マイクロ流体回路を用いたエレクトロポレーション過程の観察

Similar documents
nsg01-04/ky191063169900010781

土壌含有量試験(簡易分析)

PanaceaGel ゲル内細胞の観察 解析方法 1. ゲル内細胞の免疫染色 蛍光観察の方法 以下の 1-1, 1-2 に関して ゲルをスパーテルなどで取り出す際は 4% パラホルムアルデヒドで固定してから行うとゲルを比較的簡単に ( 壊さずに ) 取り出すことが可能です セルカルチャーインサートを

QOBU1011_40.pdf

プロトコール集 ( 研究用試薬 ) < 目次 > 免疫組織染色手順 ( 前処理なし ) p2 免疫組織染色手順 ( マイクロウェーブ前処理 ) p3 免疫組織染色手順 ( オートクレーブ前処理 ) p4 免疫組織染色手順 ( トリプシン前処理 ) p5 免疫組織染色手順 ( ギ酸処理 ) p6 免疫

<4D F736F F D20322E CA48B8690AC89CA5B90B688E38CA E525D>

Taro-kv12250.jtd

<4D F736F F D FB89BBBAC8B8C0B082CC FB964082C982C282A282C45F F2E646F63>

NEWS RELEASE 東京都港区芝 年 3 月 24 日 ハイカカオチョコレート共存下におけるビフィズス菌 BB536 の増殖促進作用が示されました ~ 日本農芸化学会 2017 年度大会 (3/17~

学位論文の要約

脳組織傷害時におけるミクログリア形態変化および機能 Title変化に関する培養脳組織切片を用いた研究 ( Abstract_ 要旨 ) Author(s) 岡村, 敏行 Citation Kyoto University ( 京都大学 ) Issue Date URL http

スライド 1

1-4. 免疫抗体染色 抗体とは何かリンパ球 (B 細胞 ) が作る物質 特定の ( タンパク質 ) 分子に結合する 体の中に侵入してきた病原菌や毒素に結合して 破壊したり 無毒化したりする作用を持っている 例 : 抗血清馬などに蛇毒を注射し 蛇毒に対する抗体を作らせたもの マムシなどの毒蛇にかまれ

フェロセンは酸化還元メディエータとして広く知られている物質であり ビニルフェロセン (VFc) はビニル基を持ち付加重合によりポリマーを得られるフェロセン誘導体である 共重合体としてハイドロゲルかつ水不溶性ポリマーを形成する2-ヒドロキシエチルメタクリレート (HEMA) を用いた 序論で述べたよう

共同研究報告書 京都大学再生医科学研究所長殿 研究代表者 ( 申請者 ) 所属 : 独立行政法人物質 材料研究機構生体材料センター職名 : グループリーダー氏名 : 小林尚俊 下記のとおり共同研究課題の実施結果について報告します 記 1. 研究課題 :3 次元ナノファイバー足場内における幹細胞分化に

土壌溶出量試験(簡易分析)

PowerPoint プレゼンテーション

DNA/RNA調製法 実験ガイド

るが AML 細胞における Notch シグナルの正確な役割はまだわかっていない mtor シグナル伝達系も白血病細胞の増殖に関与しており Palomero らのグループが Notch と mtor のクロストークについて報告している その報告によると 活性型 Notch が HES1 の発現を誘導

untitled

<4D F736F F F696E74202D20824F DA AE89E682CC89E696CA8DED8F9C816A2E >

PRESS RELEASE (2012/9/27) 北海道大学総務企画部広報課 札幌市北区北 8 条西 5 丁目 TEL FAX URL:

■リアルタイムPCR実践編

粒子画像流速測定法を用いた室内流速測定法に関する研究

AlGaN/GaN HFETにおける 仮想ゲート型電流コラプスのSPICE回路モデル

目次 IPS 細胞の継代... 3 細胞継代後の培地交換... 5 IPS 細胞の凍結... 6 凍結ストックの解凍... 8 細胞融解後の培地交換 融解後 1 日目 ON-FEEDER IPS 細胞を FEEDER-FREE 条件にて継代する方法 参考資料 AC

2

パナテスト ラットβ2マイクログロブリン

Microsoft Word - FMB_Text(PCR) _ver3.doc

Microsoft Word - 3.No._別紙.docx

グルコースは膵 β 細胞内に糖輸送担体を介して取り込まれて代謝され A T P が産生される その結果 A T P 感受性 K チャンネルの閉鎖 細胞膜の脱分極 電位依存性 Caチャンネルの開口 細胞内 Ca 2+ 濃度の上昇が起こり インスリンが分泌される これをインスリン分泌の惹起経路と呼ぶ イ

エラー動作 スピンドル動作 スピンドルエラーの計測は 通常 複数の軸にあるセンサーによって行われる これらの計測の仕組みを理解するために これらのセンサーの 1つを検討する シングル非接触式センサーは 回転する対象物がセンサー方向またはセンサー反対方向に移動する1 軸上の対象物の変位を測定する 計測

大学院博士課程共通科目ベーシックプログラム

Microsoft Word -

本日の内容 HbA1c 測定方法別原理と特徴 HPLC 法 免疫法 酵素法 原理差による測定値の乖離要因

Cytotoxicity LDH Assay Kit-WST

<4D F736F F D B82C982C282A282C482512E646F63>


Problem P5

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2

10 年相対生存率 全患者 相対生存率 (%) (Period 法 ) Key Point 1 10 年相対生存率に明らかな男女差は見られない わずかではあ

siRNA / miRNA transfection KIT

( 平成 22 年 12 月 17 日ヒト ES 委員会説明資料 ) 幹細胞から臓器を作成する 動物性集合胚作成の必要性について 中内啓光 東京大学医科学研究所幹細胞治療研究センター JST 戦略的創造研究推進事業 ERATO 型研究研究プロジェクト名 : 中内幹細胞制御プロジェクト 1

研究目的 1. 電波ばく露による免疫細胞への影響に関する研究 我々の体には 恒常性を保つために 生体内に侵入した異物を生体外に排除する 免疫と呼ばれる防御システムが存在する 免疫力の低下は感染を引き起こしやすくなり 健康を損ないやすくなる そこで 2 10W/kgのSARで電波ばく露を行い 免疫細胞

生物学に関する実験例 - 生化学 / 医療に関する実験例 ラジオアッセイ法によるホルモン測定 [ 目的 ] 本実習では, 放射免疫測定 (Radioimmunoassay,RIA) 法による血中インスリンとイムノラジオメトリックアッセイ ( 免疫放射定測定 Immunoradiometric ass

測定方法の異なる 2 種類のメンブレンフィルター法の比較 医療法人瑛会東京ネクスト内科 透析クリニック 宮尾眞輝 徳埜亜紀子 石橋昌弘 森ひかる 吉田智史 陳れみ 陣内彦博 目的 近年 透析液清浄化はさまざまな臨床効果に寄与することが報告され 水質管理の重要性は一層増している 日本臨床工学技士会から

Microsoft PowerPoint - 4_河邊先生_改.ppt

Microsoft Word - Fluo4 NW Calcium Assay KitsJ1_20Jun2006.doc

特長 01 裏面入射型 S12362/S12363 シリーズは 裏面入射型構造を採用したフォトダイオードアレイです 構造上デリケートなボンディングワイヤを使用せず フォトダイオードアレイの出力端子と基板電極をバンプボンディングによって直接接続しています これによって 基板の配線は基板内部に納められて

31608 要旨 ルミノール発光 3513 後藤唯花 3612 熊﨑なつみ 3617 新野彩乃 3619 鈴木梨那 私たちは ルミノール反応で起こる化学発光が強い光で長時間続く条件について興味をもち 研究を行った まず触媒の濃度に着目し 1~9% の値で実験を行ったところ触媒濃度が低いほど強い光で長

酵素の性質を見るための最も簡単な実験です 1 酵素の基質特異性と反応特異性を調べるための実験 実験目的 様々な基質を用いて 未知の酵素の種類を調べる 酵素の基質特異性と反応特異性について理解を深める 実験準備 未知の酵素溶液 3 種類 酵素を緩衝液で約 10 倍に希釈してから使用すること 酵素溶液は

テイカ製薬株式会社 社内資料

高速培地環境分析装置 Vi-CELL MetaFLEX

CELLSTAR SC シャーレ 無菌性保証レベル SAL 10-3 最適なガス交換を行うベント構造 製品番号製品名 / 規格 CELLSTAR 35 10mm シャーレ SC PS 袋 , CELLSTAR 6

els05.pdf

フロントエンド IC 付光センサ S CR S CR 各種光量の検出に適した小型 APD Si APD とプリアンプを一体化した小型光デバイスです 外乱光の影響を低減するための DC フィードバック回路を内蔵していま す また 優れたノイズ特性 周波数特性を実現しています

ASC は 8 週齢 ICR メスマウスの皮下脂肪組織をコラゲナーゼ処理後 遠心分離で得たペレットとして単離し BMSC は同じマウスの大腿骨からフラッシュアウトにより獲得した 10%FBS 1% 抗生剤を含む DMEM にて それぞれ培養を行った FACS Passage 2 (P2) の ASC

IC-PC法による大気粉じん中の六価クロム化合物の測定

相互相関型暗視野顕微計測を用いた金 bow-tie ナノ構造の応答関数計測と2 光子励起場制御 Measurement of Response Function of Gold Bow-tie Nano Structure using Dark-field Cross-correlation Mic


がんを見つけて破壊するナノ粒子を開発 ~ 試薬を混合するだけでナノ粒子の中空化とハイブリッド化を同時に達成 ~ 名古屋大学未来材料 システム研究所 ( 所長 : 興戸正純 ) の林幸壱朗 ( はやしこういちろう ) 助教 丸橋卓磨 ( まるはしたくま ) 大学院生 余語利信 ( よごとしのぶ ) 教

研究要旨 研究背景研究目的 意義研究手法結果 考察結論 展望 研究のタイトル 研究要旨 ( 概要 ) あなたの研究の全体像を文章で表現してみよう 乳酸菌を用いてハンドソープの殺菌力を上げる条件を調べる手を洗う時に どのくらいの時間をかければよいのかということと よく薄めて使うことがあるので薄めても効

cover

第2章マウスを用いた動物モデルに関する研究

< 研究の背景と経緯 > 半導体製造技術により 生体分子と親和性の高いマイクロチップが開発され それらを基盤とした革新的なバイオ分析技術が実現しています その中でも デジタルバイオ計測は マイクロチップを利用して 1 個の生体分子から機能や物性を高感度かつ定量的に計注測できる手法であり Digita

マイクロボリュームエアクーリング (MVAC) 法によるブタ胚 ( 体内生産胚 ) のガラス化保存方法 - 1 -

馬ロタウイルス感染症 ( アジュバント加 ) 不活化ワクチン ( シード ) 平成 24 年 7 月 4 日 ( 告示第 1622 号 ) 新規追加 1 定義シードロット規格に適合した馬ロタウイルス (A 群 G3 型 ) を同規格に適合した株化細胞で増殖させて得たウイルス液を不活化し アジュバント

(Microsoft PowerPoint - M83R \222\264\211\271\224g\224Z\223x\214v\216\221\227\277.ppt [\214\335\212\267\203\202\201[\203h])


培養細胞からの Total RNA 抽出の手順 接着細胞のプロトコル 1. プレート ( またはウエル ) より培地を除き PBSでの洗浄を行う 2. トリプシン処理を行い 全量を1.5ml 遠心チューブに移す スクレイパーを使って 細胞を掻き集める方法も有用です 3. 低速遠心 ( 例 300 g

豚丹毒 ( アジュバント加 ) 不活化ワクチン ( シード ) 平成 23 年 2 月 8 日 ( 告示第 358 号 ) 新規追加 1 定義シードロット規格に適合した豚丹毒菌の培養菌液を不活化し アルミニウムゲルアジュバントを添加したワクチンである 2 製法 2.1 製造用株 名称豚丹

2. 研究の背景関節軟骨は 骨の端を覆い 腕や膝を曲げた時などにかかる衝撃を吸収する組織です 正常な関節軟骨は硝子軟骨と呼ばれます 私達の日常動作のひとつひとつを なめらかに行うためにも大切な組織ですが 加齢に伴ってすり減ったり スポーツや交通事故などの怪我により損傷をうけると 硝子軟骨が線維軟骨注

Microsoft Word - Fluo4 Direct Calcium Assay Kits_J1_3Apr2009.doc

パーキンソン病治療ガイドライン2002

研究用試薬 ブタ胚ガラス化保存液キット (PEV-SK) を用いたブタ胚のガラス化保存と融解 ( 加 温 希釈 ) 方法 製品番号 IFP16PVSK 株式会社機能性ペプチド研究所

平成 29 年度大学院博士前期課程入学試験問題 生物工学 I 基礎生物化学 生物化学工学から 1 科目選択ただし 内部受験生は生物化学工学を必ず選択すること 解答には 問題ごとに1 枚の解答用紙を使用しなさい 余った解答用紙にも受験番号を記載しなさい 試験終了時に回収します 受験番号

JUSE-StatWorks/V5 活用ガイドブック

研修コーナー

HVJ Envelope VECTOR KIT GenomONE –Neo (FD)

Microsoft Word - 博士論文概要.docx

Microsoft Word - planck定数.doc

ローラー面圧のアライメント管理 ニップアライメントシステムはニップロール間の相対圧力分布を計測するのに用いられています 複数の柔軟性のあるセンサーで ( 細い帯状部 ) 圧力を検出し 様々なアプリケーションに適合するように長さをカスタムして提供することができます ニップアライメントシステムによる圧力

図 B 細胞受容体を介した NF-κB 活性化モデル

[PDF] 蛍光タンパク質FRETプローブを用いたアポトーシスのタイムラプス解析

日本標準商品分類番号 カリジノゲナーゼの血管新生抑制作用 カリジノゲナーゼは強力な血管拡張物質であるキニンを遊離することにより 高血圧や末梢循環障害の治療に広く用いられてきた 最近では 糖尿病モデルラットにおいて増加する眼内液中 VEGF 濃度を低下させることにより 血管透過性を抑制す

ロードセル方式による比重の測定 ロードセル方式の SG-2110RS 型比重計の測定原理の概要を下記 ( 図 2) に示します ロードセルとは荷重 ( 力 ) を電気信号に変換する変換器で 当比重計においては錘の重量を検知しその信号を電気信号に変換します 液体の中に入った錘はその体積に相当する液体の

抄録/抄録1    (1)V

Taro-kv20025.jtd

実験題吊  「加速度センサーを作ってみよう《

ISOSPIN Blood & Plasma DNA

平成14年度研究報告

e - カーボンブラック Pt 触媒 プロトン導電膜 H 2 厚さ = 数 10μm H + O 2 H 2 O 拡散層 触媒層 高分子 電解質 触媒層 拡散層 マイクロポーラス層 マイクロポーラス層 ガス拡散電極バイポーラープレート ガス拡散電極バイポーラープレート 1 1~ 50nm 0.1~1

スライド 1

Microsoft PowerPoint - H24全国大会_発表資料.ppt [互換モード]

抑制することが知られている 今回はヒト子宮内膜におけるコレステロール硫酸のプロテ アーゼ活性に対する効果を検討することとした コレステロール硫酸の着床期特異的な発現の機序を解明するために 合成酵素であるコ レステロール硫酸基転移酵素 (SULT2B1b) に着目した ヒト子宮内膜は排卵後 脱落膜 化

<4D F736F F F696E74202D C834E D836A834E83588DDE97BF955D89BF8B5A8F F196DA2E >

リアルタイムPCRの基礎知識

九州大学病院の遺伝子治療臨床研究実施計画(慢性重症虚血肢(閉塞

Microsoft PowerPoint - machida0206

Transcription:

マイクロチップを用いた細胞応答計測の研究 バイオエンジニアリング専攻修士 2 年生 倉澤知隆 1. 背景 1.1 移植再生医療とその課題移植再生医療とは, 外部から新しい臓器や細胞を患者に移植することにより生体においてすでに廃絶した機能を回復させるためのものである. 移植再生医療は臓器移植と細胞移植に大きく分類される. 本研究では, 細胞移植を対象としている. 細胞移植には骨髄移植と膵島移植がほとんどのケースを占め, 前者は骨髄中の造血幹細胞を, 後者は膵臓における細胞 1000 個程度の塊である島状構造 ( 膵島 ) をそれぞれ患者に移植する. しかしながら, 細胞移植の現状として, 移植を行ってみるまでその生着率 機能性は分からず, 本来移植すべき細胞以外の細胞や, 変性 死滅してしまった細胞も同時に生体内に移植されるので, これが重篤な副作用の原因となることも考えられる. そこで, 移植前に細胞全数に対する個々の細胞活性の評価ができ, かつ, 優れた細胞を選別して移植できる技術が求められる. また, 短時間内に, 細胞非侵襲に測定できることも求められる. 1.2 マイクロチップを用いた細胞応答計測の提案 1.2.1 細胞全数に対する個々の細胞活性の評価膵島移植において移植の対象となる膵 β 細胞は, 直径約 10μm で移植細胞全数は 10 万個 ~100 万個程度である. そこで本研究では, マイクロチップ上にオリフィスアレイを配列させ, 細胞を吸引固定する技術を提案した. 直径約 10μm から成る 10 万個の細胞群を 1000 1000 のアレイ状に配列させても 1cm 2 範囲に収めることができ, マイクロチップで充分対応可能である. これにより, 細胞同士を一つ一つ離して固定でき, 個々の細胞活性の評価を可能とする. 1.2.2 高速かつ細胞非侵襲な測定高速で細胞非侵襲な測定を行うためには, 光計測が望ましい. そこで本研究では, 細胞活性の評価方法として, 細胞内に普遍的に存在する NADH (nicotinamide adenine dinucleotide) の発する自家蛍光 (Ex 340nm / Em 460nm) をリアルタイム測定するという手法を用いた. リアルタイム測定を行ったのは, 単に NADH 蛍光の絶

対値を測定する静的な計測では, それがどの程度の活性を反映しているのか分からないた め, 細胞に薬剤などの刺激を与えた時の NADH の時間変化量を細胞応答ととらえて細胞活 性の評価を行った方が, より細胞活性を反映するからである. 2. 実験原理細胞への刺激方法として細胞外刺激と細胞内刺激の二種類が考えられる. 細胞外刺激とは, マイクロ流路を作製して液置換を行い, 細胞周囲の溶液環境を変化させる刺激である. 本実験では, グルコーストランスポーター (GLUT2 ) を有する MIN6-m9 ( ラット膵 β 細胞 ) を対象とし, 細胞外刺激によって細胞の周囲のグルコース濃度を変化させ, 細胞の蛍光強度の時間変化から細胞応答の確認を行った. グルコーストランスポーターから取り込まれたグルコースを代謝の基質とし,NADH 濃度が上昇して細胞の蛍光強度が上昇することを確認した. コントロール実験として, 同じ糖類であるスクロースも細胞外刺激によって与え, グルコースの場合と比較した. また, 細胞の代謝活性を調べるため, 代謝阻害剤を与えた時の細胞応答の確認も行った. 代謝阻害剤としては NaN3( アジ化ナトリウム ) を用いた. しかし, 細胞外刺激は, 細胞膜表面にその物質に特異なトランスポーターを持つ物質のみしか細胞応答計測に使用できない. そこで, 細胞内に直接物質を導入する方法 ( 細胞内刺激 ) を行うことを考える. 本実験では電界集中を利用したエレクトロポレーションによって, 細胞膜に自復可能な一過性の穿孔を引き起こし, 物質を導入した ( 図 1). これにより, 細胞非侵襲性に多少の犠牲を伴うが, 細胞内刺激を行って細胞応答を確認することができるのであれば, 細胞外刺激に比べてより多くの種類の物質を細胞応答計測のために使用することができる利点があると考えられる. 電極 電気力線 絶縁膜 パルス電圧 図 1 電界集中を利用したエレクトロポレーション

3. デバイスの作製および実験装置オリフィスアレイを作製するための基板として, 本実験では, 透明で自家蛍光が少なく明視野 / 蛍光観察に適した絶縁膜である厚さ 7.5μm のポリイミドフィルム ( 商標名 : カプトンシート ) を用いた. このポリイミドフィルムに紫外レーザ ( 波長 355nm, 出力 7mw, 繰り返し周波数 60kHz,( 株 ) ネオアーク製 ) で穴をあけ, 間隔 30μm,10 10 の計 100 個のオリフィスを加工し, 直径約 2μm 程度のオリフィスが加工されたことを確認した. 灌流刺激を行うため, この微細オリフィス付絶縁膜を用いて図 2に示すような実験系を構築した. 微細オリフィス付絶縁膜のオリフィス部にシリコンゴムチャンバー (3mm 3mm 5mm) を接続し, 埋め込んだシリンジ針からチャンバーに陰圧をかけることで細胞をオリフィスに吸引固定できるようにした. 二つのスペーサーによって簡易的な流路を作製し, 図 3のようにマイクロピペットを用いて細胞懸濁液や刺激溶液を流入させることができるようにした. 続いて反対側からキムワイプで液を吸い取り, 液中に流れを起こして液置換を行える仕組みになっている. エレクトロポレーション刺激においては, 灌流刺激に用いるデバイスとほぼ同じ仕様であるが, 上部に ITO コートガラス ( 厚さ 1mm) を用いている. ITO コートガラスとシリンジ針とを電極として, ここにパルスジェネレーターをつなぐことでパルス電圧を印加できるような仕組みになっている ( 図 4). シリコンゴム (500μ m) カバーガラス (1mm) カプトンシート (7.5μ m) シリコンゴム (500μ m) 吸引 ITO コートガラス (1mm) カプトンシート (7.5μ m) 吸引スライドガラススライドガラスパルス電圧シリコンゴム刺激溶液シリコンゴム細胞 (5mm) 細胞 (5mm) 図 2 灌流刺激に用いるデバイス図 4 エレクトロポレーション刺激に用いるデバイス マイクロピペット スライドガラス カプトンシート オリフィス上に細胞が吸引固定される 細胞懸濁液を封入 カバーガラス スペーサー ( 厚さ 500μ m) 図 3 灌流刺激の方法

4. 細胞外刺激による細胞応答計測 4.1 実験方法 1 細胞懸濁液の作製シャーレ上で接着培養していた細胞をトリプシン処理によってシャーレから剥がし, 細胞を浮遊状態にした. 遠心分離機によって細胞と培地 (DMEM) を分離し, そこに新鮮な培地 (DMEM) を加えて再懸濁し, これを細胞懸濁液として用いた. 2 細胞の吸引固定 (1) シリコンゴムスペーサーで作製した流路に細胞懸濁液を流入させた. (2) シリンジによって下部チャンバー内の圧力を細胞懸濁液に比べて低く保ち, 細胞を微細オリフィスに吸引固定した. (3) リン酸緩衝液 (PBS) を一方から流し, もう一方から緩衝液をキムワイプで吸い取り, 細胞懸濁液中に流れを起こして, 固定されていない細胞および DMEM 培地を洗い流した 3 露光および蛍光観察蛍光顕微鏡で露光 ( 露光時間 200-300msec, 露光間隔 5sec) を行い, 蛍光顕微鏡に接続した CCD カメラで蛍光像を取得した. 5 灌流刺激数分の時間間隔を置いて, 刺激溶液を流入させて液置換し, 細胞応答を確認した. 5.2 実験結果図 5に実験結果を示す.(a) は吸引固定された MIN6-m9 の明視野での様子である. この図より, 加工したほとんどのオリフィスにおいて細胞を吸引固定できていることが分かる. (b)(c) は 5mM グルコース刺激前後の蛍光像である.(a) の明視野像と見比べて, 白く光っているのが細胞であり, オリフィス部は蛍光を発していないことが分かる.(b)(c) における赤丸は細胞部分を範囲指定したもので, この範囲を 256 階調 (0 255) で輝度解析して値を算出し, 時間変化をグラフにしたものが (d) である. (b)(c) における赤丸 1~4が (d) の細胞 1~4 にそれぞれ対応している. また, 蛍光強度変化が細胞応答であることを示すため, バックグラウンドの蛍光強度も測定した. 最初,PBS を流入させたが, 細胞の蛍光強度に変化は見られなかった. これは細胞周囲の溶液の環境に変化がなかったことを示している. その後,5mM スクロース,25mM スクロース,100mM スクロースを流入させたが, 細胞の蛍光強度に変化は見られなかった. これは第二章で述べたように, 細胞膜表面にスクロースを取り込むトランスポーターが存在しないためである. 次に 5mM グルコースを流入させたところ, 細胞の蛍光強度が上昇した. 細胞膜表面のグルコーストランスポーター (GLUT2) から細胞内へグルコースが取り込ま

れ, 代謝が活性化して NADH の産生量が増加したためである. これらの刺激溶液に対する 細胞応答から,NADH 蛍光を指標として細胞の代謝活性を評価出来たと言える. (a) 明視野像 (b) 5mM グルコース刺激前 (c) 5mM グルコース刺激後 5mM スクロース PBS 25mM 100mM スクローススクロース 25mM glucose 100mM glucose PBS 5mM glucose (d) 蛍光強度変化 図 5 MIN6-m9 への灌流刺激実験 6. 細胞内刺激による細胞応答計測 6.1 実験方法実験手順は以下のとおりである. 1 下部チャンバーにシリンジで陰圧をかけ, 微細オリフィス上に細胞を吸引固定した. 続いて, 吸引固定された細胞以外の細胞や培地を,PBS を液置換して洗い流した. 2 電圧値 1.5V, 周波数 50kHz, 持続時間 10 msec~100msec の高周波変調パルス電圧を印加し, 刺激溶液を細胞内へ導入した. 刺激溶液には代謝の基質となる 100mM グルコースを用いた.

6.2 実験結果図 6に 100mM グルコースを導入したときの MIN6-m9 の細胞応答を示す. 時刻 5 分,6 分,14 分のあたりでスパイク応答が見られている. これは, グルグルコースが細胞内に導入されたことで細胞の代謝が活性化されて NADH 蛍光が上昇したのではないかと考えられる. エレクトロポレーション刺激においては瞬間的に導入されるため, 少量しか入らず, すぐに産生された NADH がすぐに消費されるためにスパイク状の応答になったのではないかと考えられる. このため, 連続的な細胞応答を確認するためには, 印加するパルス電圧の回数を多くし, 細胞内の NADH 濃度を高める必要があるものと思われる. この実験結果から, エレクトロポレーション刺激によってグルコースを導入した際のスパイク状の蛍光強度変化より, 細胞応答が確認できている可能性が示唆された. 10msec 1 発 10msec 1 発 10msec 1 発 50msec 1 発 1 発 50msec 1 発 100msec 100msec 1 発 100msec 3 発 図 6 MIN6-m9 へのエレクトロポレーション刺激実験 7. 結論 細胞外刺激により, 細胞の代謝状態を活性化 ( または阻害 ) する物質を与えた時の NADH 蛍光強度の変化から細胞応答を確認できた. これにより, 細胞膜表面に輸送担体を持つ物質においてはこの刺激方法によって細胞の代謝活性を評価することが可能になることが示された. エレクトロポレーション刺激により, 細胞応答を確認できることが示された. これにより, 非侵襲性は多少犠牲にするが, 細胞外刺激に比べてより多くの種類の物質を細胞応答計測のために使用することができる利点が生まれ, 細胞応答計測の可能性を広げると考えられる.