力の計算 5 8 )結果要旨 )外力表 8 8.. 壁体応力度 章 塑法 0. 右壁の設計..
<4D F736F F F696E74202D D D4F93AE89F097E D F4390B32E B93C782DD8EE682E
DYMO を用いた動的解析例 単柱式鉄筋コンクリート橋脚の動的耐震設計例 解説のポイント DYMOを使った動的解析による耐震性能照査の流れ 構造のモデル化におけるポイント 固有振動解析 動的解析条件 動的解析結果 ( 各種応答 ) の見方 安全性の照査 形状寸法あるいは支承諸元の変更始め 橋梁構造のモデル作成 固有振動解析による橋梁の固有振動特性の把握 動的解析条件の設定 動的解析の実施及び解析結果の評価
Microsoft PowerPoint - 1.せん断(テキスト用)
応用地盤力学 同演習 ( 担当 : 佐藤 ) ~2 年生後期, 火曜, 木曜 1 限目 教育目標 : 1) 基礎地盤力学で修得した知識を用いて実際の問題を解く考え方と開放のテクニックを修得する. 2) 土構造物を設計 ( 土圧, 地盤内応力, 支持力, 斜面安定計算 ) できる基礎知識を習得する. 3) 地盤改良などの土の特性を用いた改良技術のメカニズムを修得する. 4) 地震による地盤災害と液状化のメカニズムを知る.
Taro-2012RC課題.jtd
2011 RC 構造学 http://design-s.cc.it-hiroshima.ac.jp/tsato/kougi/top.htm 課題 1 力学と RC 構造 (1) 図のような鉄筋コンクリート構造物に どのように主筋を配筋すればよいか 図中に示し 最初に 生じる曲げひび割れを図示せよ なお 概略の曲げモーメント図も図示せよ w L 3 L L 2-1 - 課題 2. コンクリートの自重
Microsoft PowerPoint - suta.ppt [互換モード]
弾塑性不飽和土構成モデルの一般化と土 / 水連成解析への適用 研究の背景 不飽和状態にある土構造物の弾塑性挙動 ロックフィルダム 道路盛土 長期的に正確な予測 不飽和土弾塑性構成モデル 水頭変動 雨水の浸潤 乾湿の繰り返し 土構造物の品質変化 不飽和土の特徴的な力学特性 不飽和土の特性 サクション サクション s w C 飽和度が低い状態 飽和度が高い状態 サクションの効果 空気侵入値 B. サクション増加
Microsoft PowerPoint - H24全国大会_発表資料.ppt [互換モード]
第 47 回地盤工学研究発表会 モアレを利用した変位計測システムの開発 ( 計測原理と画像解析 ) 平成 24 年 7 月 15 日 山形設計 ( 株 ) 技術部長堀内宏信 1. はじめに ひびわれ計測の必要性 高度成長期に建設された社会基盤の多くが老朽化を迎え, また近年多発している地震などの災害により, 何らかの損傷を有する構造物は膨大な数に上ると想定される 老朽化による劣化や外的要因による損傷などが生じた構造物の適切な維持管理による健全性の確保と長寿命化のためには,
<4D F736F F F696E74202D C CC89C88A B8CDD8AB B83685D>
断面積 (A) を使わずに, 間隙率を使う透水係数の算定 図に示したような 本の孔を掘って, 上流側から食塩を投入した 食塩を投入してから,7 時間後に下流側に食塩が到達したことが分かった この地盤の透水係数を求めよ 地盤の間隙比は e=0.77, 水位差は 0 cmであった なお, この方法はトレーサ法の中の食塩法と呼ばれている Nacl 計測器 0 cm 0.0 m 断面積 (A) を使わずに,
