kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or
|
|
|
- まいえ ふじた
- 6 years ago
- Views:
Transcription
1 kubostat207e p. I 207 (e) GLM [email protected] :02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e ( 207 (e) / 47 kubostat207e ( 207 (e) / 47 statistaical models appeared in the class 6 GLM : The development of linear models Hierarchical Bayesian Model Be more flexible Generalized Linear Mixed Model (GLMM) Incoporating random effects such as individuality parameter estimation MCMC MLE Generalized Linear Model (GLM) Always normal distribution? That's non-sense! MSE Linear model Kubo Doctrine: Learn the evolution of linear-model family, firstly! kubostat207e ( 207 (e) / 47 kubostat207e ( 207 (e) / 47? how to specify GLM Generalized Linear Model (GLM) (Poisson regression) (logistic regression) (linear regression) Generalized Linear Model (GLM) probability distribution? linear predictor? link function? kubostat207e ( 207 (e) / 47 kubostat207e ( 207 (e) / 47
2 kubostat207e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distribution : linear predictor e.g., β + β 2 x i link function log link function probability distribution binomial distribution : linear predictor e.g., β + β 2 x i link function logit yi x i kubostat207e ( 207 (e) / 47 kubostat207e ( 207 (e) / 47 N y N y?. N y seeds alive 8 y! y i {0,, 2,, 8} f i C: T: i N i = 8 y i = 3 (alive) (dead) x i kubostat207e ( 207 (e) / 47 kubostat207e ( 207 (e) / 47 N y Reading data file N y data frame d data4a.csv CSV (comma separated value) format file R > d <- read.csv("data4a.csv") or > d <- read.csv( + " d data frame ( ) > summary(d) N y x f Min. :8 Min. :0.00 Min. : C:50 st Qu.:8 st Qu.:3.00 st Qu.: T:50 Median :8 Median :6.00 Median : Mean :8 Mean :5.08 Mean : rd Qu.:8 3rd Qu.:8.00 3rd Qu.:0.770 Max. :8 Max. :8.00 Max. :2.440 kubostat207e ( 207 (e) / 47 kubostat207e ( 207 (e) / 47
3 kubostat207e p.3 N y binomial distribution logit link function > plot(d$x, d$y, pch = c(2, 9)[d$f]) > legend("topleft", legend = c("c", "T"), pch = c(2, 9)) yi 2. binomial distribution logit link function x i fertilization effective? kubostat207e ( 207 (e) / 47 kubostat207e ( 207 (e) / 47 binomial distribution logit link function binomial distribution : N y p(y N, q) = ( ) N q y ( q) N y y ( N ) y N y p(y i 8, q) q = 0. q = 0.3 q = 0.8 y i kubostat207e ( 207 (e) / 47 binomial distribution logit link function logistic curve (z i: q i = logistic(z i ) = linear predictor e.g. z i = β + β 2x i) + exp( z i ) > logistic <- function(z) / ( + exp(-z)) # > z <- seq(-6, 6, 0.) > plot(z, logistic(z), type = "l") q q = +exp( z) z kubostat207e ( 207 (e) / 47 binomial distribution logit link function β and β 2 change logistic curve logit link function binomial distribution logit link function {β, β 2 } = {0, 2} (A) β 2 = 2 β (B) β = 0 β 2 q (A) β 2 = 2 β = 2 β = x β = (B) β = 0 β 2 = 4 β 2 = x β 2 = {β, β 2 } x q 0 q kubostat207e ( 207 (e) / 47 logistic q = + exp( (β + β 2 x)) = logistic(β + β 2 x) logit q logit(q) = log q = β + β 2 x logit logistic logistic logit logit is the inverse function of logistic function, vice versa kubostat207e ( 207 (e) / 47
4 kubostat207e p.4 binomial distribution logit link function MLE for β and β 2 R β β 2 binomial distribution logit link function y (A) f i =C x (B) > glm(cbind(y, N - y) ~ x + f, data = d, family = binomial)... Coefficients: (Intercept) x ft x yi (A) f i =C x i (B) f i =T x i kubostat207e ( 207 (e) / 47 kubostat207e ( 207 (e) / 47? 3. q logit(q) = log q = β + β 2 x + β 3 f + β 4 xf... in case that β 4 < 0, sometimes it predicts... y T C x kubostat207e ( 207 (e) / 47 kubostat207e ( 207 (e) / 47 in today s example no interaction effect! offset ^^I glm(y ~ x + f,...) glm(y ~ x + f + x:f,...) (A) (B) 4.! y T C T C offset x x little difference kubostat207e ( 207 (e) / 47 kubostat207e ( 207 (e) / 47
5 kubostat207e p.5! offset?! How to avoid data/data? offset / : ? ( ) avoidable data/data values probability : N y indices such as densities use statistical model with binomial distribution : specific leaf area (SLA) use offset term! described later offset! kubostat207e ( 207 (e) / 47 kubostat207e ( 207 (e) / 47! unfortunately, sometimes fractions appear... offset! offset example population densities in research plots offset : hard to avoid... outputs from some measuring machines light intensity index x light index {0., 0.2,,.0} 0 sometimes we have no choice but plot data/data values... glm(..., family = poisson) kubostat207e ( 207 (e) / 47 kubostat207e ( 207 (e) / 47! offset What? Differences in plot size?!?!! R data.frame: Area, offset light index number of plants x, y x A = /! glm() offset > load("d2.rdata") > head(d, 8) # 8 Area x y kubostat207e ( 207 (e) / 47 kubostat207e ( 207 (e) / 47
6 kubostat207e p.6! offset! offset vs A vs y > plot(d$x, d$y / d$area) > plot(d$area, d$y) d$y/d$area d$y d$x d$area kubostat207e ( 207 (e) / 47 A y kubostat207e ( 207 (e) / 47! offset! offset x () x > plot(d$area, d$y, cex = d$x * 2) d$y d$area? kubostat207e ( 207 (e) / 47 y x kubostat207e ( 207 (e) / 47! offset! offset = GLM!. i y i λ i : y i Pois(λ i ) 2. λ i A i x i λ i = A i exp(β + β 2 x i ) λ i = exp(β + β 2 x i + log(a i )) log(λ i ) = β + β 2 x i + log(a i ) log(a i ) offset ( β ) family: poisson, link "log" : y ~ x offset : log(area) z = β + β 2 x + log(area) a, b λ log(λ) = z λ = exp(z) = exp(β + β 2 x + log(area)) λ : kubostat207e ( 207 (e) / 47 kubostat207e ( 207 (e) / 47
7 kubostat207e p.7! offset! offset glm() R glm() > fit <- glm(y ~ x, family = poisson(link = "log"), data = d, offset = log(area)) > print(summary(fit)) Call: glm(formula = y ~ x, family = poisson(link = "log"), data = d, offset = log(area)) (......) Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) x e-06 kubostat207e ( 207 (e) / 47 kubostat207e ( 207 (e) / 47! offset Plotting the model prediction based on estimation! offset : glm() offset d$y x = 0.9 light environment x = 0. dark environment offset = exp( ) d$y d$area d$area solid lines prediction glm() dotted lines true model kubostat207e ( 207 (e) / 47 kubostat207e ( 207 (e) / 47! offset Improve your statisitcal model and remove data/data values! avoidable data/data values probability : N y indices such as densities use statistical model with binomial distribution : specific leaf area (SLA) use offset term! Improve your statistical model! offset! kubostat207e ( 207 (e) / 47! offset The next topic y i N y Hierarchical Bayesian Model (HBM)? kubostat207e ( 207 (e) / 47
8 kubostat207e p.8! offset! offset A preview of continuous probability distributions to construct Hierarchical Bayesian Models kubostat207e ( 207 (e) / 47? discrete probability distributions?? continuous probability distributions? kubostat207e ( 207 (e) / 47! offset! offset discrete probability distributions ( ) Poisson distribution λ changes the shape of distribution λ probability distribution, the core of statistical model Binomial distribution binomial distribution logit link function binomial distribution : N y Uniform distribution (continuous) an important device for HBM parameter: min (a) and max (b) p(y λ) = λy exp( λ) mean λ y! ( ) N p(y N, q) = q y ( q) N y y! ) N y ( N y q = 0. q = 0.8 q = 0.3 p(yi 8, q) yi f (x) b a kubostat207b ( 207 (b) / 42 kubostat207e ( 207 (e) / 47 0 a b x kubostat207e ( 207 (e) / 47 kubostat207e ( 207 (e) / 47! offset the normal or Gaussian distribution an important device for HBM parameter: mean (µ) and SD (s > 0) (mean) µ = 0 Standard Deviation (SD) s s =.0 s =.5 s = 3.0 x ( ) p(x s) = exp x2 2πs 2 2s 2 kubostat207e ( 207 (e) / 47
一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM
.. ( ) (2) GLMM [email protected] I http://goo.gl/rrhzey 2013 08 27 : 2013 08 27 08:29 kubostat2013ou2 (http://goo.gl/rrhzey) ( ) (2) 2013 08 27 1 / 74 I.1 N k.2 binomial distribution logit link function.3.4!
kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :
kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda
講義のーと : データ解析のための統計モデリング. 第3回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :
kubostat2017b p.1 agenda I 2017 (b) probabilit distribution and maimum likelihood estimation [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 1 : 2 3? 4 kubostat2017b (http://goo.gl/76c4i)
講義のーと : データ解析のための統計モデリング. 第5回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
/ 55 2 : : (GLM) 1. 1/23 ( )? GLM? (GLM ) 2.! 1/25 ( ) ffset (GLM )
2012 01 25 1/ 55 ( II) : (2012 1 ) 2 2 (GLM) 2012 01 25! [email protected] http://g.gl/76c4i 2012 01 25 2/ 55 2 : : (GLM) 1. 1/23 ( )? GLM? (GLM ) 2.! 1/25 ( ) ffset (GLM ) 2012 01 25 3/ 55 1. : 2.
講義のーと : データ解析のための統計モデリング. 第2回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i
kubostat2018d p.1 I 2018 (d) model selection and [email protected] http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)
kubo2017sep16a p.1 ( 1 ) : : :55 kubo ( ( 1 ) / 10
kubo2017sep16a p.1 ( 1 ) [email protected] 2017 09 16 : http://goo.gl/8je5wh : 2017 09 13 16:55 kubo (http://goo.gl/ufq2) ( 1 ) 2017 09 16 1 / 106 kubo (http://goo.gl/ufq2) ( 1 ) 2017 09 16 2 / 106
k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k
2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) [email protected] web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................
kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (http://goo.gl/76c4i
kubostat2017j p.1 2017 (j) Categorical Data Analsis [email protected] http://goo.gl/76c4i 2017 11 15 : 2017 11 08 17:11 kubostat2017j (http://goo.gl/76c4i) 2017 (j) 2017 11 15 1 / 63 A B C D E F G
kubostat2018a p.1 統計モデリング入門 2018 (a) The main language of this class is 生物多様性学特論 Japanese Sorry An overview: Statistical Modeling 観測されたパターンを説明する統計モデル
p.1 統計モデリング入門 2018 (a) The main language of this class is 生物多様性学特論 Japanese Sorry An overview: Statistical Modeling 観測されたパターンを説明する統計モデル 久保拓弥 (北海道大 環境科学) Why in Japanese? because even in Japanese, statistics
統計モデリング入門 2018 (a) 生物多様性学特論 An overview: Statistical Modeling 観測されたパターンを説明する統計モデル 久保拓弥 (北海道大 環境科学) 統計モデリング入門 2018a 1
統計モデリング入門 2018 (a) 生物多様性学特論 An overview: Statistical Modeling 観測されたパターンを説明する統計モデル 久保拓弥 (北海道大 環境科学) [email protected] 1/56 The main language of this class is Japanese Sorry Why in Japanese? because
12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71
2010-12-02 (2010 12 02 10 :51 ) 1/ 71 GCOE 2010-12-02 WinBUGS [email protected] http://goo.gl/bukrb 12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? 2010-12-02 (2010 12
1 15 R Part : website:
1 15 R Part 4 2017 7 24 4 : website: email: http://www3.u-toyama.ac.jp/kkarato/ [email protected] 1 2 2 3 2.1............................... 3 2.2 2................................. 4 2.3................................
,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i
Armitage.? SAS.2 µ, µ 2, µ 3 a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 µ, µ 2, µ 3 log a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 * 2 2. y t y y y Poisson y * ,, Poisson 3 3. t t y,, y n Nµ,
(2/24) : 1. R R R
R? http://hosho.ees.hokudai.ac.jp/ kubo/ce/2004/ : [email protected] (2/24) : 1. R 2. 3. R R (3/24)? 1. ( ) 2. ( I ) : (p ) : cf. (power) p? (4/24) p ( ) I p ( ) I? ( ) (5/24)? 0 2 4 6 8 A B A B (control)
/22 R MCMC R R MCMC? 3. Gibbs sampler : kubo/
2006-12-09 1/22 R MCMC R 1. 2. R MCMC? 3. Gibbs sampler : [email protected] http://hosho.ees.hokudai.ac.jp/ kubo/ 2006-12-09 2/22 : ( ) : : ( ) : (?) community ( ) 2006-12-09 3/22 :? 1. ( ) 2. ( )
DAA09
> summary(dat.lm1) Call: lm(formula = sales ~ price, data = dat) Residuals: Min 1Q Median 3Q Max -55.719-19.270 4.212 16.143 73.454 Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 237.1326
今回 次回の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ Danger!! (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか これは次回)
生態学の時系列データ解析でよく見る あぶない モデリング 久保拓弥 mailto:[email protected] statistical model for time-series data 2017-07-03 kubostat2017 (h) 1/59 今回 次回の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ Danger!! (危 1) 時系列データの
kubostat1g p. MCMC binomial distribution q MCMC : i N i y i p(y i q = ( Ni y i q y i (1 q N i y i, q {y i } q likelihood q L(q {y i } = i=1 p(y i q 1
kubostat1g p.1 1 (g Hierarchical Bayesian Model [email protected] http://goo.gl/7ci The development of linear models Hierarchical Bayesian Model Be more flexible Generalized Linear Mixed Model (GLMM
Use R
Use R! 2008/05/23( ) Index Introduction (GLM) ( ) R. Introduction R,, PLS,,, etc. 2. Correlation coefficient (Pearson s product moment correlation) r = Sxy Sxx Syy :, Sxy, Sxx= X, Syy Y 1.96 95% R cor(x,
tokei01.dvi
2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN
こんにちは由美子です
1 2 . sum Variable Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- var1 13.4923077.3545926.05 1.1 3 3 3 0.71 3 x 3 C 3 = 0.3579 2 1 0.71 2 x 0.29 x 3 C 2 = 0.4386
Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(
mwp-037 regress - regress 1. 1.1 1.2 1.3 2. 3. 4. 5. 1. regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( 2, 71) = 69.75 Model 1619.2877 2 809.643849 Prob > F = 0.0000 Residual
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,
kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht
kubo2015ngt6 p.1 2015 (6 MCMC [email protected], @KuboBook http://goo.gl/m8hsbm 1 ( 2 3 4 5 JAGS : 2015 05 18 16:48 kubo (http://goo.gl/m8hsbm 2015 (6 1 / 70 kubo (http://goo.gl/m8hsbm 2015 (6 2 /
分布
(normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability
第13回:交差項を含む回帰・弾力性の推定
13 2018 7 27 1 / 31 1. 2. 2 / 31 y i = β 0 + β X x i + β Z z i + β XZ x i z i + u i, E(u i x i, z i ) = 0, E(u i u j x i, z i ) = 0 (i j), V(u i x i, z i ) = σ 2, i = 1, 2,, n x i z i 1 3 / 31 y i = β
Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理
R 3 R 2017 Email: [email protected] October 23, 2017 (Toyama/NIHU) R ( 3 ) October 23, 2017 1 / 34 Agenda 1 2 3 4 R 5 RStudio (Toyama/NIHU) R ( 3 ) October 23, 2017 2 / 34 10/30 (Mon.) 12/11 (Mon.)
最小2乗法
2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )
1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.
1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 2 3 2 Conservative Depress. 3.1 2. SEM. 1. x SEM. Depress.
2009 5 1...1 2...3 2.1...3 2.2...3 3...10 3.1...10 3.1.1...10 3.1.2... 11 3.2...14 3.2.1...14 3.2.2...16 3.3...18 3.4...19 3.4.1...19 3.4.2...20 3.4.3...21 4...24 4.1...24 4.2...24 4.3 WinBUGS...25 4.4...28
¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó
2 2015 4 20 1 (4/13) : ruby 2 / 49 2 ( ) : gnuplot 3 / 49 1 1 2014 6 IIJ / 4 / 49 1 ( ) / 5 / 49 ( ) 6 / 49 (summary statistics) : (mean) (median) (mode) : (range) (variance) (standard deviation) 7 / 49
浜松医科大学紀要
On the Statistical Bias Found in the Horse Racing Data (1) Akio NODA Mathematics Abstract: The purpose of the present paper is to report what type of statistical bias the author has found in the horse
2 / 39
W707 [email protected] 1 / 39 2 / 39 1 2 3 3 / 39 q f (x; α) = α j B j (x). j=1 min α R n+2 n ( d (Y i f (X i ; α)) 2 2 ) 2 f (x; α) + λ dx 2 dx. i=1 f B j 4 / 39 : q f (x) = α j B j (x). j=1 : x
Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth
Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth and Foot Breadth Akiko Yamamoto Fukuoka Women's University,
X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I
(missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely
Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 :
Dirichlet Process : joint work with: Max Welling (UC Irvine), Yee Whye Teh (UCL, Gatsby) http://kenichi.kurihara.googlepages.com/miru_workshop.pdf 1 /40 MIRU2008 : Dirichlet process mixture Dirichlet process
第11回:線形回帰モデルのOLS推定
11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i
: (GLMM) (pseudo replication) ( ) ( ) & Markov Chain Monte Carlo (MCMC)? /30
PlotNet 6 ( ) 2006-01-19 TOEF(1998 2004), AM, growth6 DBH growth (mm) 1998 1999 2000 2001 2002 2003 2004 10 20 30 40 50 70 DBH (cm) 1. 2. - - : [email protected] http://hosho.ees.hokudai.ac.jp/ kubo/show/2006/plotnet/
PackageSoft/R-033U.tex (2018/March) R:
................................................................................ R: 2018 3 29................................................................................ R AI R https://cran.r-project.org/doc/contrib/manuals-jp/r-intro-170.jp.pdf
dvi
2017 65 2 217 234 2017 Covariate Balancing Propensity Score 1 2 2017 1 15 4 30 8 28 Covariate Balancing Propensity Score CBPS, Imai and Ratkovic, 2014 1 0 1 2 Covariate Balancing Propensity Score CBPS
Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).
Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation
03.Œk’ì
HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w
わが国企業による資金調達方法の選択問題
* [email protected] ** [email protected] *** [email protected] No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * [email protected] ** [email protected]
Presentation Title Goes Here
SAS 9: (reprise) SAS Institute Japan Copyright 2004, SAS Institute Inc. All rights reserved. Greetings, SAS 9 SAS 9.1.3 Copyright 2004, SAS Institute Inc. All rights reserved. 2 Informations of SAS 9 SAS
Clustering in Time and Periodicity of Strong Earthquakes in Tokyo Masami OKADA Kobe Marine Observatory (Received on March 30, 1977) The clustering in time and periodicity of earthquake occurrence are investigated
JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna
JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alternative approach using the Monte Carlo simulation to evaluate
( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp
( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics
149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :
Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]
dvi
2017 65 2 185 200 2017 1 2 2016 12 28 2017 5 17 5 24 PITCHf/x PITCHf/x PITCHf/x MLB 2014 PITCHf/x 1. 1 223 8522 3 14 1 2 223 8522 3 14 1 186 65 2 2017 PITCHf/x 1.1 PITCHf/x PITCHf/x SPORTVISION MLB 30
1 環境統計学ぷらす 第 5 回 一般 ( 化 ) 線形混合モデル 高木俊 2013/11/21
1 環境統計学ぷらす 第 5 回 一般 ( 化 ) 線形混合モデル 高木俊 [email protected] 2013/11/21 2 予定 第 1 回 : Rの基礎と仮説検定 第 2 回 : 分散分析と回帰 第 3 回 : 一般線形モデル 交互作用 第 4.1 回 : 一般化線形モデル 第 4.2 回 : モデル選択 (11/29?) 第 5 回 : 一般化線形混合モデル
: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99
218 6 219 6.11: (EQS) /EQUATIONS V1 = 30*V999 + 1F1 + E1; V2 = 25*V999 +.54*F1 + E2; V3 = 16*V999 + 1.46*F1 + E3; V4 = 10*V999 + 1F2 + E4; V5 = 19*V999 + 1.29*F2 + E5; V6 = 17*V999 + 2.22*F2 + E6; CALIS.
山形大学紀要
x t IID t = b b x t t x t t = b t- AR ARMA IID AR ARMAMA TAR ARCHGARCH TARThreshold Auto Regressive Model TARTongTongLim y y X t y Self Exciting Threshold Auto Regressive, SETAR SETARTAR TsayGewekeTerui
28 Horizontal angle correction using straight line detection in an equirectangular image
28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image
R John Fox R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R
R John Fox 2006 8 26 2008 8 28 1 R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R GUI R R R Console > ˆ 2 ˆ Fox(2005) [email protected]
2
2011 8 6 2011 5 7 [1] 1 2 i ii iii i 3 [2] 4 5 ii 6 7 iii 8 [3] 9 10 11 cf. Abstracts in English In terms of democracy, the patience and the kindness Tohoku people have shown will be dealt with as an exception.
こんにちは由美子です
Sample size power calculation Sample Size Estimation AZTPIAIDS AIDSAZT AIDSPI AIDSRNA AZTPr (S A ) = π A, PIPr (S B ) = π B AIDS (sampling)(inference) π A, π B π A - π B = 0.20 PI 20 20AZT, PI 10 6 8 HIV-RNA
駒田朋子.indd
2 2 44 6 6 6 6 2006 p. 5 2009 p. 6 49 12 2006 p. 6 2009 p. 9 2009 p. 6 2006 pp. 12 20 2005 2005 2 3 2005 An Integrated Approach to Intermediate Japanese 13 12 10 2005 8 p. 23 2005 2 50 p. 157 2 3 1 2010
‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í
Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I
JMP V4 による生存時間分析
V4 1 SAS 2000.11.18 4 ( ) (Survival Time) 1 (Event) Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time Start of Study End Start of Observation Censor
A B C B C ICT ICT ITC ICT
ICT Development of curriculum for improving of teachers ICT based on evaluation standards. Kazuhiko ISHIHARA Abstract Ministry of Education and Science announced Checklist of teacher s ICT in March,. All
% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr
1 1. 2014 6 2014 6 10 10% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti 1029 0.35 0.40 One-sample test of proportion x: Number of obs = 1029 Variable Mean Std.
,.,.,,.,,.,,,,,.,,,.,.,,,.,,.,,,,,,,.,,.,,.,,,,.,,,,,,.,,.,,.,.,,,,,,.,,,,.
J. of Population Problems. pp. * * * * *.,,,,.,.,.,,..,..,..,,..,., ,.,.,,.,,.,,,,,.,,,.,.,,,.,,.,,,,,,,.,,.,,.,,,,.,,,,,,.,,.,,.,.,,,,,,.,,,,. ,,,.,,,..,,.,.,,,,,..,,,.,,,,,,.,,.,,,.,.,.,.,,,.,,.,,.,.,,.,.
10 2000 11 11 48 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) CU-SeeMe NetMeeting Phoenix mini SeeMe Integrated Services Digital Network 64kbps 16kbps 128kbps 384kbps
Kyushu Communication Studies 第2号
Kyushu Communication Studies. 2004. 2:1-11 2004 How College Students Use and Perceive Pictographs in Cell Phone E-mail Messages IGARASHI Noriko (Niigata University of Health and Welfare) ITOI Emi (Bunkyo
& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro
TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato
