建築設備学_07(熱負荷計算).ppt

Size: px
Start display at page:

Download "建築設備学_07(熱負荷計算).ppt"

Transcription

1 p. p. p.7 p. q w q w q GT q IT =q IS +q IL () () q HT = q HS + q HL q ET =q ES +q EL 1

2 () q s [W]C p ρ m /h Δt 1000/00 [W]0.4 m /h Δt q L [W]γ γ [m /h] Δx[g/kg(DA)] 1000/00 [W]4 [m /h] Δx[g/kg(DA)] C p 1.00kJ/(kg ρ1.2[kg/m] C p ρ 1000/000.5 Δt[ γ γ 2500kJ/kg Δxg/kg(DA) γ γ ρ 1000/004 () [W][W/ [ 1.00 [W] 1.20 () q s [W]/ [W/] q L [W] [W/] (7) [W][W/ [ 1.00 () (1)(5)10 () [m /h] [m /(h)] q S [W].4 [m /h] Δt[ q L [W]4 [m /h] Δx[g/kg(DA)] (10) [m/h][m/h][m/h] [kg/h]ρ[kg/m ] [m /h] Δx[g/kg(DA)]/1000 w[kg/h] ρ[kg/m ] Δx[kg/kg(DA)] p. p.27 ETD VAV U+ + CAV VAV VAV VAV VAV VAV VAV VAV VAV 2

3 ,, [] [ [ 0.4or0.25

4 [g/kg(da)] 7.4. [g/kg(da)] [g/kg(da)] [] 5Δxg/kg(DA) (P.100) Δx F2 1.0 F R2 0.2 R W/(K) 0.4 R 0.0 1/ /2 x/λ (λ) (x) x[m]λ[w/(mk)] K1/R2.1[W/(K)] ETD [

5 (S) (W) 4 41 (E) 4 42 (N) / (a) 4 (b) 4 (c) 4 (d) RC F2 1.0 F R2 0.2 R W/(K) [ 0.4or0.25

6 (a) 4 (b) 4 (c) 4 (d) RC / (a) 4 (b) 4 (c) 4 (d) RC F2 1.0 F R2 0.2 R W/(K) (a) 4 (b) 4 (c) 4 (d) RC ETD[

7 7 (a) 4 (b) 4 (c) 4 (d) RC [ 0.4or (e) 20W/ (f) 0.2/ W/4W/ (g) 0W/ (h) 10 (i) 25m /(h) [ 0.4or0.25

8 2.7Δxg/kg(DA) [] 57. [g/kg(da)] 1. [g/kg(da)]. [g/kg(da)] () () () q s [W]C p ρ m /h Δt 1000/00 [W].4 m /h Δt q L [W]γ γ ρ [m /h] Δx[g/kg(DA)] 1000/00 [W]4 [m /h] Δx[g/kg(DA)] C p 1.00kJ/(kg ρ1.2[kg/m] C p ρ 1000/000.5 Δt[ γ γ 2.5kJ/kg Δxg/kg(DA) γ γ ρ 1000/004 () [W][W/ [ 1.00 [W] 1.20 () q s [W]/ [W/] q L [W] [W/] (7) [W][W/ [ 1.00 () (1)(5)10 () [m /h] [m /(h)] q S [W].4 [m /h] Δt[ q L [W]0. [m /h] Δx[g/kg(DA)] (10) [m/h][m/h][m/h] [kg/h]ρ[kg/m ] [m /h] Δx[g/kg(DA)]/1000 w[kg/h] ρ[kg/m ] Δx[kg/kg(DA)]

9 (a) W/ (b) / (a) W/ (b) [

() () () 200,000 160,000 120,000 80,000 40,000 3.3 144,688 43,867 3.1 162,624 52,254 170,934 171,246 172,183 3 2.8 2.6 57,805 61,108 65,035 3.5 3 2.5 2 1.5 1 0.5 0 0 2 7 12 17 22 10.1 12.7 17 22.3 73.4

More information

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J 26 1 22 10 1 2 3 4 5 6 30.0 cm 1.59 kg 110kPa, 42.1 C, 18.0m/s 107kPa c p =1.02kJ/kgK 278J/kgK 30.0 C, 250kPa (c p = 1.02kJ/kgK, R = 287J/kgK) 18.0 C m/s 16.9 C 320kPa 270 m/s C c p = 1.02kJ/kgK, R = 292J/kgK

More information

O1-1 O1-2 O1-3 O1-4 O3-1 O3-2 O3-3 O3-4 ES1-1 ES1-2 ES1-3 ES2-1 ES2-2 ES2-3 ES2-4 O2-1 O2-2 O2-3 O2-4 O2-5 O4-1 O4-2 O4-3 O4-4 O5-1 O5-2 O5-3 O5-4 O7-1 O7-2 O7-3 O7-4 O9-1 O9-2 O9-3 O9-4 O12-1 O12-2

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

B B 10 7 581 10 8 582 10 9 583 B B 10 11 585 10 12 586 B 10 10 584 B

B B 10 7 581 10 8 582 10 9 583 B B 10 11 585 10 12 586 B 10 10 584 B 10 1 575 10 12 586 B B 10 1 575 10 2 576 B B 10 4 578 10 5 579 10 3 577 B 10 6 580 B B B 10 7 581 10 8 582 10 9 583 B B 10 11 585 10 12 586 B 10 10 584 B 11 1 587 11 12 598 B B 11 1 587 11 2 588 11 3 589

More information

(資料2)第7回資料その1(ヒアリング概要)

(資料2)第7回資料その1(ヒアリング概要) 2 3 4 5 6 7 8 9 10 11 12 13 1 1 1 1 5 1 6 533 4 505 722 13 3325 475 1 2 3 13 10 31 1 1 1 (1) 1 (2) 2 (3) 3 (4) 4 5 5 6 7 8 8 8 9 11 11 12 13 14 15 16 19 (1) (2) (3) (1) (5 ) 1 (10 ) ( ) (2) 2 4 (3) 3 3,100

More information

-------------------------- ----------------------------------------------------- -------------------------------------------------------------- ----------------------------------------------------- --------------------------------------------------------------

More information

<4D F736F F D DEC8BC A95BD90AC E A982BA81698AB A B B4790DF90AB8EBE8AB FC89408A4F816A82CC93AE8CFC82C98AD682B782E9838C837C815B D

<4D F736F F D DEC8BC A95BD90AC E A982BA81698AB A B B4790DF90AB8EBE8AB FC89408A4F816A82CC93AE8CFC82C98AD682B782E9838C837C815B D 27 29 2 IT 1,234 1,447 2,130 1,200 3,043 4 3 75 75 70-74 -10 J00 J101 J110 J111 J118 J300 J302-304 J301 26,475,118 155,290,311 1,234 14,472,130 75,784,748 12,003,043 79,505,563 1 1.00% 0.62% 1.31% 9 12

More information

, , ,210 9, ,

, , ,210 9, , 2006 5 642 7 2,671 35 732 1,727 602 489 386 74 373 533 305 1,210 9,786 2004 1,024 43.7 16.4 2004 978.6 40.2 2003 1 2006 5 1997 1998 1999 774 3,492 11 2,603 35 843 5,118 1,686 476 358 2000 738 3,534 11

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

™…{,

™…{, 16:30-17:40 1-36 1-37 1-38 1-39 1-40 1-41 1-42 33 10:00-11:10 1-43 1-44 1-45 1-46 1-47 1-48 1-49 12:00-12:50 LS4 34 16:30-17:40 1-50 1-51 1-52 1-53 1-54 1-55 1-56 35 16:30-17:40 1-57 1-58 1-59 1-60 1-61

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

90 120.0 80 70 72.8 75.1 76.7 78.6 80.1 80.1 79.6 78.5 76.8 74.8 72.4 69.5 95.6% 66.4 100.0 60 80.0 50 40 60.0 30 48.3% 38.0% 40.0 20 10 10.4% 20.0 0 S60 H2 H7 H12 H17 H22 H27 H32 H37 H42 H47 H52 H57 0.0

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

3 ( 9 ) ( 13 ) ( ) 4 ( ) (3379 ) ( ) 2 ( ) 5 33 ( 3 ) ( ) 6 10 () 7 ( 4 ) ( ) ( ) 8 3() 2 ( ) 9 81

3 ( 9 ) ( 13 ) ( ) 4 ( ) (3379 ) ( ) 2 ( ) 5 33 ( 3 ) ( ) 6 10 () 7 ( 4 ) ( ) ( ) 8 3() 2 ( ) 9 81 1 ( 1 8 ) 2 ( 9 23 ) 3 ( 24 32 ) 4 ( 33 35 ) 1 9 3 28 3 () 1 (25201 ) 421 5 ()45 (25338 )(2540 )(1230 ) (89 ) () 2 () 3 ( ) 2 ( 1 ) 3 ( 2 ) 4 3 ( 9 ) ( 13 ) ( ) 4 ( 43100 ) (3379 ) ( ) 2 ( ) 5 33 ( 3 )

More information

,798 14, kg ,560 10, kg ,650 2, kg ,400 19, kg ,

,798 14, kg ,560 10, kg ,650 2, kg ,400 19, kg , / HS / TEL FAX 2007 1 18,000 9,540.00 0.53 kg 2007 1 99,000 38,518.00 0.39 kg 2007 1 30,200 11,778.00 0.39 kg 2007 1 15,000 5,565.00 0.37 kg 2007 1 21,000 7,400.00 0.35 kg 2007 1 40,000 20,579.00 0.51

More information

3 4 3 2 4 1 4 2 4 2 1 3 1 1 4 1 1 16,000 14,000 12,000 W) S) RC) CB 10,000 8,000 6,000 4,000 2,000 0 12,000 11,500 11,000 10,500 10,000 9,500 9,000 550 540 530 520 510 500 490 480 470 460 450 2008 2009

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

untitled

untitled 2010128 * *2164 2000.10 1993.11 2001.4 1997.4 2001.4 2002.5 2001.5 2001.4 2000.6 1. 2. 3. 4. 5. 1. *1986 0.3kg/m 3 2. Cl 1 2 *21945 *50 *3835mm *2111 -8 * *()35m6.5m56 2821715 (16) * 0.05mdd * -- 200911.55-60

More information

2003 12 11 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2003 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 [email protected] 2 1. 10/ 9 2. 10/16 3. 10/23 ( ) 4. 10/30 5. 11/ 6

More information

2004 12 2004 10 23 11 19 23 5 2004/11/18 2004/11/19 2004/11/20 2004/11/21 2004/11/22 2004/1/23 2004/1/24 2004 12 1 www.gsi.go.jp/bousai/niigatajisin/jyoukyouzu/5man1029-1500.pdf 2 2004 10 23 5 56 3717.3'N

More information

(2/1) T UU UI E EI EE EI DT PQ PM SP TDK P4 PE22 EE32x25x2 TV E 9 12 PQ8 1 UU9x129x31 UU9x129x31

(2/1) T UU UI E EI EE EI DT PQ PM SP TDK P4 PE22 EE32x25x2 TV E 9 12 PQ8 1 UU9x129x31 UU9x129x31 (1/1) (2/1) T UU UI E EI EE EI DT PQ PM SP TDK P4 PE22 EE32x25x2 TV E 9 12 PQ8 1 UU9x129x31 UU9x129x31 (3/1) T UU UI E EI EE EI DT PQ PM SP PE22 P4 µi [23 ] 18 23 Tc >2 >2 H=1194/m 1(mT)=1(G) 1(/m)=.12566(Oe)

More information

IA [email protected] Last updated: January,......................................................................................................................................................................................

More information

27 9 16 15 10 1 18 4 2 21 5 3 22 2 4 26 1 5 6 27 9 16 14 15 10 1 2 2 2 3 2 3.1................................... 2 3.2...................................... 4 3.3....................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

lecture

lecture 5 3 3. 9. 4. x, x. 4, f(x, ) :=x x + =4,x,.. 4 (, 3) (, 5) (3, 5), (4, 9) 95 9 (g) 4 6 8 (cm).9 3.8 6. 8. 9.9 Phsics 85 8 75 7 65 7 75 8 85 9 95 Mathematics = ax + b 6 3 (, 3) 3 ( a + b). f(a, b) ={3 (a

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

Cisco SMARTnet & SAS/ SASU CA J a n u a r y 3 1, V e r s i o n S M A R T n e t S A S / S A S U C i s c o S y s t e m s, I n c.

Cisco SMARTnet & SAS/ SASU CA J a n u a r y 3 1, V e r s i o n S M A R T n e t S A S / S A S U C i s c o S y s t e m s, I n c. Cisco SMARTnet & SAS/ SASU CA J a n u a r y 3 1, 2 0 0 8 V e r s i o n 1. 0 2 S M A R T n e t S A S / S A S U 2 0 0 6 C i s c o S y s t e m s, I n c. A l l r i g h t s r e s e r v e d. C i s c o P u b

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

- 1 - - 2 - 320 421 928 1115 12 8 116 124 2 7 4 5 428 515 530 624 921 1115 1-3 - 100 250-4 - - 5 - - 6 - - 7 - - 8 - - 9 - & & - 11 - - 12 - GT GT - 13 - GT - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - -

More information

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2005 1 1991 1996 5 i 1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2 13 *3 *4 200 1 14 2 250m :64.3km 457mm :76.4km 200 1 548mm 16 9 12 589 13 8 50m

More information

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2 1.500 m X Y 0.200 m 0.200 m 0.200 m 0.200 m 0.200 m 0.000 m 1.200 m m 0.150 m 0.150 m m m 2 24.5 N/ 3 18.0 N/ 3 30.0 0.60 ( ) qa 50.79 N/ 2 0.0 N/ 2 20.000 20.000 15.000 15.000 X(m) Y(m) (kn/m 2 ) 10.000

More information

ICT 5,293 (2012 3 31 ) http://www.nttcom.co.jp/employ/recruit/ 4. IT IT / / IT / / . BB http://recruit.softbank.jp/graduate/ 3-7-1 28 29 URL.http://www.nliro.or.jp 2014 . ( ) 10 ( ) < > / < > . ( )

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

Chapter9 9 LDPC sum-product LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n

Chapter9 9 LDPC sum-product LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n 9 LDPC sum-product 9.1 9.2 LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n 0 n)) ( ) 0 (N(0 c) > N(1 c)) PROD(c 1, c 2,, c n ) := 1 (N(0

More information