5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a

Size: px
Start display at page:

Download "5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a"

Transcription

1 double $\mathrm{j}\mathrm{s}\mathrm{t}$ $\mathrm{q}$ / (Kinji Kimura) Japan Science and Technology Agency Faculty of Science Rikkyo University 1 / / Kronecker $\mathrm{p}$ 1 double 2 $\mathrm{p}$ $\mathrm{r}$ 3 4 $\mathrm{q}$ $\mathrm{r}$

2 5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a}\mathrm{r}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}$ 2 Omni OpenMP Compiler Project(GMP) $D$ 2 $n\cross n$ $X$ 3 $X$ $\mathrm{y}$ $X$ $Z$ 4 $B=\mathrm{Y}D\mathrm{Y}^{T}$ $C=XDZ$ 5 $B$ $C$ double $B $ $C $ 4 5

3 $D$ 2 Jacobi $D$ /2 Lanczos 3 [16] Lanczos [8] 2 Golub-Kahan-Lanczos [4] Jacobi $D$ $0$ Helmholtz 5 2 Poisson (I) [17] $A=$ $x^{[j)}$ $\lambda_{j}$ $\lambda_{j}=b+2\sqrt{ac}\cos\frac{j\pi}{n+1}$ $(1 \leq j\leq n)$ $x^{(j)}=[ \sin\frac{j\pi}{n+1}$ $\sqrt{\frac{a}{c}}\sin\frac{2j\pi}{n+1}$ $\cdots$ $( \rho_{\frac{a}{c}}^{n-1}\sin\frac{nj\pi}{n+1}]^{\mathrm{t}}$

4 $\overline{a}_{n}$ Helmholtz Poisson 5 3 [5] 3 $\check{\tau}$ $A$ $=$ 42 3 (II) [16] $=$ $\tilde{a}_{n}$ $\Gamma_{n}(\lambda)$ $\Gamma_{n}(\lambda)=(2-\lambda)\Gamma_{n-1}(\lambda)-\Gamma_{n-2}(\lambda)$ $\lambda_{j}=4\sin^{2}(\frac{2j-1}{2(2n+1)}\pi)$ $j=12$ $\ldots$ $x^{(j)}$ $=$ $[ \sin(\frac{n(2j-1)}{2n+1}\pi)$ $\sin(\frac{(n-1)(2j-1)}{2n+1}\pi)$ $\cdots$ $\sin(\frac{2j-1}{2n+1}\pi)]^{\mathrm{t}}$

5 $L^{\mathrm{T}}$ (I) $A$ $A=$ $LL^{\mathrm{T}}=$ $L^{\mathrm{T}}$ $\sigma_{j}$ $=$ $2 \sin(\frac{j\pi}{2(n+1)})$ $x^{(j)}=[ \sin\frac{j\pi}{n+1}$ $\sin\frac{2j\pi}{n+1}$ $\cdots$ $\sin\frac{nj\pi}{n+1}]^{\mathrm{t}}j=12$ $\ldots$ 431 $L^{-\mathrm{T}}$ $=$ $k^{\gamma}x\text{ }$ $L^{-\mathrm{T}}$ g Eg $\sigma_{j}$ $=$ $\frac{1}{2\sin(\frac{j\pi}{2(n+1)})}$ $x^{(j)}=[ \sin\frac{j\pi}{n+1}$ $\sin\frac{2j\pi}{n+1}$ $\cdots$ $\sin\frac{nj\pi}{n+1}]^{\mathrm{t}}j=12$ $\ldots$ 44 2 (II) $\tilde{a}_{n}$ $\tilde{a}_{n}$ $=$ $\tilde{l}\tilde{l}^{\mathrm{t}}=$ 1 $-11$ $-11$ $::$ : $-11)$

6 $\tilde{l}^{\mathrm{t}}$ Gregory Karney $\tilde{l}^{-\mathrm{t}}$ 6 $\tilde{l}^{t}$ $\sigma_{j}=2\sin(\frac{2j-1}{2(2n+1)}\pi)$ $j=12$ $\ldots$ $x^{(j)}$ $=$ $[ \sin(\frac{n(2j-1)}{2n+1}\pi)$ $\sin(\frac{(n-1)(2j-1)}{2n+1}\pi)$ $\cdot$ $\sin(\frac{2j-1}{2n+1}\pi)]^{\mathrm{t}}$ 441 $=$ $\tilde{l}^{-\mathrm{t}}$ $\sigma_{j}=\frac{1}{2\sin(\frac{2j-1}{\mathit{2}(2n+1)}\pi)}$ $j=12$ $\ldots$ $x^{(j)}=[ \sin(\frac{n(2j-1)}{2n+1}\pi)$ $\sin(\frac{(n-1)(2j-1)}{2n+1}\pi)$ $\cdots$ $\sin(\frac{2j-1}{2n+1}\pi)]^{\mathrm{t}}$ 45 $\mathrm{t}$ $\mathrm{l}$ Robert David Collection of Matrices for Testing Computational Algorithms Interscience (1969) 5 1 $f(x)=x^{n}+a_{n-1}x^{n-1}+\cdots+a_{0}$

7 7 $C_{n}$ $o_{n}$ $=$ $(0^{:}001$ $:::$ $0001:$ $=_{a_{n}}^{a_{n}}\cdot=_{1}^{2}=_{a_{1}}^{a_{0}} )$ $::$ : $\tilde{a}_{n}c_{n}(\tilde{a}_{n})^{-1}$ $D$ $\tilde{a}_{n}d(\tilde{a}_{n})^{-\mathit{1}}$ 6 Kronecker 61 $m$ $A$ $B$ Kronecker $A\otimes B$ $mn$ $A$ $\lambda_{m}$ $B$ $\lambda_{1}$ $\ldots$ $\mu_{1}$ $\mu_{n}$ $A\otimes B$ $\lambda_{i}\mu_{j}(i=1 \ldots m:j=1 \ldots n)$ $\ldots$ $m$ $A$ $v_{1}$ $v_{m}$ $A$ $\ldots$ $w_{1}$ $w_{n}$ $\ldots$ Kronecker $A\otimes B$ $v_{i}\otimes w_{j}(i=1 \ldots m:j=1 \ldots n)$ $(A\otimes B)\cross(v:\otimes w_{j})=(a\cross v_{\mathrm{t}})\otimes(b\cross w_{j})=(\lambda_{i}v_{i})\otimes(\mu_{j}w_{j})=(\lambda_{1}\mu_{j})(v_{1}\otimes w_{j})$ $(A\mathrm{x}v_{i})\otimes(B\cross w_{j})=(\lambda_{i}v_{i})\otimes(\mu_{j}w_{j})$ $A\otimes B$ $A^{-1}\otimes B^{-1}$ $\cross$ [9] 62 Kronecker $\otimes$ $U=$ $V=$ $W=U\otimes V=(_{gj}^{aj}$ $djaldlgl$ $amdmgmdkgkakhjejbjhlelbl$ $hmembmhkekbkfjcjflijclil$ $fmcmimfkckik$ ) $W$ $U$ 1 $V$ $f(x)=\det(u-xi)$ $=$ $-x^{3}+(a+e+i)x^{2}+(-ea-ia+db+gc-ie+hf)x$ $+(ie-hf)a+(gf-id)b+(hd-ge)c$ $g(x)=\det(v-xi)$ $=$ $x^{2}+(-j-m)x+mj-lk$

8 8 2 $h(x y)= \mathrm{n}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}(g(\frac{x}{y}))$ 3 $W$ $\det(w-xi)=\mathrm{r}\mathrm{e}\mathrm{s}_{y}(f(y) h(x y))$ or $-\mathrm{r}\mathrm{e}\mathrm{s}_{y}(f(y) h(x y))$ $\mathrm{r}\mathrm{e}\mathrm{s}_{y}(f(y) h(x y))$ $\mathrm{r}\mathrm{e}\mathrm{s}_{y}$ $y$ 7 71 Ax=v Hensel [2] ( ) $x=x_{0}+px_{1}+p^{\mathit{2}}x_{2}+\cdots$ $P$ $A(x_{0}+px_{1}+p^{2}x_{2}+\cdots)=v$ mod $p^{\alpha}$ $A$ $\mathrm{m}\mathrm{o}\mathrm{d} p$ $\mathrm{l}\mathrm{u}$ $Ax_{0}$ $=v$ mod $p$ $Ax_{1}$ $=$ $\frac{v-ax_{0}}{p}$ mod $p$ $Ax_{2}$ $=$ $(v-ax_{0})/p-ax_{1}$ $p$ mod $p$ $P$ 72 $n\cross n$ $A$ $\det(a)$ [11] $A=$ ( $a_{n1}a_{11}:$ $::$ : $a_{\mathrm{n}n}a_{1n}:$ )

9 9 $u_{1}=(a_{11} \ldots a_{1n})$ $\ldots$ $u_{n}=(a_{n1} \ldots a_{nn})$ $v_{1}=(a_{11} \ldots a_{n1})$ $\ldots$ $v_{n}=(a_{1n} \ldots a_{nn})$ Hadamard $\leq$ $\det(a)$ $\min( u_{1} _{\mathit{2}} u_{2} _{2}\ldots u_{n-1} _{2} u_{n} _{2} v_{1} _{2} v_{2} _{2}\ldots v_{n-1} _{\mathit{2}} v_{n} _{2})\equiv H$ 73 1 Hadamard $H_{1}$ $\leq H_{1}$ [3] 731 : Hadamard $H_{2}$ $H_{2}$ I $H_{2}$ $\mathbb{z}/p\mathbb{z}$ Hessenberg Hessenberg pivot $a(k k)$ $\alpha=\frac{a(ik)}{a(kk)}$ $a(ij)arrow a(ij)-\alpha a(kj)$ $j=k+1$ $\ldots$

10 10 $a(m k)arrow a(m k)+\alpha a(m i)$ $m=1$ $\ldots$ $\mathbb{z}/p\mathbb{z}$ Hessenberg \theta ] $[-$ $\text{ ^{}p_{i}}\preceq \mathit{2}$ $\mathrm{l}_{\frac{p_{i}-1}{2}}]$ $H_{2}$ [7] Danilevsky $\mathbb{z}/p\mathbb{z}$ [8] 742 II $-$ I GMRES $v$ $A^{k}v$ $\mathbb{z}/p\mathbb{z}$ $(v Av \cdots A^{n-1}v)=-A^{n}v$ $c_{n-1}$ $\cdots$ $\mathrm{c}_{0}$ Hensel $0$ $[-^{\mathrm{l}^{-\underline{1}}e}2 \frac{-1}{2}]$ $0$ $j$ Strum 2 3 Uspensky

11 $\bullet$ $\bullet$ $f_{j}(x)$ $\bullet$ $j=12$ [1] Pdearson [13] 8 1 Strum Strum [11] $f(x)$ $f (x)$ $f(x)$ 1 real root finding [12] 822 $f(x)$ $f_{1}(x)$ $f_{2}(x)_{)}\ldots$ $f_{k}(x)$ 1 $f1(x)=f(x)/\mathrm{g}\mathrm{c}\mathrm{d}(f(x) f (x))$ 2 $f_{j}(x)$ $f_{j}(x)$ 1 $f_{\mathrm{j}+1}(x)=f_{j} (x)/\mathrm{g}\mathrm{c}\mathrm{d}(f_{j} (x) f_{j} (x))$ 3 $f_{j+1}(x)$ 1 $f_{j}(x)$ $f1(x)$ $f(x)$ $f_{j+1}(x)$ $\beta$ $\ldots$ $k-1$ $\alpha$ $f_{j+1}(x)$ $f_{j}(x)$ $(\alpha\beta)$ 1 $f_{j}(x)$ $f_{j}(\alpha)$ $f_{j}(\beta)$ [12]

12 12 83 Uspensky (Descarte ) $f(x)=a_{0}x^{n}+a_{1}x^{n-1}+\cdots+a_{n}$ $a_{0}$ $a_{1}$ $\cdots$ $a_{n}$ ( ) $0$ $W$ $f(x)$ ( ) $0$ $W$ $W$ $0$ $W$ 1 1 $W$ 2 $xarrow 1/(x+1)$ $x$ $(0 \infty)$ $(01)$ $xarrow x+1$ $x$ $(0 \infty)$ $(1 \infty)$ $x=1$ $xarrow x+1$ check $0$ 1 $x=10^{ }$ 831 $x^{n}+a_{1}x^{n-1}+\cdots+a_{n}=0$ $a_{\alpha}$ $\cdots$ $a_{\beta}$ $a_{\gamma}$ $G_{4}=2 \max[( a_{\alpha} )^{1/\alpha} ( a_{\beta} )^{1/\beta} ( a_{\gamma} )^{1/\gamma} \cdots]$ [6] $xarrow 1/x$ $x=10^{100\mathfrak{x}000}$ 9 $8\mathrm{G}\mathrm{H}\mathrm{z}$ $2\mathrm{G}\mathrm{B}\mathrm{y}\mathrm{t}\mathrm{e}$ Intel Xeon 2 Memory $1000\cross 1000$ 1 10 II I Uspensky

13 13 [1] GECollins and Alkiviadis GAkritas Polynomial Real Root Isolation Using Decarte s Rule of Signs Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation [2] K O Geddes Stephen R Czapor George Labahn Keith O Geddes S R Czapor G Labahn Algorithms for Computer Algebra Kluwer Academic Pub United States (1992) [3] AJ Goldstein RL Graham A Hadamard-type bound on the coefficient of a determinant of polynomials SIAM Review (1974) [4] G Golub W Kahan Calculating the singular values and pseude-inverse of a matrix SIAM J Numeri Anal Vol 2 pp (1965) [5] E Ishiwata Y Muroya K Isogai Adaptive improved block SOR method with orderings JJIAM vol16 No3 pp (1999) [6] JRJohnson Algorithms for Polynomial Real Root Isolation Quantifier Elimination and Cylindrical Algebraic Decomposition SpringerWienNewYork Austria (1998) [7] S Lo M Monagan A Wittkopf A Modular Algorithm for Computing the Characteristic Polynomial of an Integer Matrix in Maple $//\mathrm{w}\mathrm{w}\mathrm{w}$ http: cecm pdf $\mathrm{s}\mathrm{f}\mathrm{u}\mathrm{c}\mathrm{a}/\mathrm{c}\mathrm{a}\mathrm{g}/\mathrm{p}\mathrm{a}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{s}/\mathrm{c}\mathrm{p}\mathrm{p}\mathrm{a}\mathrm{p}\mathrm{e}\mathrm{r}$ [8] (I) 1997 [9] 2003 [10] 2000 [11] ( ) 1965 [12] 2003 [13] 2003 [14] 15(3) pp (2005) [15] 18 [16] [17] [ 2003

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

(I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2

(I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2 sdmp Maple - (Ver.2) ( ) September 27, 2011 1 (I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2 (II) Nehalem CPU GotoBLAS Intel CPU Nehalem CPU, GotoBLAS, Hyper-Thread technology

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2 1539 2007 109-119 109 DDS (Drug Deltvery System) (Osamu Sano) $\mathrm{r}^{\mathrm{a}_{w^{1}}}$ $\mathrm{i}\mathrm{h}$ 1* ] $\dot{n}$ $\mathrm{a}g\mathrm{i}$ Td (Yisaku Nag$) JST CREST 1 ( ) DDS ($\mathrm{m}_{\mathrm{u}\mathrm{g}}\propto

More information

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030 1 913 9001030 A B C D E F G H J K L M 9:00 1A0900 9:15 1A0915 9:30 1A0930 9:45 1A0945 10 : 00 1A1000 10 : 15 1B0900 1B0915 1B0930 1B0945 1B1000 1C0900 1C0915 1D0915 1C0930 1C0945 1C1000 1D0930 1D0945 1D1000

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原 A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原, 辰次 Citation 数理解析研究所講究録 (2004), 1395: 231-237 Issue

More information

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{ 26 [\copyright 0 $\perp$ $\perp$ 1064 1998 41-62 41 REJECT}$ $=\underline{\not\equiv!}\xi*$ $\iota_{arrow}^{-}\approx 1,$ $\ovalbox{\tt\small ffl $\mathrm{y}

More information

第89回日本感染症学会学術講演会後抄録(I)

第89回日本感染症学会学術講演会後抄録(I) ! ! ! β !!!!!!!!!!! !!! !!! μ! μ! !!! β! β !! β! β β μ! μ! μ! μ! β β β β β β μ! μ! μ!! β ! β ! ! β β ! !! ! !!! ! ! ! β! !!!!! !! !!!!!!!!! μ! β !!!! β β! !!!!!!!!! !! β β β β β β β β !!

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

index calculus

index calculus index calculus 2008 3 8 1 generalized Weil descent p :, E/F p 3 : Y 2 = f(x), where f(x) = X 3 + AX + B, A F p, B F p 3 E(F p 3) 3 : Generalized Weil descent E(F p 4) 2 Index calculus Plain version Double-large-prime

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

ron04-02/ky768450316800035946

ron04-02/ky768450316800035946 β α β α β β β α α α Bugula neritina α β β β γ γ γ γ β β γ β β β β γ β β β β β β β β! ! β β β β μ β μ β β β! β β β β β μ! μ! μ! β β α!! β γ β β β β!! β β β β β β! β! β β β!! β β β β β β β β β β β β!

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m} 1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$

More information

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

a) \mathrm{e}.\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}$ -u.ac $\mathrm{f}$ 0$ (Yoshinobu Tamura) D

a) \mathrm{e}.\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}$ -u.ac $\mathrm{f}$ 0$ (Yoshinobu Tamura) D a) \mathrm{e}\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}$ -uac $\mathrm{f}$ 0$ 1373 2004 110-118 110 (Yoshinobu Tamura) Department of Information $\mathrm{y}$ (S geru (Mitsuhiro

More information

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu) $\mathrm{s}$ 1265 2002 209-219 209 DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ) (Jinghui Zhu) 1 Iiitroductioii (Xiamen Univ) $c$ (Fig 1) Levi-Civita

More information

Mathematica を活用する数学教材とその検証 (数式処理と教育)

Mathematica を活用する数学教材とその検証 (数式処理と教育) $\bullet$ $\bullet$ 1735 2011 115-126 115 Mathematica (Shuichi Yamamoto) College of Science and Technology, Nihon University 1 21 ( ) 1 3 (1) ( ) (2 ) ( ) 10 Mathematica ( ) 21 22 2 Mathematica $?$ 10

More information

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2 1155 2000 104-119 104 (Masatake Mori) 1 $=\mathrm{l}$ 1970 [2, 4, 7], $=-$, $=-$,,,, $\mathrm{a}^{\mathrm{a}}$,,, $a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (11), $z=\alpha$ $c_{0}+c_{1}(z-\alpha)+c2(z-\alpha)^{2}+\cdots$

More information

, : GUI Web Java 2.1 GUI GUI GUI 2 y = x y = x y = x

, : GUI Web Java 2.1 GUI GUI GUI 2 y = x y = x y = x J.JSSAC (2005) Vol. 11, No. 3,4, pp. 77-88 Noda2005 MathBlackBoard MathBlackBoard is a Java program based on the blackboard applet. We can use the blackboard applet with GUI operations. The blackboard

More information

日本糖尿病学会誌第58巻第3号

日本糖尿病学会誌第58巻第3号 l l μ l l l l l μ l l l l μ l l l l μ l l l l l l l l l l l l l μ l l l l μ Δ l l l μ Δ μ l l l l μ l l μ l l l l l l l l μ l l l l l μ l l l l l l l l μ l μ l l l l l l l l l l l l μ l l l l β l l l μ

More information

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S Title 初期和算にみる Archimedean Spiral について ( 数学究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2000), 1130: 220-228 Issue Date 2000-02 URL http://hdl.handle.net/2433/63667 Right Type Departmental Bulletin Paper Textversion

More information

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 : Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]

More information

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1 sup inf (ε-δ 4) 2018 1 9 ε-δ,,,, sup inf,,,,,, 1 1 2 3 3 4 4 6 5 7 6 10 6.1............................................. 11 6.2............................... 13 1 R R 5 4 3 2 1 0 1 2 3 4 5 π( R) 2 1 0

More information

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 9 π 046 Vol.69-1 January 2016 204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 β γ α / α / 048 Vol.69-1 January 2016 π π π / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 049 β 050 Vol.69-1

More information

日本糖尿病学会誌第58巻第2号

日本糖尿病学会誌第58巻第2号 β γ Δ Δ β β β l l l l μ l l μ l l l l α l l l ω l Δ l l Δ Δ l l l l l l l l l l l l l l α α α α l l l l l l l l l l l μ l l μ l μ l l μ l l μ l l l μ l l l l l l l μ l β l l μ l l l l α l l μ l l

More information

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1 1040 1998 143-153 143 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [31 8 10 11] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

SDPA( Programming Algorithm) $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{

SDPA( Programming Algorithm) $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{ 1114 1999 149-159 149 SDPA( Programming Algorithm) $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}$ $\mathrm{m}\mathrm{a}\mathrm{s}^{\urcorner}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{z}\mathrm{l}\mathrm{l}$

More information

* KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1. $\mathrm{n}\mathrm{p}$ (SCP) 1,..,,,, $[1][5][10]$, [11], [4].., Fishe

* KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1. $\mathrm{n}\mathrm{p}$ (SCP) 1,..,,,, $[1][5][10]$, [11], [4].., Fishe 1114 1999 211-220 211 * KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1 $\mathrm{n}\mathrm{p}$ (SCP) 1 $[1][5][10]$ [11] [4] Fisher Kedia $m=200$ $n=2000$ [8] Beasley Gomory f- $m=400$ $n=4000$

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30 15 20 10 25 35 20 18 30 12 4.1 7 min. z = 602.5x 1 + 305.0x 2 + 2

106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30 15 20 10 25 35 20 18 30 12 4.1 7 min. z = 602.5x 1 + 305.0x 2 + 2 105 4 0 1? 1 LP 0 1 4.1 4.1.1 (intger programming problem) 1 0.5 x 1 = 447.7 448 / / 2 1.1.2 1. 2. 1000 3. 40 4. 20 106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30

More information

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$ 1075 1999 127-142 127 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle (

More information