GPS/GNSS: Satellite Navigation

Similar documents
宇宙インフラ活用人材育成のための大学連携国際教育プログラム

GPS/GNSS: Satellite Navigation

GPS/GNSS: Satellite Navigation

<4D F736F F F696E74202D2091AA88CA91E589EF8D E9197BF62208E E707074>

揃 Lag [hour] Lag [day] 35

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t

千葉県における温泉地の地域的展開

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション

鹿大広報149号

<95DB8C9288E397C389C88A E696E6462>

OPA134/2134/4134('98.03)


L1 What Can You Blood Type Tell Us? Part 1 Can you guess/ my blood type? Well,/ you re very serious person/ so/ I think/ your blood type is A. Wow!/ G



Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

untitled



Tokyo University of Marine Science and Technology Laboratory of Satellite Navigation Engineering Tokyo University of Marine Science and Technology GNS

4.1 % 7.5 %

2

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake


19_22_26R9000操作編ブック.indb



PowerPoint プレゼンテーション

Microsoft Word - mitomi_v06.doc

Introduction Purpose This training course describes the configuration and session features of the High-performance Embedded Workshop (HEW), a key tool

Vol. 48 No. 4 Apr LAN TCP/IP LAN TCP/IP 1 PC TCP/IP 1 PC User-mode Linux 12 Development of a System to Visualize Computer Network Behavior for L

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a



Corrections of the Results of Airborne Monitoring Surveys by MEXT and Ibaraki Prefecture



kiyo5_1-masuzawa.indd

C. S2 X D. E.. (1) X S1 10 S2 X+S1 3 X+S S1S2 X+S1+S2 X S1 X+S S X+S2 X A. S1 2 a. b. c. d. e. 2

はじめに

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

28 Horizontal angle correction using straight line detection in an equirectangular image

2

2

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

LC304_manual.ai

2

untitled

untitled

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

Huawei G6-L22 QSG-V100R001_02

A5 PDF.pwd

Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004

浜松医科大学紀要

, 18, Observation of bedforms in the downstream reach of Rumoi River by using a brief acoustic bathymetric system Ryosuke AKAHORI, Yasuyu


第16回ニュージェネレーション_cs4.indd

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

_念3)医療2009_夏.indd

GPGPU

Kyushu Communication Studies 第2号

XFEL/SPring-8

Web Web Web Web 1 1,,,,,, Web, Web - i -

Bull. of Nippon Sport Sci. Univ. 47 (1) Devising musical expression in teaching methods for elementary music An attempt at shared teaching

29 Short-time prediction of time series data for binary option trade

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

西川町広報誌NETWORKにしかわ2011年1月号

きずなプロジェクト-表紙.indd

2

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量



10-渡部芳栄.indd

土木学会構造工学論文集(2011.3)


1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

untitled

elemmay09.pub

soturon.dvi


大学における原価計算教育の現状と課題

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

900 GPS GPS DGPS Differential GPS RTK-GPS Real Time Kinematic GPS 2) DGPS RTK-GPS GPS GPS Wi-Fi 3) RFID 4) M-CubITS 5) Wi-Fi PSP PlayStation Portable

LM837 Low Noise Quad Operational Amplifier (jp)

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

I N S T R U M E N T A T I O N & E L E C T R I C A L E Q U I P M E N T Pressure-resistant gasket type retreat method effective bulk compressibility Fro

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

PowerPoint プレゼンテーション

m 1 AUV 10 m 1.3 m 1.5 m 10 tons 300 km 3,500 m 3 kn. Maximum 4 kn SSBL (, ) AUV 2,000 3,

OPA277/2277/4277 (2000.1)

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

2 ( ) i



untitled

_’¼Œì

Transcription:

移動体における高精度測位技術に 関する現在と未来 MWE215 11 月 25-27 日横浜パシフィコ位置情報サービス技術のフロンティア 久保信明 東京海洋大学 ) 1

発表概要 高精度測位の現状とこれから コンシューマ及びサーベイ受信機 他センサとの統合 低コスト受信機の結果 まとめ 2

Current GNSS Constellation GPS : 32 GLO : 23 BEI : 14 GAL : 8 QZS : 1 TUMSAT reference station 3

GPS の 2 周波は今も使いにくいか? これまで L2P という軍用コードが使われてきた 原則 北米以外の受信機メーカの参入が妨げられていた L2C の出現 32 機のうちすでに L2C を放送している衛星数は 18 機 2 周波は高精度測位に必要度が高い ⅡF ⅡR-M ⅡR ⅡA 合計 11 7 12 2 32 4

New GNSS Era : many more satellites in Asia Visible satellite number mas angle 3 degrees) 24 hours Disp. 22: GPS32)+ Glonass24)+ Galileo3)+ BeiDou35)+ QZSS4)+ IRNSS7)+ SBAS13) 1 15 2 25 3 35

移動体測位現状 Survey-grade GNSS+ Speed sensor + IMU Reliable RTK still requires dual-frequency Prospective accuracy in safety use for ITS lie lane recognition is said decimeter level with continuous positions 1m 5m 1m Low cost 1cm 1cm Target Accuracy #2 Product $1-1) #1 Product $2,).5m horizontal error and 1% availability 6

レーン検知と RTK の精度 実際の RTK 中の動画 7

Performance of low-cost receiver with single-frequency GPS/QZS/BeiDou Toyo Downtown Many syscrapers Google 上ではあるが自身の走行車線に一致 8

Low-cost receiver comparison GPS or GPS/QZS/BEI of same receiver) GPS GPS/QZS/BeiDou Toyo Downtown マルチ GNSS の効果は歴然 9

Low-cost receiver comparison GPS or GPS/QZS/BEI of same receiver) Bango Downtown Under elevated train GPS GPS/QZS/BeiDou マルチ GNSS の効果は歴然. さらにスピードセンサ +IMU があると? 1

Challenge in RTK Reliability as well as availability of RTK are quite important for future commercial users 1m RTK-GPS example in dense urban areas Marunouchi Toyo) Both reliability and availability were not enough We need to now the current power of RTK-GNSS exactly 11

We provide local-area CORS networ collaboration between universities) What you can do? CORSContinuously Operating Reference Stations) observation data via the Internet ToyoUniv. of Toyo, Keio Univ., TUMSAT) BangoThailand), ManilaPhilippine),JaartaIndonesia) You can get real-time precise position by RTK-GNSS Communication Lin SPS855 NetR9 Rover Reference 12

Mission of QZSS 13

Multi-GNSS RTK Test using Car Test Schedule 1 st 214/8/13 13:7 13:32 2 nd 214/8/13 17:26 17:52 3 rd 214/8/13 22:26 22:5 4 th 214/8/14 8:36 9:2 5 th 214/8/14 12:7 12:35 * GPS/QZS/GLONASS/GALILEO/BeiDou are entirely used in this test * Trimble SPS855 receiver was used * RTK : Trimble and Laboratory engine 14

Summary of Test Results Multi-GNSS RTK Trimble engine) Average NUS Fix rate Test 1 12.3 58.7% Test 2 12.3 75.4% Test 3 13.6 65.5% Test 4 12.4 6.% Test 5 14.2 7.5% GPS VS. Multi-GNSS RTK Trimble engine) Test 5 Average NUS Fix rate GPS 5.8 26.8% Multi-GNSS 14.2 7.5% FIX rate comparison between GNSS combinations Laboratory engine) Test 3 G GJ GC GR GJC GJCR RTK FIX rate 48.2% 58.2% 55.5% 55.4% 64.7% 65.9% Velocity output 67.% 8.3% 86.5% 82.4% 91.5% 94.7% G:GPS J:QZSS C:BeiDou R:GLONASS The reason for small contribution of BeiDou/GLONASS to RTK was just due to the shortage of high elevation those satellites 15

Summary of Test Results Multi-GNSS RTK Trimble engine) GPS VS. Multi-GNSS RTK Trimble engine) Test 5 平均衛星数 Fix 率 GPS 5.8 26.8% Multi-GNSS 14.2 7.5% 平均衛星数 FIX 率データ遅延時間間隔 FIX rate comparison between GNSS combinations Laboratory engine) Test 3 G GJ GC GR GJC GJCR RTK FIX rate 48.2% 58.2% 55.5% 55.4% 64.7% 65.9% Velocity output 67.% 8.3% 86.5% 82.4% 91.5% 94.7% G:GPS J:QZSS C:BeiDou R:GLONASS The reason for small contribution of BeiDou/GLONASS to RTK was just due to the shortage of high elevation those satellites 16

RTK-GNSSとレファレンス解の差 Dense Urbanでの移動体 RTK-GNSSの信頼性は? 5 GPS/BEI/GLO/QZS 4 3 経度方向誤差 水平方向誤差 m 2 緯度方向誤差 1-1 -2-3 FIX率は約6% -4-5 1175 118 1185 119 1195 12 GPS時刻 秒 水平5cm以内は99.88% 水平2cm以内でも99.82% 17

丸の内周辺のみの RTK-GNSS 214 年 1 月 26 日 13 時 1 分 14 時 4 分 5 周回昼食停止時間除く FIX 率は 41.2% 5 周回分の水平位置 18

RTK-GNSS とコンシューマレベルの IMU 及び車 速センサとの統合 プロテクションレベル ) Total 3 tests Period : about 3min Data rate : 1Hz Test NUS ave.) 1 9.2 2 9.7 3 9.3 Number of used satellites. Trajectory Under pass 名古屋駅周辺都市部 19

RTK-GNSS Performance Sys. Availability GPS 25.8 % Max : 22.8 [s] 8 [m] GPS/QZS 37.3 % +11.5 %) GPS/QZS/BDS 57.4 % +2.1 %) +QZS and BDS increased the availability a lot. About 1.5-2 times compared with only GPS 2

Overall Results RTK 57.4% GNSS Vel. 16.3% DR 26.2% < 1.5m : 95.99 % Max : 2.3 m 21

Protection Level Estimation The covariance ellipse by satellite constellation x 2 σ x 2 2ρ xy xy y2 σ x σ 2 y σ = 1 ρ xy 2 C y P = 1 exp C 2 Considered accumulating bias errors in GNSS-velocity and DR solutions. Parameter Value RTK-GNSS error m).25 GNSS-velocity error m/s).2 IMU+Speed sensor error m/s).3 22

受信機による違いがあるのか? 214 年 3 月 3 日 15 時台の3 分 場所は晴海と月島周回で車両移動体で取得 GPSの衛星配置は良くない アンテナはC 社 分岐してA 社とB 社を接続 平均可視衛星数 GPS/BeiDou/QZS 平均可視衛星数 GPS+BeiDou FIX 率 A 社 9.4 4.96 / 3.83 /.25 73.3% B 社 1.62 5.36 / 4.79 /.47 63.8% 解析エンジンは Lab. のもので 条件は全く同じ 23

基線長の影響 VRS と Single Baseline) 214/1/24 22 時頃成田空港から東関東自動車道を 1m 走行し PA へ Single Baseline の基線長は 51.5m から 44.8m) Single baseline は海洋大基準局 車両 87.3% VRS は日本 GPS データサービス 車両 65.4% どちらも GPS/GLO の RTCM3 24

拡大 5m 程度の single-baseline RTK を別の場所で何回か試験 補正データを入力するとすぐに FIX VRS との検証でも系統誤差があるのみで特に問題はない 25

市販の PPP サービスはどれほどか? 3 minutes static and 15 minutes inematic Trimble SPS855+RTX PPP) option Comparison with RTK results Omni-star was used Open Sy Horizontal plots at Harumi Area 26

Altitude Comparison between RTK and RTX PPP) Red : RTK-GNSS Blue : RTX using GPS/GLONASS Static Kinematic 1 分 The accuracy was maintained within several centi-meters after 15 minutes of power on. Small bias about 1cm) was deduced from other reason. 27

Proposed Multipath Mitigation Method Corresponding to Speed Signal qualtiy chec Satellite selection Position and Velocity estimation NVS>=4,HDOP<1 Loosely Coupled Kalman Filtering Input observation data Output solution Parameter setting according to speed v Hx y Gw Fx x 1 T )] ) ) ) ) ) [,a,a,v,v y, x y x y x x T a v v T a v v T a T v y y T a T v x x y y y x x x y y x x ) ) 1) ) ) 1) 2. / ) ) ) 1) 2. / ) ) ) 1) 2 2 1 1 1 1 2 1 2 1 2 2 T T T T T T / / F T )] ), ), ) [ v v,y x y x y 1 1 1 1 H noise measurement v vector measurement y system noise w state vector x : : : : observation matrix H distribution matrix noise G state transition matrix F : : : Proposed antenna motion method may not be practical Based on the amount of our test data, * Doppler frequency derived velocity is quite tolerant to strong multipath condition * Pseudo-range based position is not tolerant to strong multipath condition. * We need to put them together efficiently according to speed. * NLOS satellite has to be removed as much as possible. Flowchart Elevation C/N 4 3 2 5 Normal C/N Elevation dependent threshold Loosely coupled KF Speed Weighting Slow or zero Position <<< Velocity Normal Position < Velocity

Kinematic Car Test Test route August 215 Tsuishima, Toyo Popular low-cost single frequency GNSS receiver GPS/BEI/QZS DGNSS) 3 times for same route 2 minutes with 5Hz References : POS/LV Normal urban areas except for several high-rise buildings Detailed results are introduced using 3 rd period raw-data normal constellation) GLO/GAL were not used. 1 st 2 nd 3 rd

Code Based Positions with or without C/N chec Without C/N chec With C/N chec We need to reduce the large jumps probably due to NLOS satellite as much as possible before coupling. C/N based satellite selection is effective to some degree. Usually, 7-8 db is set as a gap between normal and threshold.

Final Loosely Coupled Positions with or without Speed Consideration Without speed consideration With speed consideration The normal weighting for positioning / velocity is 5m /.5m/s. Speed consideration means we heavily rely on velocity when the car speed is very slow or zero.

Relationship between Accumulated Percentage and Absolute Horizontal Errors Maximum error % within 1.5 m Speed consideration 1.86 m 99.5 % Non consideration 1.36 m 82.4 % Receiver s NMEA 5.31 m % No correction Results of other 2 tests were almost same tendency.

Accumulated Percentage and Absolute Horizontal Errors + low-cost single frequency RTK

実験結果の現状 主に車両 ) GNSS 単独での意味 精度収束 Open Semi Urban PPP 1cm 約 15 分 困難困難 RTK 1cm 瞬時 7 9% 5% 1 周波 1-3m 瞬時 精度が落ちる IMU やスピードセンサとの融合が前提 34

New Service Creation using RTK TUMSAT-SHINJUKU round trip in Toyo TUMSAT base station was used) Multi-GNSS RTK improved the performance a lot even in the dense urban areas. However, we need to find the suitable applications to contribute society. RTKLIB is quite useful tool for research and education. MODE Rate Single 97.% DGNSS 95.% RTK-GNSS 81.6% Realtime Altitude Determinatio It is easy for students to improve RTK/PPP algorithm using the real-time based source code. 35

Low-cost Receiver Instantaneous Static RTK Very short baseline analysis -1m Total period: 24 hours Different mas angles 15 & 3 degrees Open sy condition Data rate: 1Hz Average number of satellites GPS L1 8.3 & 6.1 GPS/QZS L1 and BeiDou B1 15.9 & 12 Mas angle = 15 degrees Combinations Fix rate %) Reliability %) GPS 52.53 98.53 GPS+QZS 65.78 99.3 GPS+BDS 99.82 1 GPS/QZS/BDS 99.85 1 GPS L1+L2) 97.88 1 Mas angle = 3 degrees Combinations Fix rate %) Reliability %) GPS 18.59 91.72 GPS+QZS 28.46 95.35 GPS+BDS 9.85 99.87 GPS/QZS/BDS 92.3 99.9 GPS L1+L2) 7.76 1 36

Low-cost Receiver Car RTK Multipath rich urban environment in a paring lot Total period : ~25 min Mas angles 15 degrees Frequency: 5Hz Reference station on the rooftop of our building at Etchujima GPS/QZS L1 and BeiDou B1 ~12 Instantaneous fix rate around 9.6% despite good availability many wrong fixes) Cycle-slips for most of available satellites 9.6% FIX Many wrong fixes Strong multipath 37

Nearly 1 % results using our software RTKLIB is great software but it still has a room to improve. We have developed the post-processed RTK software because some of applications requires nearly 1% availability even in post-processing. The new post-processed RTK software will be available within this year. 38

Ellipsoidal Height m) Precise Position for Small Boat Height Determination of Small Boat on the Sea 1hour) 37.4 37.2 37 36.98 36.96 36.94 36.92 36.9 36.88 36.86 36.84 5364 5369 5374 5379 5384 5389 5394 5399 GPSTIME s) 39

RTK for UAV >Height Single solution RTK solution Precise Position for Drone >Horizontal Single solution RTK solution 4