(I) GotoBALS, kkimur/charpoly.html 2
|
|
|
- かずゆき こうじょう
- 9 years ago
- Views:
Transcription
1 sdmp Maple - (Ver.2) ( ) September 27,
2 (I) GotoBALS, kkimur/charpoly.html 2
3 (II) Nehalem CPU GotoBLAS Intel CPU Nehalem CPU, GotoBLAS, Hyper-Thread technology off 3
4 Windows BIOS off Mac Hyper-Thread technology off Mac OS root, terminal, nvram SMT=0 OFF 4
5 Maple,, 4, sdmp rpearcea/ 4,? 5
6 4 (1) (2) (3)Cylindrical Algebraic Decomposition Projection (4)Dixon (5), 6
7 Dixon f(x, y) = x 2 + y 2 3, g(x, y) = xy 1 f(x, y) g(x, y) f(α, y) g(α, y) x α = ( α 1 ) y 1 1 y 3 + 3y = 0 x 1 α 7
8 y = λ, v = x 1, λ 1 1 λ 3 + 3λ v = 0 λ 1 1 λ 3 + 3λ = 0, y,, 3 8
9 (1) (2) 1 (2+3x)(14+15x) x 4+5x (6+7x)(14+15x) 11+12x+13x 3 (2+3x)(16+17x) 6 + 7x (2 + 3x)(4 + 5x) 8(2 + 3x)( x) (9 + 10x)( x + 13x 3 ) (3) a b(4 + 5x) 8c ad( x + 13x 3 ) a = x, b = x, c = x, d = x, 9
10
11 1., O(2 n ), 2. -,???, 3.fraction-free Gauss, O(n 3 ), 4.,???, mod 5.Berkowitz, Fadeev, O(n 4 ), 10
12 fraction-free Gauss n n C, ĉ ( 1) 0,0 = 1, ĉ (0) i,j = C i,j, ĉ (k) i,j = (ĉ(k 1) k,k ĉ (k 1) i,j ĉ (k 1) k,j ĉ (k 1) i,k )/ĉ (k 2) k 1,k 1 k + 1 i n, k + 1 j n, k = 1,, n 1, ĉ n,n (n 1), 0,, Jacobi,, 11
13 fraction-free Gauss n n C, τ 0,0 ( 1) = 1, τ i,j (0) = C i,j, τ i,j (k) = (τ k,k (k 1) τ i,j (k 1) τ k,j (k 1) τ i,k (k 1) )/τ k 1,k 1 (k 2) k + 1 i n, k + 1 j n, k = 1,, n 1, τ (n 1) n,n, 0,, Jacobi,, 12
14 Berkowitz (I) A = T A = A r S R a r+1,r a r+1,r RS a r+1,r RA r 2 r S RA r 3 r S 1 RA r 1 r S RA r 2 r S a r+1,r+1 13
15 Berkowitz (II) [procedure Berkowitz(A)] if dim A=1 then return [1, A 1,1 ] else r (dim A) 1 Decompose A = A r S R a r+1,r+1 Compute T A [X r+1,, X 1 ] Berkowitz(A r ) [X r+2,, X 1 ] T A [X r+1,, X 1 ] return [X r+2,, X 1 ] 14
16 ? 1., , 15
17 Resultant( ) 1.Collins subresultant
18 f = a 2 x 2 + a 1 x + a 0,g = b 1 x + b 0 Sylvester res x (f, g) = a 2 a 1 a 0 b 1 b b 1 b 0 m n (m + n) (m + n) 17
19 f = a 2 x 2 + a 1 x + a 0,g = b 1 x + b 0 Bezout res x (f, g) = b 0 b 1 b 1 a 0 b 0 a 2 b 1 a 1 m n (m > n) m m 18
20 1., 2. - Quantifier Elimination Q.E., Cylindrical Algebraic Decomposition C.A.D., Resultant( ) 19
21 a 1 a 2 a 3 a 4 b 1 b 2 b 3 b 4 c 1 c 2 c 3 c 4 d 1 d 2 d 3 d 4 = +a 1 (b 2 (c 3 d 4 d 3 c 4 ) c 2 (b 3 d 4 d 3 b 4 ) +d 2 (b 3 c 4 c 3 b 4 )) b 1 (a 2 (c 3 d 4 d 3 c 4 ) c 2 (a 3 d 4 d 3 a 4 ) + d 2 (a 3 c 4 c 3 a 4 )) +c 1 (a 2 (b 3 d 4 d 3 b 4 ) b 2 (a 3 d 4 d 3 a 4 ) +d 2 (a 3 b 4 b 3 a 4 )) d 1 (a 2 (b 3 c 4 c 3 b 4 ) b 2 (a 3 c 4 c 3 a 4 ) + c 2 (a 3 b 4 b 3 a 4 )) (bottom up),! 20
22 - L 1 = a 4,4 a 5,5 a 4,5 a 5,4, L 2 = a 4,3 a 5,5 a 4,5 a 5,3, L 3 = a 4,3 a 5,4 a 4,4 a 5,3, L 4 = a 4,2 a 5,5 a 4,5 a 5,2, L 5 = a 4,2 a 5,4 a 4,4 a 5,2, L 6 = a 4,2 a 5,3 a 4,3 a 5,2, L 7 = a 4,1 a 5,2 a 4,2 a 5,1, L 8 = a 4,1 a 5,5 a 4,5 a 5,1, L 9 = a 4,1 a 5,4 a 4,4 a 5,1, L 10 = a 4,1 a 5,3 a 4,3 a 5,1 det(a) = +(a 1,1 a 2,2 a 1,2 a 2,1 )(a 3,3 L 1 a 3,4 L 2 + a 3,5 L 3 ) (a 1,1 a 2,3 a 1,3 a 2,1 )(a 3,2 L 1 a 3,4 L 4 + a 3,5 L 5 ) +(a 1,1 a 2,4 a 1,4 a 2,1 )(a 3,2 L 2 a 3,3 L 4 + a 3,5 L 6 ) (a 1,1 a 2,5 a 1,5 a 2,1 )(a 3,2 L 3 a 3,3 L 5 + a 3,4 L 6 ) +(a 1,2 a 2,3 a 1,3 a 2,2 )(a 3,1 L 1 a 3,4 L 8 + a 3,5 L 9 ) (a 1,2 a 2,4 a 1,4 a 2,2 )(a 3,1 L 2 a 3,3 L 8 + a 3,5 L 10 ) +(a 1,2 a 2,5 a 1,5 a 2,2 )(a 3,1 L 3 a 3,3 L 9 + a 3,4 L 10 ) +(a 1,3 a 2,4 a 1,4 a 2,3 )(a 3,1 L 4 a 3,2 L 8 + a 3,5 L 7 ) (a 1,3 a 2,5 a 1,5 a 2,3 )(a 3,1 L 5 a 3,2 L 9 + a 3,4 L 7 ) +(a 1,4 a 2,5 a 1,5 a 2,4 )(a 3,1 L 6 a 3,2 L 10 + a 3,3 L 7 ) 21
23 =, Lisp Lisp Hash Hash,? 22
24 index,
25 w[k], index, (2 3 4), c[i][j] = i j 1 n=5; i=3; u=1; b1=n-1; for(k=i;k>0;k--){ for(b2=b1;b2>=w[k];b2--){ u=u+c[b2][k]; } b1=b2-1; } 24
26 geobucket,, 25
27 , 1 heap (sdmp ) (Singular ) (f 1 + f 2 ) (g 1 + g 2 ) = f 1 g 1 + f 1 g 2 + f 2 g 1 + f 2 g 2 26
28 ?, f = 5x 2 y + 6x + 7y + 8 (5, [2, 1]) (6, [1, 0]) (7, [0, 1]) (8, [0, 0]) 27
29 (heap ) X j, Y j,, m n (X 1 + X X m )(Y 1 + Y Y n ) = X 1 (Y 1 + Y Y n ) + X 2 (Y 1 + Y Y n ) + X m (Y 1 + Y Y n ) 28
30 (X 1 Y 1 + X 1 Y X 1 Y n ) + (X 2 Y 1 + X 2 Y X 2 Y n ) + (X m Y 1 + X m Y X m Y n ) Y 1, Y 2,, Y n,, X j,, m 29
31 , =m, 1,, =1, 2, 2 root,, 2, root 2, 2,, 2, 30
32 sdmp, 31
33 heap u = ( a 1 b 1 c 1 ) v = b 2 b 3 c 2 c 3 a 2 a 3 c 2 c 3 a 2 a 3 b 2 b 3 a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 = a 1 b 2 b 3 c 2 c 3 b 1 a 2 a 3 c 2 c 3 + c 1 a 2 a 3 b 2 b 3 = u v 32
34 u[1] v[1], u[2] v[2], u[3] v[3], u[1] v[1], u[2] v[2], u[3] v[3],, 1 33
35 sdmp Maple, kkimur/susemi etc.html 1.sdmp 2. 1,, 34
36 sdmp sdmp, exponent vector 1 word (pack ) f = 5x 2 y + 6x + 7y + 8 (5, [2, 1]) (6, [1, 0]) (7, [0, 1]) (8, [0, 0]) 35
37 32bit, pack=2 16bit 16bit 2 1,, exponent vector 36
38 sdmp 1 + x 2 + 2x 2 + 2x 4 + 4x = 0,, 37
39 a 1 + a 2 x a 3 + a 4 x a 5 + a 6 x a 7 + a 8 x generic position ( ) 38
40 , O(n 2 ) 39
41 , Linear Assignment Problem 40
42 Hungarian algorithm ,, Hungarian algorithm, O(n 3 ) bound cf. Hungarian algorithm, maple, 41
43 1., kkimur/susemi etc.html 4. kkimur/susemi interpolation.html,, 42
1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2
1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac
-1-1 1 1 1 1 12 31 2 2 3 4
2007 -1-1 1 1 1 1 12 31 2 2 3 4 -2-5 6 CPU 3 Windows98 1 -3-2. 3. -4-4 2 5 1 1 1 -5- 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000-6- -7-1 Windows 2 -8-1 2 3 4 - - 100,000 200,000 500,000
II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K
II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F
x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R
V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x
A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18
2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1
4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx
4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan
0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9
1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy
Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS
Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1 (2 ( BASIC BASIC download TUTORIAL.PDF http://hp.vector.co.jp/authors/va008683/
行列代数2010A
a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a
/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,
1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set
5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a
double $\mathrm{j}\mathrm{s}\mathrm{t}$ $\mathrm{q}$ 1505 2006 1-13 1 / (Kinji Kimura) Japan Science and Technology Agency Faculty of Science Rikkyo University 1 / / 6 1 2 3 4 5 Kronecker 6 2 21 $\mathrm{p}$
31 33
17 3 31 33 36 38 42 45 47 50 52 54 57 60 74 80 82 88 89 92 98 101 104 106 94 1 252 37 1 2 2 1 252 38 1 15 3 16 6 24 17 2 10 252 29 15 21 20 15 4 15 467,555 14 11 25 15 1 6 15 5 ( ) 41 2 634 640 1 5 252
弾性定数の対称性について
() by T. oyama () ij C ij = () () C, C, C () ij ji ij ijlk ij ij () C C C C C C * C C C C C * * C C C C = * * * C C C * * * * C C * * * * * C () * P (,, ) P (,, ) lij = () P (,, ) P(,, ) (,, ) P (, 00,
1. A0 A B A0 A : A1,...,A5 B : B1,...,B
1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)
1 2
1 2 4 3 5 6 8 7 9 10 12 11 0120-889-376 r 14 13 16 15 0120-0889-24 17 18 19 0120-8740-16 20 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58
3 5 6 7 7 8 9 5 7 9 4 5 6 6 7 8 8 8 9 9 3 3 3 3 8 46 4 49 57 43 65 6 7 7 948 97 974 98 99 993 996 998 999 999 4 749 7 77 44 77 55 3 36 5 5 4 48 7 a s d f g h a s d f g h a s d f g h a s d f g h j 83 83
コンピュータ概論
4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For
P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22
1 14 28 16 00 17 30 P-1 P-2 P-3 P-4 P-5 2 24 29 17 00 18 30 P-6 P-7 P-8 P-9 P-10 P-11 P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 5 24 28 16 00 17 30 P-23
SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [
SQUFOF SQUFOF NTT 2003 2 17 16 60 Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) 60 1 1.1 N 62 16 24 UBASIC 50 / 200 [ 01] 4 large prime 943 2 1 (%) 57 146 146 15
( ) ( ) 1729 (, 2016:17) = = (1) 1 1
1729 1 2016 10 28 1 1729 1111 1111 1729 (1887 1920) (1877 1947) 1729 (, 2016:17) 12 3 1728 9 3 729 1729 = 12 3 + 1 3 = 10 3 + 9 3 (1) 1 1 2 1729 1729 19 13 7 = 1729 = 12 3 + 1 3 = 10 3 + 9 3 13 7 = 91
24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x
24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),
ver Web
ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3
FX ) 2
(FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100
II Time-stamp: <05/09/30 17:14:06 waki> ii
II [email protected] 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................
(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n
. 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n
2
1 2 10 14 945 3000 2012 3 10 4 5 6 7 8 9 10 11 12 2011 11 21 12301430 (1215 ) 13 6 27 17 () ( ) ( ) (112360) 2 (1157) (119099) ((11861231) )( ) (11641205) 3 (1277) 3 4 (1558) (1639)() 12 (1699)( ) 7 (1722)
0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,
2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).
(, Goo Ishikawa, Go-o Ishikawa) ( ) 1
(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2
13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x
Ver.1.0.1-1512 1. 03 2. 04 3. 05 05 4. 06 07 5. 08 6. 09 10 11 12 14 7. 19 2 1. Plus / 3 2. 1 4 3. Plus 5 4. FX 6 4. 7 5. 1 200 3 8 6. 38 25 16 9 6. 10 6. 11 6. 38 / 12 6. 13 6. 25 14 6. 0 359 15 6. 3
untitled
20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -
untitled
19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X
2 1/2 1/4 x 1 x 2 x 1, x 2 9 3x 1 + 2x 2 9 (1.1) 1/3 RDA 1 15 x /4 RDA 1 6 x /6 1 x 1 3 x 2 15 x (1.2) (1.3) (1.4) 1 2 (1.5) x 1
1 1 [1] 1.1 1.1. TS 9 1/3 RDA 1/4 RDA 1 1/2 1/4 50 65 3 2 1/15 RDA 2/15 RDA 1/6 RDA 1 1/6 1 1960 2 1/2 1/4 x 1 x 2 x 1, x 2 9 3x 1 + 2x 2 9 (1.1) 1/3 RDA 1 15 x 1 + 2 1/4 RDA 1 6 x 1 1 4 1 1/6 1 x 1 3
1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C
0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,
QW-3414
MA1312-C P 1 2 3 A E L D E D A A E D A D D D D D E A C A C E D A A A C A C A C E E E D D D A C A C A A A A C A C A C E E C C E D D C C C E C E C C E C C C E D A C A C A C E L B B
