薄膜結晶成長の基礎3.dvi

Similar documents
薄膜結晶成長の基礎4.dvi

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

untitled

第86回日本感染症学会総会学術集会後抄録(I)

Ł\”ƒ-2005

薄膜結晶成長の基礎2.dvi

第90回日本感染症学会学術講演会抄録(I)

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

プログラム

tnbp59-21_Web:P2/ky132379509610002944

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

TOP URL 1

抄録/抄録1    (1)V

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

nsg04-28/ky208684356100043077

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

研修コーナー

パーキンソン病治療ガイドライン2002

第1章 微分方程式と近似解法

TOP URL 1

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n


本文/目次(裏白)

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

第10章 アイソパラメトリック要素

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

all.dvi

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

GJG160842_O.QXD

カイラル結晶化ver3pp.dvi

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [


DVIOUT-fujin

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

Z: Q: R: C: sin 6 5 ζ a, b

日本内科学会雑誌第102巻第4号

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

proc.dvi

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

: , 2.0, 3.0, 2.0, (%) ( 2.

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

note1.dvi

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Report98.dvi

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

(Maldacena) ads/cft

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

『共形場理論』

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

四変数基本対称式の解放

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

QMII_10.dvi

untitled

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

B

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

waseda2010a-jukaiki1-main.dvi

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m


量子力学 問題

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

³ÎΨÏÀ

19 /

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x



(Jackson model) Ziman) (fluidity) (viscosity) (Free v

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

TOP URL 1

CVMに基づくNi-Al合金の

( ) ( )




1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e


73

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

Transcription:

3 464-8602 1 [1] 2 3 (epitaxy) (homoepitaxy) (heteroepitaxy) 1 Makio Uwaha. E-mail:uwaha@nagoya-u.jp; http://slab.phys.nagoya-u.ac.jp/uwaha/ 2

3.1 [2] (strain) r u(r) ɛ αγ (r) = 1 ( uα + u ) γ (3.1) 2 x γ x α 3 u(r) r u(r) u α / x γ u α / x γ u γ x α (3.1) ɛ αγ 3 3=9 6 ( 3 3 ) (stress) σ αγ (r) ɛ αγ 3 3 σ αγ (r) = Ωαγ ξζ ɛ ξζ (r) (3.2) ξ=1 ζ=1 σ αγ ˆn γ σ αγ ˆn γ α (σ αγ ) Ωαγ ξζ 3 3 3 3=81 Ω ξζ αγ = μ(δ αξδ γζ + δ αζ δ γξ )+λδ αγ δ ξζ (3.3) μ λ (Lamé s constants) (3.2) (3.3) Ωαγ ξζ 3 σ αγ (r) = 2μɛ αγ (r)+λδ αγ ɛ ξξ (r) (3.4) ξ=1 = 2μ ɛ αγ (r) 1 3 3 δ αγ ɛ ξξ (r) + ξ=1 (λ + 23 μ ) δ αγ 3 x α α =1, 2, 3 x y z 3 ɛ ξξ (r) (3.5) ξ=1

3.1: ( ) ( ) ( ) [3] (3.5) 2 1 ( ) μ λ ( Young s modulus: )E (Poisson ratio: )σ 3λ +2μ E = μ, λ + μ (3.6) λ σ = 2(λ + μ) (3.7) 4 (3.5) 1 μ ( modulus of rigidity, shear modulus) 2 K = λ + 2 3 μ (3.8) (bulk modulus: ) (3.2) ɛ ξζ (3.2) ɛ ξζ σ αγ 4 σ αβ σ Poisson

3.2: ( ) 3.1 [3] ( ) (adsorbed atom, adatom) (force dipole, elastic dipole) m αγ r r α f γ r (3.9) r fr fr = 0 5 1 fr( 3.1) m αγ 2 2 d 4 3 ( ) 2 ( 3.2) 3 f ext ɛ αγ : σ αγ (r) = fα ext x. (3.10) γ γ γ σ αγ ˆn γ f ext 5

σ αγ (r) = 0 (3.11) x γ γ σ αγ ɛ ξζ u (3.11) u(r) 2 u =0 6 u 1/r u(r) 1/r r 2 : u(r) u(r +Δr) 1 r 1 r +Δr 1 Δr. (3.12) r2 3 : ɛ αγ u/ r 1/r 3 r 2 3 : W f u(r) f u(r +Δr) f ( ) 1 r 2 1 (r +Δr) 2 f Δr r 3. (3.13) d 2 1/d 3 : U adatom adatom 1 d 3. (3.14) 2 d 2 ( 3.3(b)) 3.3 x y U adatom line adatom line 1 (d 2 + y 2 dy ) 3/2 6 : (λ + μ)r(r u)+μr 2 u =0 1 d 2 (3.15)

(a) 0 d (b) 0 d (c) 0 d (d) 0 d 3.3: (a) - : U 1/d 3 (a) - : U 1/d 2 (a) - : U 1/d (a) - : U ln d d 1 U layer adatom dx dy d (x 2 + y 2 ) 3/2 1 d (3.16) ( 3.3(c)) d (y ) U layer layer 0 1 dx 1 dx 2 d(y 1 y 2 ) d [(x 1 x 2 ) 2 +(y 1 y 2 ) 2 ] 3/2 ln d (3.17) ( 3.3(d)) 1 1

3.4: [4] U step step 1 d 2. (3.18) ( ) 1 (3.17) U step step ln d. (3.19) Si(001) 1 90 [2] 3.2

1 3.4 2 2 V (r) a 1 4 4 E ( N =2 V (a)+v( ) 2a) (3.20) E (3.20) a V (a)+ 2V ( 2a) = 0 (3.21) f 1 = V (a)( σ 0 ) > 0 f 2 = V ( 2a) = σ 0 / 2 < 0 7 3.4 σ 0 σ 0 / 2 3.4 ( σ 0 ) σ 0 σ 0 / 2 σ 0 V (r) k 1 = V (a)( 3.4 ) k 2 = V ( 2a)( 3.4 ) k 1 /k 2 =2 ( ) 7 σ 0 ( ) σ αγ σ

d 2 3.4 ( λ μ σ 0 ) 5 1 2 8 2 - - [5] 1/d 2 σ 0 3.3 2.4 ( ) 3 ( 3.5) ( 3.6(c)) (Stranski-Krastanov: SK) SK 2.4 (Frank-van der Merwe: FM) (Volmer-Weber: VW) 2 3 FM VW 8 3.4 [2]

σ 1y σ 1x σ 2 adsorbate interface a substrate (a) a (b) (c) 3.5: (a) [6] (b)(c) [7] : : a b f = b a a (3.22) σ 0 3.7 [6] f FM f SK VW σ 0 FM SK VW SK VW

3.6: ( )[8] (a) (FM) (b) (VW) (c) (SK) 0.3 σ 0 0.2 VW SK FM SK VW 0.1 0 0.1 0 0.1 f 3.7: f ( )σ 0 [6] σ 0 (misfit dislocation) b a 3.8 3.8(a)

y h z L (a) x (b) 3.8: (a) L [4] (b) [11] h 1 (y x L ) (L h a) U D (f, h, L) = (α Ea2 8π ln h ) Eafh + 2ζ(2) a πe ( ) Eah 2 (3.23) (E ) 9 1 1 a h U dis = (α Ea2 8π ln h ) (3.24) a (α 1 ) 2 L h 1 f f (a/l) U relax = 1 2 E ( f a L) 2 Lh 1 2 Ef2 Lh Eafh (3.25) (3.24) (3.25) f = 1 ( ln α h ) c (3.26) 8πh c a h c 9 ζ(2) ζ(2) = π 2 /6 L

0.1 FM SK transient islands SK+D FM+D J/Ka 2 0.01 VW+D (01) unstable 0.001 VW 0 0.025 0.05 0.075 0.1 0.125 3.9: f J [12] +D f (3.23) 3 L h 10 2 L h L [9] PbSe(001) PbTe [10] 3.7 3.9 f J( 2 V (a) ) FM SK VW 3.7 f J VW J FM SK VW SK FM [12] 10 m xx = Eah

[1] Crystal Letters No.40 (2009) 3; No.41 (2009) 3. [2] A. Pimpinelli and J. Villain, Physics of Crystal Growth, Cambridge University, Cambridge, 1998. [3] Y. Saito, H. Uemura and M. Uwaha, Phys. Rev. B 63 (2001) 045422. [4] : ( 2007 3 ). [5] Y. Saito, J. Phys. Soc. Jpn.73 (2004) 1816. [6] H. Katsuno, H. Uemura, M. Uwaha and Y. Saito, J. Cryst. Growth 275 (2005) e283. [7] H. Uemura, M. Uwaha and Y. Saito, J. Phys. Soc. Jpn. 71 (2002) 1296. [8], 2 ( 2008). [9] H. Katsuno, M. Uwaha and Y. Saito, J. Phys. Soc. Jpn. 76 (2007) 044605. [10] G. Springholz and K. Wiesauer, Phys. Rev. Lett. 88 (2002) 015507. [11] H. Katsuno, M. Uwaha and Y. Saito, J. Cryst. Growth, 310 (2008) 1380. [12] H. Katsuno, M. Uwaha and Y. Saito, Surf. Sci., 602 (2008) 3459.