Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 :

Size: px
Start display at page:

Download "Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 :"

Transcription

1 Dirichlet Process : joint work with: Max Welling (UC Irvine), Yee Whye Teh (UCL, Gatsby) 1 /40 MIRU2008 :

2 Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 :

3 ? 3 /40 MIRU2008 :

4 Non-parametric Bayesian Model for Spectral Clustering etric Bayes, spectral clustering, probabilistic model Abstract dy the problem of searching for the r of clusters, k, in clustering. In clustering applications, spectral clushas achieved great success. Follows success, we consider an extension of l clustering based on a non-parametric an approach which gives an elegant sofor model selection, i.e. choosing k. In linkage analysis lar, we use the Dirichlet process (DP). t propose a generative model for specstering to apply the DP. We then show relaxed greedy maximum likelihood esn for the model is in fact equivalent to l clustering. Based on the generative we derive a non-parametric Bayesian for spectral clustering using the DP. mental results show that the proposed k-means spectral clustering 4 /40 MIRU2008 : Figure 3: Typical results for BKM for various values of τ = 0.1, 0.5, 2. The tru DP Gaussian mixture Proposed algorithm to ten. In these 30 plots, BKM found eight, nine and 30ten clusters respectively. Som too small or too 15 large to be visible Dirichlet Process Mixture Figure Typical clustering results by the Dirichlet process Gaussian 6000 mixture model (left) and the proposed algorithm (right) The former discovered 10 Gaussians, and the latter correctly discovered 3 clusters clustering algorithms even when the distribution of 1000 data can not be captured by usual distributions, e.g. Gaussian SSSSSSSSSSSSSSSSNSSSSSNSNNNNNNNNNNNSNNNSNSNNNNNNNN or multinomial. Largely speaking, there are

5 ( ) ( ) Dirichlet process EM-like MCMC 5 /40 MIRU2008 :

6 Dirichlet process mixture Dirichlet process mixture 6 /40 MIRU2008 :

7 7 /40 MIRU2008 :

8 7 /40 MIRU2008 :

9 ? z θ xi X: zi = 1 xk θ1 2 zk = 2 xj xl zj = 1 1 θ2 zl = 2 8 /40 MIRU2008 :

10 (Z, θ) = argmax log p(x Z,θ) xi X: zi = 1 xk θ1 2 zk = 2 xj xl zj = 1 1 θ2 zl = 2 9 /40 MIRU2008 :

11 (MCMC) 10/40 MIRU2008 :

12 Z=argmax p(x,z,θ) θ=argmax p(x,z,θ) q(z) p(x,z,θ) θ=argmax Eq(Z)[ log p(x,z,θ)] q(z) exp Eq(θ)[ log p(x,z,θ)] q(θ) exp Eq(Z)[ log p(x,z,θ)] 11/40 MIRU2008 :

13 Markov Chain Monte Carlo p(z X) Metropolis-Hastings Gibbs sampler ( ) %&! %&"' %&" %&#' %&# %&$' %&$ %&%' %!!!"!#!$ % $ # "! 12/40 MIRU2008 :

14 Dirichlet process mixture Dirichlet process mixture 13/40 MIRU2008 :

15 (Z, θ) = argmax log p(x Z,θ) iterated conditional mode Z=argmax log p(x Z,θ) θ=argmax log p(x Z,θ) θ1 zi = 1 zk = 2 zj = 1 1 θ2 zl = 2 14/40 MIRU2008 :

16 log p(x Z, θ) = 1 2 n x i θ zi 2 + constant i=1 z i = argmax log p(x, Z, θ) = argmax 1 2 x i θ zi 2 θ j = argmax log p(x, Z, θ) = 1 n j i;z i =j x i θ1 zj = 1 1 zi = 1 θ2 zk = 2 zl = 2 15/40 MIRU2008 :

17 : (Z, θ) = argmax p(x Z,θ) iterated conditoinal mode k-means z i = argmax x i θ zi 2 θ j = 1 x i n j i;z i =j θ1 zj = 1 1 zi = 1 θ2 zk = 2 zl = 2 16/40 MIRU2008 :

18 : 3 : 17/40 MIRU2008 :

19 K? K K Dirichlet process mixture K 20 0!20!40!60!60!40! !20!40!60!60!40! !20!40 K=3 K=4 K=5!60!60!40! /40 MIRU2008 :

20 Dirichlet process mixture Dirichlet process mixture 19/40 MIRU2008 :

21 Dirichlet Process Mixture K Dirichlet Process Mixture (DPM) K [Ferguson 73, Antoniak 74] K? 20/40 MIRU2008 :

22 21 K? ( ) e.g. (DPM) /40 MIRU2008 :

23 DPM p(z,k) (=p(z)) 3 x1, x2, x3 : p(x Z) ( :) e.g. (DPM) 22/40 MIRU2008 :

24 DPM 23/40 MIRU2008 :

25 DPM 23/40 MIRU2008 :

26 DPM 23/40 MIRU2008 :

27 DPM 23/40 MIRU2008 :

28 Chinese Restaurant Process Dirichlet process p(z N [z 1...z N 1 ]) = N N c α+n 1 α α+n 1 (Nc N > 0; Z N is an existing cluster.) (Nc N = 0; Z N is a new cluster.) 24/40 MIRU2008 :

29 DPM? e.g. (DPM) Dirichlet process mixture (DPM) Dirichlet p(z K) + Poisson p(k) etc. DPM (MCMC) Dirichlet + Poisson 25/40 MIRU2008 :

30 DPM consistency x1, x2, x3 consistency p(z2) + p(z5) = p([(x1,x2)]) p(z2)=α/(1+α)(2+α); p(z5) = 2/(1+α)(2+α) p([(x1,x2)]) = 1/(1+α) 26/40 MIRU2008 :

31 K DPM K DPM p(z,k) DPM DPM consistency 27/40 MIRU2008 :

32 note: K K 28/40 MIRU2008 :

33 Dirichlet process mixture Dirichlet process mixture 29/40 MIRU2008 :

34 iterated conditional mode EM MCMC Gibbs sampler 30/40 MIRU2008 :

35 iterated conditional mode EM MCMC Gibbs sampler 31/40 MIRU2008 :

36 Markov Chain Monte Carlo p(z X) Metropolis-Hastings Gibbs sampler ( ) %&! %&"' %&" %&#' %&# %&$' %&$ %&%' %!!!"!#!$ % $ # "! 32/40 MIRU2008 :

37 Gibbs Sampler ( ) Z = (z1, z2,..., zn) zi p(zi Z-i, X) p(z X) p(zi Z-i, X) Metroplis-Hastings zi p(zi Z-i, X) p(x,z) (DPM OK ) 33/40 MIRU2008 :

38 : θ={µ,σ}: µ Σ µ Σ Wishart θ 34/40 MIRU2008 :

39 DPM Gibbs Sampler 1. p(x Z,θ) e.g. 2. p(θ) p(z) DPM 3. p(x,z) = dθ p(x,z,θ) ( ) 4. zi p(zi Z-i, X) p(x,z) 35/40 MIRU2008 :

40 MNIST 88 Gibbs sampler (GS) 36/40 MIRU2008 :

41 !" #" $%" )!" #" $%" )!('#!&!('#!&!&'% Latent Dirichlet!&'! Allocation!&'&!&'#!* Gibbs sampler +,-./,!&'! "!""" #""" $%"""!&'%!&'%!&'!!&'!!&'(!&'#!&'(!#!&'# "!""" #""" $%""" *+,-.+!# "!""" #""" $%"""!&'! *+,-.+ GHDP 100 GHDP 1 GLDA CVHDP CVLDA VLDA!&'&!&'( 37/40 MIRU2008 :

42 DPM? K (DPM ) DPM p(z,k) DPM DPM consistent Gibbs sampler non-dpm () 38/40 MIRU2008 :

43 DPM hierarchical Dirichlet process HDP-LDA, HDP-HMM, HDP-PCFG 39/40 MIRU2008 :

44 Dirichlet process mixture Dirichlet process mixture 40/40 MIRU2008 :

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki Pitman-Yor Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Akira Shirai and Tadahiro Taniguchi Although a lot of melody generation method has been

More information

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alternative approach using the Monte Carlo simulation to evaluate

More information

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71 2010-12-02 (2010 12 02 10 :51 ) 1/ 71 GCOE 2010-12-02 WinBUGS [email protected] http://goo.gl/bukrb 12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? 2010-12-02 (2010 12

More information

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov

More information

/22 R MCMC R R MCMC? 3. Gibbs sampler : kubo/

/22 R MCMC R R MCMC? 3. Gibbs sampler :   kubo/ 2006-12-09 1/22 R MCMC R 1. 2. R MCMC? 3. Gibbs sampler : [email protected] http://hosho.ees.hokudai.ac.jp/ kubo/ 2006-12-09 2/22 : ( ) : : ( ) : (?) community ( ) 2006-12-09 3/22 :? 1. ( ) 2. ( )

More information

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I (missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely

More information

Clustering in Time and Periodicity of Strong Earthquakes in Tokyo Masami OKADA Kobe Marine Observatory (Received on March 30, 1977) The clustering in time and periodicity of earthquake occurrence are investigated

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2 CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for

More information

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. E-mail: {ytamura,takai,tkato,tm}@vision.kuee.kyoto-u.ac.jp Abstract Current Wave Pattern Analysis for Anomaly

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc 1,a) 1,b) Obstacle Detection from Monocular On-Vehicle Camera in units of Delaunay Triangles Abstract: An algorithm to detect obstacles by using a monocular on-vehicle video camera is developed. Since

More information

untitled

untitled 2009 57 2 393 411 c 2009 1 1 1 2009 1 15 7 21 7 22 1 1 1 1 1 1 1 1. 1 1 1 2 3 4 12 2000 147 31 1 3,941 596 1 528 1 372 1 1 1.42 350 1197 1 13 1 394 57 2 2009 1 1 19 2002 2005 4.8 1968 5 93SNA 6 12 1 7,

More information

橡ボーダーライン.PDF

橡ボーダーライン.PDF 1 ( ) ( ) 2 3 4 ( ) 5 6 7 8 9 10 11 12 13 14 ( ) 15 16 17 18 19 20 ( ) 21 22 23 24 ( ) 25 26 27 28 29 30 ( ) 31 To be or not to be 32 33 34 35 36 37 38 ( ) 39 40 41 42 43 44 45 46 47 48 ( ) 49 50 51 52

More information

揃 24 1681 0 20 40 60 80 100 0 21 42 63 84 Lag [hour] Lag [day] 35

揃 24 1681 0 20 40 60 80 100 0 21 42 63 84 Lag [hour] Lag [day] 35 Forecasting Model for Electricity Consumption in Residential House Based on Time Series Analysis * ** *** Shuhei Kondo Nobayasi Masamori Shuichi Hokoi ( 2015 7 3 2015 12 11 ) After the experience of electric

More information

By Kenji Kinoshita, I taru Fukuda, Taiji Ota A Study on the Use of Overseas Construction Materials There are not few things which are superior in the price and the aspect of the quality to a domestic

More information

24 Depth scaling of binocular stereopsis by observer s own movements

24 Depth scaling of binocular stereopsis by observer s own movements 24 Depth scaling of binocular stereopsis by observer s own movements 1130313 2013 3 1 3D 3D 3D 2 2 i Abstract Depth scaling of binocular stereopsis by observer s own movements It will become more usual

More information

The Indirect Support to Faculty Advisers of die Individual Learning Support System for Underachieving Student The Indirect Support to Faculty Advisers of the Individual Learning Support System for Underachieving

More information

浜松医科大学紀要

浜松医科大学紀要 On the Statistical Bias Found in the Horse Racing Data (1) Akio NODA Mathematics Abstract: The purpose of the present paper is to report what type of statistical bias the author has found in the horse

More information

16_.....E...._.I.v2006

16_.....E...._.I.v2006 55 1 18 Bull. Nara Univ. Educ., Vol. 55, No.1 (Cult. & Soc.), 2006 165 2002 * 18 Collaboration Between a School Athletic Club and a Community Sports Club A Case Study of SOLESTRELLA NARA 2002 Rie TAKAMURA

More information

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and MIDI 1 2 3 2 1 Modeling Performance Indeterminacies for Polyphonic Midi Score Following and Its Application to Automatic Accompaniment Nakamura Eita 1 Yamamoto Ryuichi 2 Saito Yasuyuki 3 Sako Shinji 2

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst 情報処理学会インタラクション 2015 IPSJ Interaction 2015 15INT014 2015/3/7 1,a) 1,b) 1,c) Design and Implementation of a Piano Learning Support System Considering Motivation Fukuya Yuto 1,a) Takegawa Yoshinari 1,b) Yanagi

More information

橡最終原稿.PDF

橡最終原稿.PDF GIS Simulation analysis of disseminate of disaster information using GIS * ** *** Toshitaka KATADAJunsaku ASADA and Noriyuki KUWASAWA GIS GIS AbstractWe have developed the simulation model expressing the

More information

ï\éÜA4*

ï\éÜA4* Feature Article Imaging of minuscule amounts of chemicals, Scannimg Chemical Microscope --- Increasing analysis information through imaging --- Abstract We have developed a Scanning Chemical Microscope

More information

Microsoft PowerPoint - SSII_harada pptx

Microsoft PowerPoint - SSII_harada pptx The state of the world The gathered data The processed data w d r I( W; D) I( W; R) The data processing theorem states that data processing can only destroy information. David J.C. MacKay. Information

More information

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [ Vol.2, No.x, April 2015, pp.xx-xx ISSN xxxx-xxxx 2015 4 30 2015 5 25 253-8550 1100 Tel 0467-53-2111( ) Fax 0467-54-3734 http://www.bunkyo.ac.jp/faculty/business/ 1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The

More information

分布

分布 (normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability

More information

189 2015 1 80

189 2015 1 80 189 2015 1 A Design and Implementation of the Digital Annotation Basis on an Image Resource for a Touch Operation TSUDA Mitsuhiro 79 189 2015 1 80 81 189 2015 1 82 83 189 2015 1 84 85 189 2015 1 86 87

More information

kut-paper-template.dvi

kut-paper-template.dvi 26 Discrimination of abnormal breath sound by using the features of breath sound 1150313 ,,,,,,,,,,,,, i Abstract Discrimination of abnormal breath sound by using the features of breath sound SATO Ryo

More information

〈論文〉興行データベースから「古典芸能」の定義を考える

〈論文〉興行データベースから「古典芸能」の定義を考える Abstract The long performance database of rakugo and kabuki was totaled, and it is found that few programs are repeated in both genres both have the frequency differential of performance. It is a question

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple 1 2 3 4 5 e β /α α β β / α A judgment method of difficulty of task for a learner using simple electroencephalograph Katsuyuki Umezawa 1 Takashi Ishida 2 Tomohiko Saito 3 Makoto Nakazawa 4 Shigeichi Hirasawa

More information

21 Key Exchange method for portable terminal with direct input by user

21 Key Exchange method for portable terminal with direct input by user 21 Key Exchange method for portable terminal with direct input by user 1110251 2011 3 17 Diffie-Hellman,..,,,,.,, 2.,.,..,,.,, Diffie-Hellman, i Abstract Key Exchange method for portable terminal with

More information

,,.,.,,.,.,.,.,,.,..,,,, i

,,.,.,,.,.,.,.,,.,..,,,, i 22 A person recognition using color information 1110372 2011 2 13 ,,.,.,,.,.,.,.,,.,..,,,, i Abstract A person recognition using color information Tatsumo HOJI Recently, for the purpose of collection of

More information

Overview (Gaussian Process) GPLVM GPDM 2 / 59

Overview (Gaussian Process) GPLVM GPDM 2 / 59 [email protected] 2015-3-3( ) 1 / 59 Overview (Gaussian Process) GPLVM GPDM 2 / 59 (Gaussian Process) y 2 1 0 1 2 3 8 6 4 2 0 2 4 6 8 x x y (regressor) D = { (x (n), y (n) ) } N, n=1 x (n+1) y (n+1), (

More information

,,,,., C Java,,.,,.,., ,,.,, i

,,,,., C Java,,.,,.,., ,,.,, i 24 Development of the programming s learning tool for children be derived from maze 1130353 2013 3 1 ,,,,., C Java,,.,,.,., 1 6 1 2.,,.,, i Abstract Development of the programming s learning tool for children

More information

22 1,936, ,115, , , , , , ,

22 1,936, ,115, , , , , , , 21 * 2 3 1 1991 1945 200 60 1944 No. 41 2016 22 1,936,843 1945 1,115,594 1946 647,006 1947 598,507 1 60 2014 501,230 354,503 5 2009 405,571 5 1 2 2009 2014 5 37,285 1 2 1965 10 1975 66 1985 43 10 3 1990

More information

II 2 II

II 2 II II 2 II 2005 [email protected] 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

_念3)医療2009_夏.indd

_念3)医療2009_夏.indd Evaluation of the Social Benefits of the Regional Medical System Based on Land Price Information -A Hedonic Valuation of the Sense of Relief Provided by Health Care Facilities- Takuma Sugahara Ph.D. Abstract

More information

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Jun Motohashi, Member, Takashi Ichinose, Member (Tokyo

More information

soturon.dvi

soturon.dvi 12 Exploration Method of Various Routes with Genetic Algorithm 1010369 2001 2 5 ( Genetic Algorithm: GA ) GA 2 3 Dijkstra Dijkstra i Abstract Exploration Method of Various Routes with Genetic Algorithm

More information

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or kubostat207e p. I 207 (e) GLM [email protected] https://goo.gl/z9ycjy 207 4 207 6:02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e (https://goo.gl/z9ycjy) 207 (e) 207 4

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth and Foot Breadth Akiko Yamamoto Fukuoka Women's University,

More information

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,

More information

塗装深み感の要因解析

塗装深み感の要因解析 17 Analysis of Factors for Paint Depth Feeling Takashi Wada, Mikiko Kawasumi, Taka-aki Suzuki ( ) ( ) ( ) The appearance and quality of objects are controlled by paint coatings on the surfaces of the objects.

More information

,,.,,.,..,.,,,.,, Aldous,.,,.,,.,,, NPO,,.,,,,,,.,,,,.,,,,..,,,,.,

,,.,,.,..,.,,,.,, Aldous,.,,.,,.,,, NPO,,.,,,,,,.,,,,.,,,,..,,,,., J. of Population Problems. pp.,.,,,.,,..,,..,,,,.,.,,...,.,,..,.,,,. ,,.,,.,..,.,,,.,, Aldous,.,,.,,.,,, NPO,,.,,,,,,.,,,,.,,,,..,,,,., ,,.,,..,,.,.,.,,,,,.,.,.,,,. European Labour Force Survey,,.,,,,,,,

More information

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble 25 II 25 2 6 13:30 16:00 (1),. Do not open this problem boolet until the start of the examination is announced. (2) 3.. Answer the following 3 problems. Use the designated answer sheet for each problem.

More information

09‘o’–

09‘o’– Gerald Graff s Method of Teaching Writing to First-Year College Students: Toward an Argument Culture IZUMI, Junji Abstract It is not easy to teach today s college students how to argue. Building on over

More information

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2 Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2 1 2 1 Department of Clinical Pharmacotherapy, Hiroshima

More information

IPSJ-TOM

IPSJ-TOM Vol. 2 No. 2 47 57 (Mar. 2009) 1, 2 1 3 1 Web Performance Evaluation of Recommendation Algorithms Based on Rating-recommendation Interaction Akihiro Yamashita, 1, 2 Hidenori Kawamura, 1 Hiroyuki Iizuka

More information

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, School of Medicine, Tokushima University, Tokushima Fetal

More information

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i 25 Feature Selection for Prediction of Stock Price Time Series 1140357 2014 2 28 ..,,,,. 2013 1 1 12 31, ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i Abstract Feature Selection for Prediction of Stock Price Time

More information

Variational Auto Encoder

Variational Auto Encoder Variational Auto Encoder nzw 216 年 12 月 1 日 1 はじめに 深層学習における生成モデルとして Generative Adversarial Nets (GAN) と Variational Auto Encoder (VAE) [1] が主な手法として知られている. 本資料では,VAE を紹介する. 本資料は, 提案論文 [1] とチュートリアル資料 [2]

More information

kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht

kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht kubo2015ngt6 p.1 2015 (6 MCMC [email protected], @KuboBook http://goo.gl/m8hsbm 1 ( 2 3 4 5 JAGS : 2015 05 18 16:48 kubo (http://goo.gl/m8hsbm 2015 (6 1 / 70 kubo (http://goo.gl/m8hsbm 2015 (6 2 /

More information

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing 1,a) 1,b) 1,c) 2012 11 8 2012 12 18, 2013 1 27 WEB Ruby Removal Filters Using Genetic Programming for Early-modern Japanese Printed Books Taeka Awazu 1,a) Masami Takata 1,b) Kazuki Joe 1,c) Received: November

More information

1 IDC Wo rldwide Business Analytics Technology and Services 2013-2017 Forecast 2 24 http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h24/pdf/n2010000.pdf 3 Manyika, J., Chui, M., Brown, B., Bughin,

More information

0

0 0 1 2 3 4 5 6 7 1 12 2 1 2 3 2 1 2 n 8 1 2 e11 3 g 4 e 5 n n e16 9 e12 1 09e 2 10e 3 03e 1 2 4 e 0905e f n 10 1 1 2 2 3 3 4 4 5 6 11 1 2 12 1 E 2 JE 4 E *)*%E 5 N 3 *)!**# EG K E J N N 13 14 15 16 17 o

More information

2017 (413812)

2017 (413812) 2017 (413812) Deep Learning ( NN) 2012 Google ASIC(Application Specific Integrated Circuit: IC) 10 ASIC Deep Learning TPU(Tensor Processing Unit) NN 12 20 30 Abstract Multi-layered neural network(nn) has

More information

05_藤田先生_責

05_藤田先生_責 This report shows innovation of competency of our faculty of social welfare. The aim of evaluation competency is improvement in the Social welfare education effects, by understanding of studentʼs development

More information

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i kubostat2018d p.1 I 2018 (d) model selection and [email protected] http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)

More information

2 ( ) i

2 ( ) i 25 Study on Rating System in Multi-player Games with Imperfect Information 1165069 2014 2 28 2 ( ) i ii Abstract Study on Rating System in Multi-player Games with Imperfect Information Shigehiko MORITA

More information

AtCoder Regular Contest 073 Editorial Kohei Morita(yosupo) A: Shiritori if python3 a, b, c = input().split() if a[len(a)-1] == b[0] and b[len(

AtCoder Regular Contest 073 Editorial Kohei Morita(yosupo) A: Shiritori if python3 a, b, c = input().split() if a[len(a)-1] == b[0] and b[len( AtCoder Regular Contest 073 Editorial Kohei Morita(yosupo) 29 4 29 A: Shiritori if python3 a, b, c = input().split() if a[len(a)-1] == b[0] and b[len(b)-1] == c[0]: print( YES ) else: print( NO ) 1 B:

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : : kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information