色の類似性に基づいた形状特徴量CS-HOGの提案

Size: px
Start display at page:

Download "色の類似性に基づいた形状特徴量CS-HOGの提案"

Transcription

1 IS3-04 第 18 回 画 像 センシングシンポジウム, 横 浜, 2012 年 6 月 CS-HOG CS-HOG : Color Similarity-based HOG feature Yuhi Goto, Yuji Yamauchi, Hironobu Fujiyoshi Chubu University [email protected] Abstract HOG Color Self-Similarity(CSS) CSS CSS HOG CS-HOG CS-HOG HOG CS-HOG HOG CSS % HOG CSS 4.2% 1 Intelligent Transport System(ITS: ) Histograms of Oriented Gradients(HOG) [1] Edge Orientation Histograms(EOH) [2] Edgelet [3] HOG 3 Color Self-Similarity(CSS) [4] CSS Color Similarity-based HOG(CS- HOG) CS-HOG CS-HOG HOG CS-HOG HOG CS-HOG IS3-04-1

2 1 HOG 2 CSS CS-HOG 2 Dalal HOG HOG Walk CSS CSS CS-HOG HOG CSS 2.1 HOG Histograms of Oriented Gradients(HOG) [1] 1 L(x, y) m θ (1) (3) m(x, y) = L x (x, y) 2 + L y (x, y) 2 (1) { θ(x, y) = tan 1 L y(x, y) L x (x, y) L x (x, y) = L(x + 1, y) L(x 1, y) L y (x, y) = L(x, y + 1) L(x, y 1) (2) (3) θ m θ (4) c (M M ) v c ={v c (1), v c (2),...v c (N hog )} v c (f(θ)) = m(x, y)δ[θ, f(θ)] (4) x y f(θ) θ N hog δ[ ] 1 0 c (5) c v c (K K ) v c (n) v c (n) = (ϵ = 1) (5) b v c (k) 2 + ϵ k=1 b (K K N hog ) ϵ 0 1 v c v c ={v c (1), v c (2),...v c (b)} {(64/M) (K 1)} {(128/M) (K 1)} HOG M = 8 K = 2 N hog = = 3, CSS Color Self-Similarity(CSS) [4] 2 IS3-04-2

3 4 HOG CSS 3 CSS c (M M ) p c ={p c (H, 1), p c (H, 2),..., p c (H, N css ),..., p c (V, N css )} (6) p c HSV {H S V } I c (x, y, H) I c (x, y, S) I c (x, y, V ) p c (r, n) = x=1 y=1 δ[f(i c (x, y, r)), n] (6) r HSV (r=h, S, V ) n (n=1, 2,..., N css ) f(i c (x, y, r)) I c (x, y, r) c i c j p ci,p cj s(c i, c j ) (7) s(c i, c j ) = N css r {H,S,V } n=1 (p ci (r, n) p cj (r, n)) 2 (7) Bhattacharyya [4] c (64/M) (128/M) CSS M = C 2 = 8, 128 CSS 3 ( ) CSS CSS 3 CSS ( ) ( ) CSS 2.3 HOG CSS HOG CSS HOG CSS 4 HOG 4 HOG CSS HOG IS3-04-3

4 5 CS-HOG CSS CSS HOG CSS CS-HOG 3 : CS-HOG Color Similarity-based HOG(CS-HOG) CS-HOG HOG CS-HOG 5 CS-HOG 3.1 CS-HOG ( ) 6 c (M M ) RGB {R G B } I c (x, y, R) I c (x, y, G) I c (x, y, B) c I (c, r) (8) I (c, r) = 1 M M x y I c (x, y, r) (8) r RGB (r=r, G, B) c I (c, r) I(x, y, r) CSS (9) s (x, y, c ) s (x, y, c ) = (I (c, r) I(x, y, r)) 2 (9) r {R,G,B} s (x, y, c ) c c (64/M) (128/M) M = ( c IS3-04-4

5 8 HSV 9 CS-HOG ) 7(a) 1 7(a) CSS c ( 45) c ( 89) 7(b) 2,416 7(b) CS-HOG HSV [4] HSV CSS HSV CS-HOG HSV HSV 8 H( ) S( ) V ( ) RGB HSV HSV {H, S, V } (10) {u, r, V } u = S cos H r = S sin H V = V (10) RGB HSV CS-HOG HSV {u, r, V } 3.2 CS-HOG 9 c HOG c c s (x, y, c ) m θ (11) (13) m (x, y, c ) = s x(x, y, c ) 2 + s y(x, y, c ) 2 (11) { θ (x, y, c ) = tan 1 s x(x, y, c ) s y(x, y, c ) s x(x, y, c ) = s (x + 1, y, c ) s (x 1, y, c ) s y(x, y, c ) = s (x, y + 1, c ) s (x, y, 1, c ) (12) (13) HOG θ 180 θ 180 CS- HOG c θ c m θ (14) c (M M ) V c (c )={v c(1, c ), v c(2, c ),...v c(n cshog, c )} v c(f(θ ), c ) = x y m (x, y, c )δ[θ, f(θ )] (14) f(θ ) θ N cshog CS-HOG V c (c ) c M = 8 1 c 128 V c (c ) (15) IS3-04-5

6 11 INRIA Person Dataset 10 HOG CS-HOG c HOG V c (c ) (K K ) v c(n, c v ) = c(n, c ) b v c(k, c ) 2 + ϵ k=1 (ϵ = 1) (15) b (K K N cshog ) V c (c ) V c (c )={v c(1, c ), v c(2, c ),...v c (b, c )} CS- HOG ( (11) (15)) c V c (c ) CS-HOG M = 8 K = 2 N cshog = c = 967, 680 HOG HOG CS-HOG HOG CS-HOG HOG CS-HOG HOG ( ) CS-HOG HOG 10 HOG CS-HOG CS-HOG 4 CS-HOG 4.1 INRIA Person Dataset[1] 11 INRIA Person Dataset ( ) ( ) 2,416 13,161 1, IS3-04-6

7 第18回画像センシングシンポジウム, 横浜, 2012年6月 図 12 DET カーブ サンプル 評価サンプルは ピクセルの大きさ に正規化して使用する 4.2 実験概要 CS-HOG 特徴量の有効性を示すために 以下の局所 特徴量を用いて識別精度を比較する HOG 特徴量 (HOG) CSS 特徴量 (CSS) HOG 特徴量と CSS 特徴量の併用 (HOG+CSS) CS-HOG 特徴量 : RGB 表色系 (CS-HOG : RGB) CS-HOG 特徴量 : HSV 表色系 (CS-HOG : HSV) CS-HOG 特徴量は 色の類似度に RGB 表色系を利用し たものと HSV 表色系を利用したものを用いる HOG 図 13 特徴量と CSS 特徴量の併用は 二つの特徴次元を同 時に使用して識別器を学習したものを示している 各 特徴量のパラメータは セルサイズ M = 8 ピクセル ブロックサイズ K = 2 セル 量子化数は N hog = 9 N css = 3 N cshog = 18 とした CS-HOG 特徴量と比 較手法は Real AdaBoost[5] を利用して識別器を学習す る また Real AdaBoost により学習する弱識別器は 識別器の出力値 る CS-HOG : HSV は HOG CSS と比較して約 % 識別精度が向上しており CS-HOG : RGB と比 較して約 16.8% 識別精度が向上している これにより CS-HOG 特徴量は HSV 表色系を利用して類似度計算 をすることで 有効な特徴表現を可能にしたことが確 500 個で統一して評価実験を行う 評価には Detection Error Trade-off(DET) カーブを用いる DET カーブは 認できる また CS-HOG : HSV は HOG+CSS と比 横軸に誤検出率 縦軸に未検出率を表しており 原点 とから 単一の特徴量で色の類似性と形状特徴を効果 に近いほど高精度であることを表す 的に表現できたと考えられる 4.3 較したとき 約 4.2% 識別精度が向上している このこ CS-HOG 特徴量と HOG 特徴量 CSS 特徴量で識別 実験結果 器の出力値にどのような変化があるかを確認する 図 13 実験結果の DET カーブを図 12 に示す DET カーブ に評価サンプルにおける識別器の出力値の分布を示す より 誤検出率 0.05% のとき CS-HOG : RGB は HOG 図 13 は 横軸に CS-HOG 特徴量の識別器の出力値 縦 CSS と比較して約 % 識別精度が向上してい 軸に HOG 特徴量及び CSS 特徴量の識別器の出力値を IS3-04-7

8 第18回画像センシングシンポジウム, 横浜, 2012年6月 図 14 示し 対角線上にサンプルが分布すると同一の出力値 人検出例 参考文献 であることを表す 識別器の出力値の分布からわかる ように CS-HOG 特徴量は HOG 特徴量及び CSS 特徴 量と比較して ポジティブサンプルの約 % [1] N. Dalal, and B. Triggs, Histograms of Oriented Gradients for Human Detection, Computer Vision and Pattern Recognition, vol.1, pp , が出力値が高い値となっている また ネガティブサン プルの約 % が出力値が低い値となっている これにより CS-HOG 特徴量は HOG 特徴量 CSS 特 徴量と比較して 各サンプルがより正解クラスらしい 出力となることが確認できた よって 図 14 に示す人 検出例からもわかるように CS-HOG 特徴量は色の類 似度に基づいて形状を観測し 物体の特徴を効果的に [2] K. Levi, and Y. Weiss, Learning Object Detection from a Small Number of Examples: the Importance of Good Features, Computer Vision and Pattern Recognition, vol.2, pp.53-60, [3] B. Wu, and R. Nevatia, Detection of Multiple, Partially Occluded Humans in a Single Image by Bayesian Combination of Edgelet Part Detectors, International Conferenceon Computer Vi- 捉えることで高精度な物体検出を実現した 5 おわりに 本研究では色の類似性に基づいて形状を観測する CS- sion, vol.1, pp.90-97, [4] S. Walk, and N. Majer, New Features and HOG 特徴量を提案した CS-HOG 特徴量は カラー画 像の色の類似性に基づいて形状を算出することで HOG Insights for Pedestrian Detection, Computer Vision and Pattern Recognition, pp , 特徴量に比べて柔軟に物体形状を捉えることを可能に した 人検出における評価実験により CS-HOG 特徴 量は従来の局所特徴量と比較して 物体の特徴を効果 [5] R. E. Schapire, and Y. Singer, Improved Boosting Algorithms Using Confidence-rated Predic- 的に表現し高精度な検出を実現した 今後は 自動車 などの人以外の検出対象への CS-HOG 特徴量の有効性 を調査する予定である IS tions, Machine Learning, vol.37, no.3, pp , 1999.

untitled

untitled IS2-26 第 19 回 画 像 センシングシンポジウム, 横 浜,2013 年 6 月 SVM E-mail: [email protected] Abstract SVM SVM SVM SVM HOG B-HOG HOG SVM 6.1% 17 1 Intelligent Transport System(ITS: ) 2005 Dalal HOG SVM[1] [2] HOG

More information

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

(MIRU2008) HOG Histograms of Oriented Gradients (HOG) (MIRU2008) 2008 7 HOG - - E-mail: [email protected], {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human

More information

,,.,.,,.,.,.,.,,.,..,,,, i

,,.,.,,.,.,.,.,,.,..,,,, i 22 A person recognition using color information 1110372 2011 2 13 ,,.,.,,.,.,.,.,,.,..,,,, i Abstract A person recognition using color information Tatsumo HOJI Recently, for the purpose of collection of

More information

1 2 (1) Ω (2) (1) 4 AdaBoost Shapelet [5] (2) AdaBoost Joint Haar-like [6] low-level 2 Real AdaBoost 1(b) Joint Joint [7] 2.1 Joint 2 Joint 2 Joint 2

1 2 (1) Ω (2) (1) 4 AdaBoost Shapelet [5] (2) AdaBoost Joint Haar-like [6] low-level 2 Real AdaBoost 1(b) Joint Joint [7] 2.1 Joint 2 Joint 2 Joint 2 - - 1,a) 1,b) 1,c) 2,d) Joint MILBoost 1. [1], [2] [3] *1 Histograms of Oriented Gradients(HOG) [4] Support Vector Machine(SVM) AdaBoost 1 Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501,

More information

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3) (MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost

More information

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution Convolutional Neural Network 2014 3 A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolutional Neural Network Fukui Hiroshi 1940 1980 [1] 90 3

More information

% 2 3 [1] Semantic Texton Forests STFs [1] ( ) STFs STFs ColorSelf-Simlarity CSS [2] ii

% 2 3 [1] Semantic Texton Forests STFs [1] ( ) STFs STFs ColorSelf-Simlarity CSS [2] ii 2012 3 A Graduation Thesis of College of Engineering, Chubu University High Accurate Semantic Segmentation Using Re-labeling Besed on Color Self Similarity Yuko KAKIMI 2400 90% 2 3 [1] Semantic Texton

More information

HOG HOG LBP LBP 4) LBP LBP Wang LBP HOG LBP 5) LBP LBP 1 r n 1 n, 1

HOG HOG LBP LBP 4) LBP LBP Wang LBP HOG LBP 5) LBP LBP 1 r n 1 n, 1 1 1 1 Shwartz Histgrams of Oriented Gradients HOG PLS PLS KPLS INRIA PLS KPLS KPLS PLS Pedestrian Detection Using Kernel Partial Least Squares Analysis Takashi Abe, 1 Takayuki Okatani 1 and Kouichiro Deguchi

More information

SICE東北支部研究集会資料(2013年)

SICE東北支部研究集会資料(2013年) 280 (2013.5.29) 280-4 SURF A Study of SURF Algorithm using Edge Image and Color Information Yoshihiro Sasaki, Syunichi Konno, Yoshitaka Tsunekawa * *Iwate University : SURF (Speeded Up Robust Features)

More information

1 (PCA) 3 2 P.Viola 2) Viola AdaBoost 1 Viola OpenCV 3) Web OpenCV T.L.Berg PCA kpca LDA k-means 4) Berg 95% Berg Web k-means k-means

1 (PCA) 3 2 P.Viola 2) Viola AdaBoost 1 Viola OpenCV 3) Web OpenCV T.L.Berg PCA kpca LDA k-means 4) Berg 95% Berg Web k-means k-means Web, Web k-means 62% Associating Faces and Names in Web Photo News Akio Kitahara and Keiji Yanai We propose a system which extracts faces and person names from news articles with photographs on the Web

More information

[1] SBS [2] SBS Random Forests[3] Random Forests ii

[1] SBS [2] SBS Random Forests[3] Random Forests ii Random Forests 2013 3 A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki [1] SBS

More information

2 4 2 3 4 3 [12] 2 3 4 5 1 1 [5, 6, 7] [5, 6] [7] 1 [8] 1 1 [9] 1 [10, 11] [10] [11] 1 [13, 14] [13] [14] [13, 14] [10, 11, 13, 14] 1 [12]

2 4 2 3 4 3 [12] 2 3 4 5 1 1 [5, 6, 7] [5, 6] [7] 1 [8] 1 1 [9] 1 [10, 11] [10] [11] 1 [13, 14] [13] [14] [13, 14] [10, 11, 13, 14] 1 [12] Walking Person Recognition by Matching Video Fragments Masashi Nishiyama, Mayumi Yuasa, Tomokazu Wakasugi, Tomoyuki Shibata, Osamu Yamaguchi ( ), Corporate Research and Development Center, TOSHIBA Corporation

More information

LBP 2 LBP 2. 2 Local Binary Pattern Local Binary pattern(lbp) [6] R

LBP 2 LBP 2. 2 Local Binary Pattern Local Binary pattern(lbp) [6] R DEIM Forum 24 F5-4 Local Binary Pattern 6 84 E-mail: {tera,kida}@ist.hokudai.ac.jp Local Binary Pattern (LBP) LBP 3 3 LBP 5 5 5 LBP improved LBP uniform LBP.. Local Binary Pattern, Gradient Local Auto-Correlations,,,,

More information

100326_セミナー資料_物体認識.pptx

100326_セミナー資料_物体認識.pptx !! "#! "#"! "#$! "#%! $#! $#"! $#$! $#%! $#&! % 物体認識 検出 について '()*++,-./#,0121#3)+,04.50+6789+":; '()*++)010;216,#3)+9,+0;.?>65.6#'@4A 物体検出は簡単か 多様な変動要素が存在して難しい 変動要素に対応する特徴量 学習手法がキー カメラの角度 姿勢

More information

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,

More information

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C) (MIRU2011) 2011 7 890 0065 1 21 40 105-6691 1 1 1 731 3194 3 4 1 338 8570 255 346 8524 1836 1 E-mail: {fukumoto,kawasaki}@ibe.kagoshima-u.ac.jp, [email protected], [email protected],

More information

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z + 3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows

More information

GID Haar-like Mean-Shift Multi-Viewpoint Human Tracking Based on Face Detection Using Haar-like Features and Mean-Shift Yu Ito (Shizuoka Univers

GID Haar-like Mean-Shift Multi-Viewpoint Human Tracking Based on Face Detection Using Haar-like Features and Mean-Shift Yu Ito (Shizuoka Univers GID-08-6 Haar-like Mean-Shift Multi-Viewpoint Human Tracking Based on Face Detection Using Haar-like Features and Mean-Shift Yu Ito (Shizuoka University), Atsushi Yamashita, Toru Kaneko (Shizuoka University)

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

3 Abstract CAD 3-D ( ) 4 Spin Image Correspondence Grouping 46.1% 17.4% 97.6% ICP [0.6mm/point] 1 CAD [1][2]

3   Abstract CAD 3-D ( ) 4 Spin Image Correspondence Grouping 46.1% 17.4% 97.6% ICP [0.6mm/point] 1 CAD [1][2] 3 E-mail: {akizuki}@isl.sist.chukyo-u.ac.jp Abstract CAD 3-D ( ) 4 Spin Image Correspondence Grouping 46.1% 17.4% 97.6% ICP [0.6mm/point] 1 CAD [1][2] Shape Index [3] [4][5] 3 SHOT [6] [7] Point Pair Feature

More information

画像類似度測定の初歩的な手法の検証

画像類似度測定の初歩的な手法の検証 画像類似度測定の初歩的な手法の検証 島根大学総合理工学部数理 情報システム学科 計算機科学講座田中研究室 S539 森瀧昌志 1 目次 第 1 章序論第 章画像間類似度測定の初歩的な手法について.1 A. 画素値の平均を用いる手法.. 画素値のヒストグラムを用いる手法.3 C. 相関係数を用いる手法.4 D. 解像度を合わせる手法.5 E. 振れ幅のヒストグラムを用いる手法.6 F. 周波数ごとの振れ幅を比較する手法第

More information

1 AdaBoost [8], [10] 2001 Viola Jones [8], [10] [11], [12] 2 3 4 5 6 7 2. 2. 1 2 2. 1. 1 1(a) 2. 1. 2 1(b) 2

1 AdaBoost [8], [10] 2001 Viola Jones [8], [10] [11], [12] 2 3 4 5 6 7 2. 2. 1 2 2. 1. 1 1(a) 2. 1. 2 1(b) 2 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. [], 487 8501 1200 525 0025 2 2-1 E-mail: [email protected], [email protected], [email protected]

More information

Microsoft PowerPoint - pr_12_template-bs.pptx

Microsoft PowerPoint - pr_12_template-bs.pptx 12 回パターン検出と画像特徴 テンプレートマッチング 領域分割 画像特徴 テンプレート マッチング 1 テンプレートマッチング ( 図形 画像などの ) 型照合 Template Matching テンプレートと呼ばれる小さな一部の画像領域と同じパターンが画像全体の中に存在するかどうかを調べる方法 画像内にある対象物体の位置検出 物体数のカウント 物体移動の検出などに使われる テンプレートマッチングの計算

More information

BDH Cao BDH BDH Cao Cao Cao BDH ()*$ +,-+.)*$!%&'$!"#$ 2. 1 Weng [4] Metric Learning Weng DB DB Yang [5] John [6] Sparse Coding sparse coding DB [7] K

BDH Cao BDH BDH Cao Cao Cao BDH ()*$ +,-+.)*$!%&'$!#$ 2. 1 Weng [4] Metric Learning Weng DB DB Yang [5] John [6] Sparse Coding sparse coding DB [7] K Bucket Distance Hashing Metric Learning 1,a) 1,b) 1,c) 1,d) (DB) [1] DB Cao [2] Cao Metric Learning Cao Cao Cao Cao Cao 100 DB 10% 1. m DB DB DB 1 599 8531 1 1 Graduate School of Engineering, Osaka Prefecture

More information

光学

光学 Range Image Sensors Using Active Stereo Methods Kazunori UMEDA and Kenji TERABAYASHI Active stereo methods, which include the traditional light-section method and the talked-about Kinect sensor, are typical

More information

平成 28 年 6 月 3 日 報道機関各位 東京工業大学広報センター長 岡田 清 カラー画像と近赤外線画像を同時に撮影可能なイメージングシステムを開発 - 次世代画像センシングに向けオリンパスと共同開発 - 要点 可視光と近赤外光を同時に撮像可能な撮像素子の開発 撮像データをリアルタイムで処理する

平成 28 年 6 月 3 日 報道機関各位 東京工業大学広報センター長 岡田 清 カラー画像と近赤外線画像を同時に撮影可能なイメージングシステムを開発 - 次世代画像センシングに向けオリンパスと共同開発 - 要点 可視光と近赤外光を同時に撮像可能な撮像素子の開発 撮像データをリアルタイムで処理する 平成 28 年 6 月 3 日 報道機関各位 東京工業大学広報センター長 岡田 清 カラー画像と近赤外線画像を同時に撮影可能なイメージングシステムを開発 - 次世代画像センシングに向けオリンパスと共同開発 - 要点 可視光と近赤外光を同時に撮像可能な撮像素子の開発 撮像データをリアルタイムで処理する画像処理システムの開発 カラー画像と近赤外線画像を同時に撮影可能なプロトタイプシステムの開発 概要 国立大学法人東京工業大学工学院システム制御系の奥富正敏教授らと

More information

IPSJ-CVIM

IPSJ-CVIM STHOG 1 1 1 STHOG STHOG Pedestrian Matching across Cameras using STHOG Features Ryo Kawai, 1 Yasushi Makihara 1 and Yasushi Yagi 1 In this paper, we propose a method of pedestrian matching across CCTV

More information

21 e-learning Development of Real-time Learner Detection System for e-learning

21 e-learning Development of Real-time Learner Detection System for e-learning 21 e-learning Development of Real-time Learner Detection System for e-learning 1100349 2010 3 1 e-learning WBT (Web Based training) e-learning LMS (Learning Management System) LMS WBT e-learning e-learning

More information

28 TCG SURF Card recognition using SURF in TCG play video

28 TCG SURF Card recognition using SURF in TCG play video 28 TCG SURF Card recognition using SURF in TCG play video 1170374 2017 3 2 TCG SURF TCG TCG OCG SURF Bof 20 20 30 10 1 SURF Bag of features i Abstract Card recognition using SURF in TCG play video Haruka

More information

) 1 2 2[m] % H W T (x, y) I D(x, y) d d = 1 [T (p, q) I D(x + p, y + q)] HW 2 (1) p q t 3 (X t,y t,z t) x t [ ] T x t

) 1 2 2[m] % H W T (x, y) I D(x, y) d d = 1 [T (p, q) I D(x + p, y + q)] HW 2 (1) p q t 3 (X t,y t,z t) x t [ ] T x t 1 1 Multi-Person Tracking for a Mobile Robot using Overlapping Silhouette Templates Junji Satake 1 and Jun Miura 1 This paper describes a stereo-based person tracking method for a person following robot.

More information

(fnirs: Functional Near-Infrared Spectroscopy) [3] fnirs (oxyhb) Bulling [4] Kunze [5] [6] 2. 2 [7] [8] fnirs 3. 1 fnirs fnirs fnirs 1

(fnirs: Functional Near-Infrared Spectroscopy) [3] fnirs (oxyhb) Bulling [4] Kunze [5] [6] 2. 2 [7] [8] fnirs 3. 1 fnirs fnirs fnirs 1 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. fnirs Kai Kunze 599 8531 1 1 223 8526 4 1 1 E-mail: [email protected], [email protected],

More information

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s 1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene

More information

基幹理工学部情報理工学科 Bachelor s Thesis 卒業論文 Title 論文題目 Deformable Part Model を用いたコミック画像からの顔検出 Face Detection for Comic Images with Deformable Part Model Stude

基幹理工学部情報理工学科 Bachelor s Thesis 卒業論文 Title 論文題目 Deformable Part Model を用いたコミック画像からの顔検出 Face Detection for Comic Images with Deformable Part Model Stude 提出日 2014 年 2 月 6 日 Summary of Bachelor s Thesis 2014 年 3 月修了卒業論文概要書 Name 氏名柳澤秀彰 題目 Title ( 日本語の場合は英文題目も記入 ) 日本語 Japanese ID number 学籍番号 1W100499-7 Supervisor 指導教員渡辺祐 印 Deformable Part Model を用いたコミック画像からの顔検出

More information

カメラレディ原稿

カメラレディ原稿 IS2-A2 カメラを回転させた時の特徴点軌跡を用いた魚眼カメラの内部パラメータ推定 - モデルと評価関数の変更による改良 - 田中祐輝, 増山岳人, 梅田和昇 Yuki TANAKA, Gakuto MASUYAMA, Kazunori UMEDA : 中央大学大学院理工学研究科,[email protected] 中央大学理工学部,{masuyama, umeda}@mech.chuo-u.ac.jp

More information

, ( ξ/) ξ(x), ( ξ/) x = x 1,. ξ ξ ( ξ, u) = 0. M LS ξ ξ (6) u,, u M LS 3).,.. ξ x ξ = ξ(x),, 1. J = (ξ ξ, V [ξ ] 1 (ξ ξ )) (7) ( ξ, u) = 0, = 1,..., N

, ( ξ/) ξ(x), ( ξ/) x = x 1,. ξ ξ ( ξ, u) = 0. M LS ξ ξ (6) u,, u M LS 3).,.. ξ x ξ = ξ(x),, 1. J = (ξ ξ, V [ξ ] 1 (ξ ξ )) (7) ( ξ, u) = 0, = 1,..., N 1,,.,.. Maximum Likelihood Estimation for Geometric Fitting Yasuyuki Sugaya 1 Geometric fitting, the problem which estimates a geometric model of a scene from extracted image data, is one of the most fundamental

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa 3,a) 3 3 ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransac. DB [] [2] 3 DB Web Web DB Web NTT NTT Media Intelligence Laboratories, - Hikarinooka Yokosuka-Shi, Kanagawa 239-0847 Japan a) [email protected]

More information

SSII原稿v5.doc

SSII原稿v5.doc ステレオ計測と多項式曲面表現を利用した歪曲形状書籍画像の歪み補正 Restoration of Distorted Document Images by Using Stereo Measurement and Polynomial Surface Representation 田中友 鈴木優輔 山下淳 金子透 uu Tanaka, usuke Suzuki, Atushi amashita and

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

WISS 2018 [2 4] [5,6] Query-by-Dancing Query-by- Dancing Cao [1] OpenPose 2 Ghias [7] Query by humming Chen [8] Query by rhythm Jang [9] Query-by-tapp

WISS 2018 [2 4] [5,6] Query-by-Dancing Query-by- Dancing Cao [1] OpenPose 2 Ghias [7] Query by humming Chen [8] Query by rhythm Jang [9] Query-by-tapp Query-by-Dancing: WISS 2018. Query-by-Dancing Query-by-Dancing 1 OpenPose [1] Copyright is held by the author(s). DJ DJ DJ WISS 2018 [2 4] [5,6] Query-by-Dancing Query-by- Dancing Cao [1] OpenPose 2 Ghias

More information

スライド 1

スライド 1 知能制御システム学 画像追跡 (1) 特徴点の検出と追跡 東北大学大学院情報科学研究科鏡慎吾 swk(at)ic.is.tohoku.ac.jp 2008.07.07 今日の内容 前回までの基本的な画像処理の例を踏まえて, ビジュアルサーボシステムの構成要素となる画像追跡の代表的手法を概説する 画像上の ある点 の追跡 オプティカルフローの拘束式 追跡しやすい点 (Harris オペレータ ) Lucas-Kanade

More information

(VKIR) VKIR VKIR DCT (R) (G) (B) Ward DCT i

(VKIR) VKIR VKIR DCT (R) (G) (B) Ward DCT i 24 Region-Based Image Retrieval using Color Histogram Feature 1130340 2013 3 1 (VKIR) VKIR VKIR DCT (R) (G) (B) 64 64 Ward 20 1 20 1 20. 5 10 2 DCT i Abstract Region-Based Image Retrieval using Color Histogram

More information

OpenCV IS Report No Report Medical Information System Labratry

OpenCV IS Report No Report Medical Information System Labratry OpenCV 2014 8 25 IS Report No. 2014090201 Report Medical Information System Labratry Abstract OpenCV OpenCV 1............................ 2 1.1 OpenCV.......................... 2 1.2......................

More information

IPSJ SIG Technical Report Vol.2013-CVIM-187 No /5/30 1,a) 1,b), 1,,,,,,, (DNN),,,, 2 (CNN),, 1.,,,,,,,,,,,,,,,,,, [1], [6], [7], [12], [13]., [

IPSJ SIG Technical Report Vol.2013-CVIM-187 No /5/30 1,a) 1,b), 1,,,,,,, (DNN),,,, 2 (CNN),, 1.,,,,,,,,,,,,,,,,,, [1], [6], [7], [12], [13]., [ ,a),b),,,,,,,, (DNN),,,, (CNN),,.,,,,,,,,,,,,,,,,,, [], [6], [7], [], [3]., [8], [0], [7],,,, Tohoku University a) [email protected] b) [email protected], [3],, (DNN), DNN, [3],

More information

06佐々木雅哉_4C.indd

06佐々木雅哉_4C.indd 3 2 3 2 4 5 56 57 3 2013 9 2012 16 19 62.2 17 2013 7 170 77 170 131 58 9 10 59 3 2 10 15 F 12 12 48 60 1 3 1 4 7 61 3 7 1 62 T C C T C C1 2 3 T C 1 C 1 T C C C T T C T C C 63 3 T 4 T C C T C C CN T C C

More information

画像解析論(7) 講義内容

画像解析論(7) 講義内容 画 像 解 析 論 7 1 画 像 解 析 論 7 東 京 工 業 大 学 長 橋 宏 主 な 講 義 内 容 画 像 の 不 変 特 徴 量 と 各 種 特 徴 記 述 子 SIFTSURFFernsの 特 徴 とその 比 較 画 像 解 析 論 7 2 特 徴 検 出 器 と 特 徴 記 述 子 の 評 価 各 種 特 徴 検 出 器 検 出 器 と 特 徴 記 述 子 の 組 合 せおよび それぞれの

More information

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc 1,a) 1,b) Obstacle Detection from Monocular On-Vehicle Camera in units of Delaunay Triangles Abstract: An algorithm to detect obstacles by using a monocular on-vehicle video camera is developed. Since

More information

2. 30 Visual Words TF-IDF Lowe [4] Scale-Invarient Feature Transform (SIFT) Bay [1] Speeded Up Robust Features (SURF) SIFT 128 SURF 64 Visual Words Ni

2. 30 Visual Words TF-IDF Lowe [4] Scale-Invarient Feature Transform (SIFT) Bay [1] Speeded Up Robust Features (SURF) SIFT 128 SURF 64 Visual Words Ni DEIM Forum 2012 B5-3 606 8510 E-mail: {zhao,ohshima,tanaka}@dl.kuis.kyoto-u.ac.jp Web, 1. Web Web TinEye 1 Google 1 http://www.tineye.com/ 1 2. 3. 4. 5. 6. 2. 30 Visual Words TF-IDF Lowe [4] Scale-Invarient

More information

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2 CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for

More information