(I) GotoBALS, kkimur/charpoly.html 2

Size: px
Start display at page:

Download "(I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2"

Transcription

1 sdmp Maple - (Ver.2) ( ) September 27,

2 (I) GotoBALS, kkimur/charpoly.html 2

3 (II) Nehalem CPU GotoBLAS Intel CPU Nehalem CPU, GotoBLAS, Hyper-Thread technology off 3

4 Windows BIOS off Mac Hyper-Thread technology off Mac OS root, terminal, nvram SMT=0 OFF 4

5 Maple,, 4, sdmp rpearcea/ 4,? 5

6 4 (1) (2) (3)Cylindrical Algebraic Decomposition Projection (4)Dixon (5), 6

7 Dixon f(x, y) = x 2 + y 2 3, g(x, y) = xy 1 f(x, y) g(x, y) f(α, y) g(α, y) x α = ( α 1 ) y 1 1 y 3 + 3y = 0 x 1 α 7

8 y = λ, v = x 1, λ 1 1 λ 3 + 3λ v = 0 λ 1 1 λ 3 + 3λ = 0, y,, 3 8

9 (1) (2) 1 (2+3x)(14+15x) x 4+5x (6+7x)(14+15x) 11+12x+13x 3 (2+3x)(16+17x) 6 + 7x (2 + 3x)(4 + 5x) 8(2 + 3x)( x) (9 + 10x)( x + 13x 3 ) (3) a b(4 + 5x) 8c ad( x + 13x 3 ) a = x, b = x, c = x, d = x, 9

10

11 1., O(2 n ), 2. -,???, 3.fraction-free Gauss, O(n 3 ), 4.,???, mod 5.Berkowitz, Fadeev, O(n 4 ), 10

12 fraction-free Gauss n n C, ĉ ( 1) 0,0 = 1, ĉ (0) i,j = C i,j, ĉ (k) i,j = (ĉ(k 1) k,k ĉ (k 1) i,j ĉ (k 1) k,j ĉ (k 1) i,k )/ĉ (k 2) k 1,k 1 k + 1 i n, k + 1 j n, k = 1,, n 1, ĉ n,n (n 1), 0,, Jacobi,, 11

13 fraction-free Gauss n n C, τ 0,0 ( 1) = 1, τ i,j (0) = C i,j, τ i,j (k) = (τ k,k (k 1) τ i,j (k 1) τ k,j (k 1) τ i,k (k 1) )/τ k 1,k 1 (k 2) k + 1 i n, k + 1 j n, k = 1,, n 1, τ (n 1) n,n, 0,, Jacobi,, 12

14 Berkowitz (I) A = T A = A r S R a r+1,r a r+1,r RS a r+1,r RA r 2 r S RA r 3 r S 1 RA r 1 r S RA r 2 r S a r+1,r+1 13

15 Berkowitz (II) [procedure Berkowitz(A)] if dim A=1 then return [1, A 1,1 ] else r (dim A) 1 Decompose A = A r S R a r+1,r+1 Compute T A [X r+1,, X 1 ] Berkowitz(A r ) [X r+2,, X 1 ] T A [X r+1,, X 1 ] return [X r+2,, X 1 ] 14

16 ? 1., , 15

17 Resultant( ) 1.Collins subresultant

18 f = a 2 x 2 + a 1 x + a 0,g = b 1 x + b 0 Sylvester res x (f, g) = a 2 a 1 a 0 b 1 b b 1 b 0 m n (m + n) (m + n) 17

19 f = a 2 x 2 + a 1 x + a 0,g = b 1 x + b 0 Bezout res x (f, g) = b 0 b 1 b 1 a 0 b 0 a 2 b 1 a 1 m n (m > n) m m 18

20 1., 2. - Quantifier Elimination Q.E., Cylindrical Algebraic Decomposition C.A.D., Resultant( ) 19

21 a 1 a 2 a 3 a 4 b 1 b 2 b 3 b 4 c 1 c 2 c 3 c 4 d 1 d 2 d 3 d 4 = +a 1 (b 2 (c 3 d 4 d 3 c 4 ) c 2 (b 3 d 4 d 3 b 4 ) +d 2 (b 3 c 4 c 3 b 4 )) b 1 (a 2 (c 3 d 4 d 3 c 4 ) c 2 (a 3 d 4 d 3 a 4 ) + d 2 (a 3 c 4 c 3 a 4 )) +c 1 (a 2 (b 3 d 4 d 3 b 4 ) b 2 (a 3 d 4 d 3 a 4 ) +d 2 (a 3 b 4 b 3 a 4 )) d 1 (a 2 (b 3 c 4 c 3 b 4 ) b 2 (a 3 c 4 c 3 a 4 ) + c 2 (a 3 b 4 b 3 a 4 )) (bottom up),! 20

22 - L 1 = a 4,4 a 5,5 a 4,5 a 5,4, L 2 = a 4,3 a 5,5 a 4,5 a 5,3, L 3 = a 4,3 a 5,4 a 4,4 a 5,3, L 4 = a 4,2 a 5,5 a 4,5 a 5,2, L 5 = a 4,2 a 5,4 a 4,4 a 5,2, L 6 = a 4,2 a 5,3 a 4,3 a 5,2, L 7 = a 4,1 a 5,2 a 4,2 a 5,1, L 8 = a 4,1 a 5,5 a 4,5 a 5,1, L 9 = a 4,1 a 5,4 a 4,4 a 5,1, L 10 = a 4,1 a 5,3 a 4,3 a 5,1 det(a) = +(a 1,1 a 2,2 a 1,2 a 2,1 )(a 3,3 L 1 a 3,4 L 2 + a 3,5 L 3 ) (a 1,1 a 2,3 a 1,3 a 2,1 )(a 3,2 L 1 a 3,4 L 4 + a 3,5 L 5 ) +(a 1,1 a 2,4 a 1,4 a 2,1 )(a 3,2 L 2 a 3,3 L 4 + a 3,5 L 6 ) (a 1,1 a 2,5 a 1,5 a 2,1 )(a 3,2 L 3 a 3,3 L 5 + a 3,4 L 6 ) +(a 1,2 a 2,3 a 1,3 a 2,2 )(a 3,1 L 1 a 3,4 L 8 + a 3,5 L 9 ) (a 1,2 a 2,4 a 1,4 a 2,2 )(a 3,1 L 2 a 3,3 L 8 + a 3,5 L 10 ) +(a 1,2 a 2,5 a 1,5 a 2,2 )(a 3,1 L 3 a 3,3 L 9 + a 3,4 L 10 ) +(a 1,3 a 2,4 a 1,4 a 2,3 )(a 3,1 L 4 a 3,2 L 8 + a 3,5 L 7 ) (a 1,3 a 2,5 a 1,5 a 2,3 )(a 3,1 L 5 a 3,2 L 9 + a 3,4 L 7 ) +(a 1,4 a 2,5 a 1,5 a 2,4 )(a 3,1 L 6 a 3,2 L 10 + a 3,3 L 7 ) 21

23 =, Lisp Lisp Hash Hash,? 22

24 index,

25 w[k], index, (2 3 4), c[i][j] = i j 1 n=5; i=3; u=1; b1=n-1; for(k=i;k>0;k--){ for(b2=b1;b2>=w[k];b2--){ u=u+c[b2][k]; } b1=b2-1; } 24

26 geobucket,, 25

27 , 1 heap (sdmp ) (Singular ) (f 1 + f 2 ) (g 1 + g 2 ) = f 1 g 1 + f 1 g 2 + f 2 g 1 + f 2 g 2 26

28 ?, f = 5x 2 y + 6x + 7y + 8 (5, [2, 1]) (6, [1, 0]) (7, [0, 1]) (8, [0, 0]) 27

29 (heap ) X j, Y j,, m n (X 1 + X X m )(Y 1 + Y Y n ) = X 1 (Y 1 + Y Y n ) + X 2 (Y 1 + Y Y n ) + X m (Y 1 + Y Y n ) 28

30 (X 1 Y 1 + X 1 Y X 1 Y n ) + (X 2 Y 1 + X 2 Y X 2 Y n ) + (X m Y 1 + X m Y X m Y n ) Y 1, Y 2,, Y n,, X j,, m 29

31 , =m, 1,, =1, 2, 2 root,, 2, root 2, 2,, 2, 30

32 sdmp, 31

33 heap u = ( a 1 b 1 c 1 ) v = b 2 b 3 c 2 c 3 a 2 a 3 c 2 c 3 a 2 a 3 b 2 b 3 a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 = a 1 b 2 b 3 c 2 c 3 b 1 a 2 a 3 c 2 c 3 + c 1 a 2 a 3 b 2 b 3 = u v 32

34 u[1] v[1], u[2] v[2], u[3] v[3], u[1] v[1], u[2] v[2], u[3] v[3],, 1 33

35 sdmp Maple, kkimur/susemi etc.html 1.sdmp 2. 1,, 34

36 sdmp sdmp, exponent vector 1 word (pack ) f = 5x 2 y + 6x + 7y + 8 (5, [2, 1]) (6, [1, 0]) (7, [0, 1]) (8, [0, 0]) 35

37 32bit, pack=2 16bit 16bit 2 1,, exponent vector 36

38 sdmp 1 + x 2 + 2x 2 + 2x 4 + 4x = 0,, 37

39 a 1 + a 2 x a 3 + a 4 x a 5 + a 6 x a 7 + a 8 x generic position ( ) 38

40 , O(n 2 ) 39

41 , Linear Assignment Problem 40

42 Hungarian algorithm ,, Hungarian algorithm, O(n 3 ) bound cf. Hungarian algorithm, maple, 41

43 1., kkimur/susemi etc.html 4. kkimur/susemi interpolation.html,, 42

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

-1-1 1 1 1 1 12 31 2 2 3 4

-1-1 1 1 1 1 12 31 2 2 3 4 2007 -1-1 1 1 1 1 12 31 2 2 3 4 -2-5 6 CPU 3 Windows98 1 -3-2. 3. -4-4 2 5 1 1 1 -5- 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000-6- -7-1 Windows 2 -8-1 2 3 4 - - 100,000 200,000 500,000

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1 (2 ( BASIC BASIC download TUTORIAL.PDF http://hp.vector.co.jp/authors/va008683/

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a double $\mathrm{j}\mathrm{s}\mathrm{t}$ $\mathrm{q}$ 1505 2006 1-13 1 / (Kinji Kimura) Japan Science and Technology Agency Faculty of Science Rikkyo University 1 / / 6 1 2 3 4 5 Kronecker 6 2 21 $\mathrm{p}$

More information

31 33

31 33 17 3 31 33 36 38 42 45 47 50 52 54 57 60 74 80 82 88 89 92 98 101 104 106 94 1 252 37 1 2 2 1 252 38 1 15 3 16 6 24 17 2 10 252 29 15 21 20 15 4 15 467,555 14 11 25 15 1 6 15 5 ( ) 41 2 634 640 1 5 252

More information

弾性定数の対称性について

弾性定数の対称性について () by T. oyama () ij C ij = () () C, C, C () ij ji ij ijlk ij ij () C C C C C C * C C C C C * * C C C C = * * * C C C * * * * C C * * * * * C () * P (,, ) P (,, ) lij = () P (,, ) P(,, ) (,, ) P (, 00,

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

1 2

1 2 1 2 4 3 5 6 8 7 9 10 12 11 0120-889-376 r 14 13 16 15 0120-0889-24 17 18 19 0120-8740-16 20 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58

More information

3 5 6 7 7 8 9 5 7 9 4 5 6 6 7 8 8 8 9 9 3 3 3 3 8 46 4 49 57 43 65 6 7 7 948 97 974 98 99 993 996 998 999 999 4 749 7 77 44 77 55 3 36 5 5 4 48 7 a s d f g h a s d f g h a s d f g h a s d f g h j 83 83

More information

コンピュータ概論

コンピュータ概論 4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For

More information

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 1 14 28 16 00 17 30 P-1 P-2 P-3 P-4 P-5 2 24 29 17 00 18 30 P-6 P-7 P-8 P-9 P-10 P-11 P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 5 24 28 16 00 17 30 P-23

More information

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [ SQUFOF SQUFOF NTT 2003 2 17 16 60 Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) 60 1 1.1 N 62 16 24 UBASIC 50 / 200 [ 01] 4 large prime 943 2 1 (%) 57 146 146 15

More information

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

( ) ( ) 1729 (, 2016:17) = = (1) 1 1 1729 1 2016 10 28 1 1729 1111 1111 1729 (1887 1920) (1877 1947) 1729 (, 2016:17) 12 3 1728 9 3 729 1729 = 12 3 + 1 3 = 10 3 + 9 3 (1) 1 1 2 1729 1729 19 13 7 = 1729 = 12 3 + 1 3 = 10 3 + 9 3 13 7 = 91

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

FX ) 2

FX ) 2 (FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II [email protected] 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

2

2 1 2 10 14 945 3000 2012 3 10 4 5 6 7 8 9 10 11 12 2011 11 21 12301430 (1215 ) 13 6 27 17 () ( ) ( ) (112360) 2 (1157) (119099) ((11861231) )( ) (11641205) 3 (1277) 3 4 (1558) (1639)() 12 (1699)( ) 7 (1722)

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 (, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

Ver.1.0.1-1512 1. 03 2. 04 3. 05 05 4. 06 07 5. 08 6. 09 10 11 12 14 7. 19 2 1. Plus / 3 2. 1 4 3. Plus 5 4. FX 6 4. 7 5. 1 200 3 8 6. 38 25 16 9 6. 10 6. 11 6. 38 / 12 6. 13 6. 25 14 6. 0 359 15 6. 3

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

2 1/2 1/4 x 1 x 2 x 1, x 2 9 3x 1 + 2x 2 9 (1.1) 1/3 RDA 1 15 x /4 RDA 1 6 x /6 1 x 1 3 x 2 15 x (1.2) (1.3) (1.4) 1 2 (1.5) x 1

2 1/2 1/4 x 1 x 2 x 1, x 2 9 3x 1 + 2x 2 9 (1.1) 1/3 RDA 1 15 x /4 RDA 1 6 x /6 1 x 1 3 x 2 15 x (1.2) (1.3) (1.4) 1 2 (1.5) x 1 1 1 [1] 1.1 1.1. TS 9 1/3 RDA 1/4 RDA 1 1/2 1/4 50 65 3 2 1/15 RDA 2/15 RDA 1/6 RDA 1 1/6 1 1960 2 1/2 1/4 x 1 x 2 x 1, x 2 9 3x 1 + 2x 2 9 (1.1) 1/3 RDA 1 15 x 1 + 2 1/4 RDA 1 6 x 1 1 4 1 1/6 1 x 1 3

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

QW-3414

QW-3414 MA1312-C P 1 2 3 A E L D E D A A E D A D D D D D E A C A C E D A A A C A C A C E E E D D D A C A C A A A A C A C A C E E C C E D D C C C E C E C C E C C C E D A C A C A C E L B B

More information