5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a
|
|
|
- しゅんすけ いなくら
- 7 years ago
- Views:
Transcription
1 double $\mathrm{j}\mathrm{s}\mathrm{t}$ $\mathrm{q}$ / (Kinji Kimura) Japan Science and Technology Agency Faculty of Science Rikkyo University 1 / / Kronecker $\mathrm{p}$ 1 double 2 $\mathrm{p}$ $\mathrm{r}$ 3 4 $\mathrm{q}$ $\mathrm{r}$
2 5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a}\mathrm{r}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}$ 2 Omni OpenMP Compiler Project(GMP) $D$ 2 $n\cross n$ $X$ 3 $X$ $\mathrm{y}$ $X$ $Z$ 4 $B=\mathrm{Y}D\mathrm{Y}^{T}$ $C=XDZ$ 5 $B$ $C$ double $B $ $C $ 4 5
3 $D$ 2 Jacobi $D$ /2 Lanczos 3 [16] Lanczos [8] 2 Golub-Kahan-Lanczos [4] Jacobi $D$ $0$ Helmholtz 5 2 Poisson (I) [17] $A=$ $x^{[j)}$ $\lambda_{j}$ $\lambda_{j}=b+2\sqrt{ac}\cos\frac{j\pi}{n+1}$ $(1 \leq j\leq n)$ $x^{(j)}=[ \sin\frac{j\pi}{n+1}$ $\sqrt{\frac{a}{c}}\sin\frac{2j\pi}{n+1}$ $\cdots$ $( \rho_{\frac{a}{c}}^{n-1}\sin\frac{nj\pi}{n+1}]^{\mathrm{t}}$
4 $\overline{a}_{n}$ Helmholtz Poisson 5 3 [5] 3 $\check{\tau}$ $A$ $=$ 42 3 (II) [16] $=$ $\tilde{a}_{n}$ $\Gamma_{n}(\lambda)$ $\Gamma_{n}(\lambda)=(2-\lambda)\Gamma_{n-1}(\lambda)-\Gamma_{n-2}(\lambda)$ $\lambda_{j}=4\sin^{2}(\frac{2j-1}{2(2n+1)}\pi)$ $j=12$ $\ldots$ $x^{(j)}$ $=$ $[ \sin(\frac{n(2j-1)}{2n+1}\pi)$ $\sin(\frac{(n-1)(2j-1)}{2n+1}\pi)$ $\cdots$ $\sin(\frac{2j-1}{2n+1}\pi)]^{\mathrm{t}}$
5 $L^{\mathrm{T}}$ (I) $A$ $A=$ $LL^{\mathrm{T}}=$ $L^{\mathrm{T}}$ $\sigma_{j}$ $=$ $2 \sin(\frac{j\pi}{2(n+1)})$ $x^{(j)}=[ \sin\frac{j\pi}{n+1}$ $\sin\frac{2j\pi}{n+1}$ $\cdots$ $\sin\frac{nj\pi}{n+1}]^{\mathrm{t}}j=12$ $\ldots$ 431 $L^{-\mathrm{T}}$ $=$ $k^{\gamma}x\text{ }$ $L^{-\mathrm{T}}$ g Eg $\sigma_{j}$ $=$ $\frac{1}{2\sin(\frac{j\pi}{2(n+1)})}$ $x^{(j)}=[ \sin\frac{j\pi}{n+1}$ $\sin\frac{2j\pi}{n+1}$ $\cdots$ $\sin\frac{nj\pi}{n+1}]^{\mathrm{t}}j=12$ $\ldots$ 44 2 (II) $\tilde{a}_{n}$ $\tilde{a}_{n}$ $=$ $\tilde{l}\tilde{l}^{\mathrm{t}}=$ 1 $-11$ $-11$ $::$ : $-11)$
6 $\tilde{l}^{\mathrm{t}}$ Gregory Karney $\tilde{l}^{-\mathrm{t}}$ 6 $\tilde{l}^{t}$ $\sigma_{j}=2\sin(\frac{2j-1}{2(2n+1)}\pi)$ $j=12$ $\ldots$ $x^{(j)}$ $=$ $[ \sin(\frac{n(2j-1)}{2n+1}\pi)$ $\sin(\frac{(n-1)(2j-1)}{2n+1}\pi)$ $\cdot$ $\sin(\frac{2j-1}{2n+1}\pi)]^{\mathrm{t}}$ 441 $=$ $\tilde{l}^{-\mathrm{t}}$ $\sigma_{j}=\frac{1}{2\sin(\frac{2j-1}{\mathit{2}(2n+1)}\pi)}$ $j=12$ $\ldots$ $x^{(j)}=[ \sin(\frac{n(2j-1)}{2n+1}\pi)$ $\sin(\frac{(n-1)(2j-1)}{2n+1}\pi)$ $\cdots$ $\sin(\frac{2j-1}{2n+1}\pi)]^{\mathrm{t}}$ 45 $\mathrm{t}$ $\mathrm{l}$ Robert David Collection of Matrices for Testing Computational Algorithms Interscience (1969) 5 1 $f(x)=x^{n}+a_{n-1}x^{n-1}+\cdots+a_{0}$
7 7 $C_{n}$ $o_{n}$ $=$ $(0^{:}001$ $:::$ $0001:$ $=_{a_{n}}^{a_{n}}\cdot=_{1}^{2}=_{a_{1}}^{a_{0}} )$ $::$ : $\tilde{a}_{n}c_{n}(\tilde{a}_{n})^{-1}$ $D$ $\tilde{a}_{n}d(\tilde{a}_{n})^{-\mathit{1}}$ 6 Kronecker 61 $m$ $A$ $B$ Kronecker $A\otimes B$ $mn$ $A$ $\lambda_{m}$ $B$ $\lambda_{1}$ $\ldots$ $\mu_{1}$ $\mu_{n}$ $A\otimes B$ $\lambda_{i}\mu_{j}(i=1 \ldots m:j=1 \ldots n)$ $\ldots$ $m$ $A$ $v_{1}$ $v_{m}$ $A$ $\ldots$ $w_{1}$ $w_{n}$ $\ldots$ Kronecker $A\otimes B$ $v_{i}\otimes w_{j}(i=1 \ldots m:j=1 \ldots n)$ $(A\otimes B)\cross(v:\otimes w_{j})=(a\cross v_{\mathrm{t}})\otimes(b\cross w_{j})=(\lambda_{i}v_{i})\otimes(\mu_{j}w_{j})=(\lambda_{1}\mu_{j})(v_{1}\otimes w_{j})$ $(A\mathrm{x}v_{i})\otimes(B\cross w_{j})=(\lambda_{i}v_{i})\otimes(\mu_{j}w_{j})$ $A\otimes B$ $A^{-1}\otimes B^{-1}$ $\cross$ [9] 62 Kronecker $\otimes$ $U=$ $V=$ $W=U\otimes V=(_{gj}^{aj}$ $djaldlgl$ $amdmgmdkgkakhjejbjhlelbl$ $hmembmhkekbkfjcjflijclil$ $fmcmimfkckik$ ) $W$ $U$ 1 $V$ $f(x)=\det(u-xi)$ $=$ $-x^{3}+(a+e+i)x^{2}+(-ea-ia+db+gc-ie+hf)x$ $+(ie-hf)a+(gf-id)b+(hd-ge)c$ $g(x)=\det(v-xi)$ $=$ $x^{2}+(-j-m)x+mj-lk$
8 8 2 $h(x y)= \mathrm{n}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}(g(\frac{x}{y}))$ 3 $W$ $\det(w-xi)=\mathrm{r}\mathrm{e}\mathrm{s}_{y}(f(y) h(x y))$ or $-\mathrm{r}\mathrm{e}\mathrm{s}_{y}(f(y) h(x y))$ $\mathrm{r}\mathrm{e}\mathrm{s}_{y}(f(y) h(x y))$ $\mathrm{r}\mathrm{e}\mathrm{s}_{y}$ $y$ 7 71 Ax=v Hensel [2] ( ) $x=x_{0}+px_{1}+p^{\mathit{2}}x_{2}+\cdots$ $P$ $A(x_{0}+px_{1}+p^{2}x_{2}+\cdots)=v$ mod $p^{\alpha}$ $A$ $\mathrm{m}\mathrm{o}\mathrm{d} p$ $\mathrm{l}\mathrm{u}$ $Ax_{0}$ $=v$ mod $p$ $Ax_{1}$ $=$ $\frac{v-ax_{0}}{p}$ mod $p$ $Ax_{2}$ $=$ $(v-ax_{0})/p-ax_{1}$ $p$ mod $p$ $P$ 72 $n\cross n$ $A$ $\det(a)$ [11] $A=$ ( $a_{n1}a_{11}:$ $::$ : $a_{\mathrm{n}n}a_{1n}:$ )
9 9 $u_{1}=(a_{11} \ldots a_{1n})$ $\ldots$ $u_{n}=(a_{n1} \ldots a_{nn})$ $v_{1}=(a_{11} \ldots a_{n1})$ $\ldots$ $v_{n}=(a_{1n} \ldots a_{nn})$ Hadamard $\leq$ $\det(a)$ $\min( u_{1} _{\mathit{2}} u_{2} _{2}\ldots u_{n-1} _{2} u_{n} _{2} v_{1} _{2} v_{2} _{2}\ldots v_{n-1} _{\mathit{2}} v_{n} _{2})\equiv H$ 73 1 Hadamard $H_{1}$ $\leq H_{1}$ [3] 731 : Hadamard $H_{2}$ $H_{2}$ I $H_{2}$ $\mathbb{z}/p\mathbb{z}$ Hessenberg Hessenberg pivot $a(k k)$ $\alpha=\frac{a(ik)}{a(kk)}$ $a(ij)arrow a(ij)-\alpha a(kj)$ $j=k+1$ $\ldots$
10 10 $a(m k)arrow a(m k)+\alpha a(m i)$ $m=1$ $\ldots$ $\mathbb{z}/p\mathbb{z}$ Hessenberg \theta ] $[-$ $\text{ ^{}p_{i}}\preceq \mathit{2}$ $\mathrm{l}_{\frac{p_{i}-1}{2}}]$ $H_{2}$ [7] Danilevsky $\mathbb{z}/p\mathbb{z}$ [8] 742 II $-$ I GMRES $v$ $A^{k}v$ $\mathbb{z}/p\mathbb{z}$ $(v Av \cdots A^{n-1}v)=-A^{n}v$ $c_{n-1}$ $\cdots$ $\mathrm{c}_{0}$ Hensel $0$ $[-^{\mathrm{l}^{-\underline{1}}e}2 \frac{-1}{2}]$ $0$ $j$ Strum 2 3 Uspensky
11 $\bullet$ $\bullet$ $f_{j}(x)$ $\bullet$ $j=12$ [1] Pdearson [13] 8 1 Strum Strum [11] $f(x)$ $f (x)$ $f(x)$ 1 real root finding [12] 822 $f(x)$ $f_{1}(x)$ $f_{2}(x)_{)}\ldots$ $f_{k}(x)$ 1 $f1(x)=f(x)/\mathrm{g}\mathrm{c}\mathrm{d}(f(x) f (x))$ 2 $f_{j}(x)$ $f_{j}(x)$ 1 $f_{\mathrm{j}+1}(x)=f_{j} (x)/\mathrm{g}\mathrm{c}\mathrm{d}(f_{j} (x) f_{j} (x))$ 3 $f_{j+1}(x)$ 1 $f_{j}(x)$ $f1(x)$ $f(x)$ $f_{j+1}(x)$ $\beta$ $\ldots$ $k-1$ $\alpha$ $f_{j+1}(x)$ $f_{j}(x)$ $(\alpha\beta)$ 1 $f_{j}(x)$ $f_{j}(\alpha)$ $f_{j}(\beta)$ [12]
12 12 83 Uspensky (Descarte ) $f(x)=a_{0}x^{n}+a_{1}x^{n-1}+\cdots+a_{n}$ $a_{0}$ $a_{1}$ $\cdots$ $a_{n}$ ( ) $0$ $W$ $f(x)$ ( ) $0$ $W$ $W$ $0$ $W$ 1 1 $W$ 2 $xarrow 1/(x+1)$ $x$ $(0 \infty)$ $(01)$ $xarrow x+1$ $x$ $(0 \infty)$ $(1 \infty)$ $x=1$ $xarrow x+1$ check $0$ 1 $x=10^{ }$ 831 $x^{n}+a_{1}x^{n-1}+\cdots+a_{n}=0$ $a_{\alpha}$ $\cdots$ $a_{\beta}$ $a_{\gamma}$ $G_{4}=2 \max[( a_{\alpha} )^{1/\alpha} ( a_{\beta} )^{1/\beta} ( a_{\gamma} )^{1/\gamma} \cdots]$ [6] $xarrow 1/x$ $x=10^{100\mathfrak{x}000}$ 9 $8\mathrm{G}\mathrm{H}\mathrm{z}$ $2\mathrm{G}\mathrm{B}\mathrm{y}\mathrm{t}\mathrm{e}$ Intel Xeon 2 Memory $1000\cross 1000$ 1 10 II I Uspensky
13 13 [1] GECollins and Alkiviadis GAkritas Polynomial Real Root Isolation Using Decarte s Rule of Signs Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation [2] K O Geddes Stephen R Czapor George Labahn Keith O Geddes S R Czapor G Labahn Algorithms for Computer Algebra Kluwer Academic Pub United States (1992) [3] AJ Goldstein RL Graham A Hadamard-type bound on the coefficient of a determinant of polynomials SIAM Review (1974) [4] G Golub W Kahan Calculating the singular values and pseude-inverse of a matrix SIAM J Numeri Anal Vol 2 pp (1965) [5] E Ishiwata Y Muroya K Isogai Adaptive improved block SOR method with orderings JJIAM vol16 No3 pp (1999) [6] JRJohnson Algorithms for Polynomial Real Root Isolation Quantifier Elimination and Cylindrical Algebraic Decomposition SpringerWienNewYork Austria (1998) [7] S Lo M Monagan A Wittkopf A Modular Algorithm for Computing the Characteristic Polynomial of an Integer Matrix in Maple $//\mathrm{w}\mathrm{w}\mathrm{w}$ http: cecm pdf $\mathrm{s}\mathrm{f}\mathrm{u}\mathrm{c}\mathrm{a}/\mathrm{c}\mathrm{a}\mathrm{g}/\mathrm{p}\mathrm{a}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{s}/\mathrm{c}\mathrm{p}\mathrm{p}\mathrm{a}\mathrm{p}\mathrm{e}\mathrm{r}$ [8] (I) 1997 [9] 2003 [10] 2000 [11] ( ) 1965 [12] 2003 [13] 2003 [14] 15(3) pp (2005) [15] 18 [16] [17] [ 2003
一般演題(ポスター)
6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A
(I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2
sdmp Maple - (Ver.2) ( ) September 27, 2011 1 (I) GotoBALS, http://www-is.amp.i.kyoto-u.ac.jp/ kkimur/charpoly.html 2 (II) Nehalem CPU GotoBLAS Intel CPU Nehalem CPU, GotoBLAS, Hyper-Thread technology
第85 回日本感染症学会総会学術集会後抄録(III)
β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ
44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle
Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$
110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2
1539 2007 109-119 109 DDS (Drug Deltvery System) (Osamu Sano) $\mathrm{r}^{\mathrm{a}_{w^{1}}}$ $\mathrm{i}\mathrm{h}$ 1* ] $\dot{n}$ $\mathrm{a}g\mathrm{i}$ Td (Yisaku Nag$) JST CREST 1 ( ) DDS ($\mathrm{m}_{\mathrm{u}\mathrm{g}}\propto
1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030
1 913 9001030 A B C D E F G H J K L M 9:00 1A0900 9:15 1A0915 9:30 1A0930 9:45 1A0945 10 : 00 1A1000 10 : 15 1B0900 1B0915 1B0930 1B0945 1B1000 1C0900 1C0915 1D0915 1C0930 1C0945 1C1000 1D0930 1D0945 1D1000
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y
A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原
A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原, 辰次 Citation 数理解析研究所講究録 (2004), 1395: 231-237 Issue
42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{
26 [\copyright 0 $\perp$ $\perp$ 1064 1998 41-62 41 REJECT}$ $=\underline{\not\equiv!}\xi*$ $\iota_{arrow}^{-}\approx 1,$ $\ovalbox{\tt\small ffl $\mathrm{y}
第89回日本感染症学会学術講演会後抄録(I)
! ! ! β !!!!!!!!!!! !!! !!! μ! μ! !!! β! β !! β! β β μ! μ! μ! μ! β β β β β β μ! μ! μ!! β ! β ! ! β β ! !! ! !!! ! ! ! β! !!!!! !! !!!!!!!!! μ! β !!!! β β! !!!!!!!!! !! β β β β β β β β !!
A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18
2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1
index calculus
index calculus 2008 3 8 1 generalized Weil descent p :, E/F p 3 : Y 2 = f(x), where f(x) = X 3 + AX + B, A F p, B F p 3 E(F p 3) 3 : Generalized Weil descent E(F p 4) 2 Index calculus Plain version Double-large-prime
第86回日本感染症学会総会学術集会後抄録(II)
χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α
0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,
2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).
ron04-02/ky768450316800035946
β α β α β β β α α α Bugula neritina α β β β γ γ γ γ β β γ β β β β γ β β β β β β β β! ! β β β β μ β μ β β β! β β β β β μ! μ! μ! β β α!! β γ β β β β!! β β β β β β! β! β β β!! β β β β β β β β β β β β!
チュートリアル:ノンパラメトリックベイズ
{ x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ
(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}
1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$
診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a) \mathrm{e}.\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}$ -u.ac $\mathrm{f}$ 0$ (Yoshinobu Tamura) D
a) \mathrm{e}\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}$ -uac $\mathrm{f}$ 0$ 1373 2004 110-118 110 (Yoshinobu Tamura) Department of Information $\mathrm{y}$ (S geru (Mitsuhiro
$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)
$\mathrm{s}$ 1265 2002 209-219 209 DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ) (Jinghui Zhu) 1 Iiitroductioii (Xiamen Univ) $c$ (Fig 1) Levi-Civita
Mathematica を活用する数学教材とその検証 (数式処理と教育)
$\bullet$ $\bullet$ 1735 2011 115-126 115 Mathematica (Shuichi Yamamoto) College of Science and Technology, Nihon University 1 21 ( ) 1 3 (1) ( ) (2 ) ( ) 10 Mathematica ( ) 21 22 2 Mathematica $?$ 10
105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2
1155 2000 104-119 104 (Masatake Mori) 1 $=\mathrm{l}$ 1970 [2, 4, 7], $=-$, $=-$,,,, $\mathrm{a}^{\mathrm{a}}$,,, $a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (11), $z=\alpha$ $c_{0}+c_{1}(z-\alpha)+c2(z-\alpha)^{2}+\cdots$
, : GUI Web Java 2.1 GUI GUI GUI 2 y = x y = x y = x
J.JSSAC (2005) Vol. 11, No. 3,4, pp. 77-88 Noda2005 MathBlackBoard MathBlackBoard is a Java program based on the blackboard applet. We can use the blackboard applet with GUI operations. The blackboard
日本糖尿病学会誌第58巻第3号
l l μ l l l l l μ l l l l μ l l l l μ l l l l l l l l l l l l l μ l l l l μ Δ l l l μ Δ μ l l l l μ l l μ l l l l l l l l μ l l l l l μ l l l l l l l l μ l μ l l l l l l l l l l l l μ l l l l β l l l μ
Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S
Title 初期和算にみる Archimedean Spiral について ( 数学究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2000), 1130: 220-228 Issue Date 2000-02 URL http://hdl.handle.net/2433/63667 Right Type Departmental Bulletin Paper Textversion
149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :
Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]
π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1
sup inf (ε-δ 4) 2018 1 9 ε-δ,,,, sup inf,,,,,, 1 1 2 3 3 4 4 6 5 7 6 10 6.1............................................. 11 6.2............................... 13 1 R R 5 4 3 2 1 0 1 2 3 4 5 π( R) 2 1 0
204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047
9 π 046 Vol.69-1 January 2016 204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 β γ α / α / 048 Vol.69-1 January 2016 π π π / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 049 β 050 Vol.69-1
日本糖尿病学会誌第58巻第2号
β γ Δ Δ β β β l l l l μ l l μ l l l l α l l l ω l Δ l l Δ Δ l l l l l l l l l l l l l l α α α α l l l l l l l l l l l μ l l μ l μ l l μ l l μ l l l μ l l l l l l l μ l β l l μ l l l l α l l μ l l
(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1
1040 1998 143-153 143 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [31 8 10 11] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy
SDPA( Programming Algorithm) $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{
1114 1999 149-159 149 SDPA( Programming Algorithm) $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}$ $\mathrm{m}\mathrm{a}\mathrm{s}^{\urcorner}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{z}\mathrm{l}\mathrm{l}$
* KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1. $\mathrm{n}\mathrm{p}$ (SCP) 1,..,,,, $[1][5][10]$, [11], [4].., Fishe
1114 1999 211-220 211 * KISHIDA Masahiro YAGIURA Mutsunori IBARAKI Toshihide 1 $\mathrm{n}\mathrm{p}$ (SCP) 1 $[1][5][10]$ [11] [4] Fisher Kedia $m=200$ $n=2000$ [8] Beasley Gomory f- $m=400$ $n=4000$
II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K
II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F
106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30 15 20 10 25 35 20 18 30 12 4.1 7 min. z = 602.5x 1 + 305.0x 2 + 2
105 4 0 1? 1 LP 0 1 4.1 4.1.1 (intger programming problem) 1 0.5 x 1 = 447.7 448 / / 2 1.1.2 1. 2. 1000 3. 40 4. 20 106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30
128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$
1075 1999 127-142 127 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle (
