Undulator.dvi

Similar documents
05Mar2001_tune.dvi

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =


X線散乱と放射光科学

Gmech08.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

pdf

GJG160842_O.QXD

untitled

1

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

LLG-R8.Nisus.pdf

Xray.dvi

I 1

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

Mott散乱によるParity対称性の破れを検証

飽和分光

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ


all.dvi

吸収分光.PDF

From Evans Application Notes

TOP URL 1

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x


( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =


main.dvi

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

液晶の物理1:連続体理論(弾性,粘性)

Microsoft Word - 学士論文(表紙).doc

Note.tex 2008/09/19( )

, 02 4] 0908 縺 閨 陦縺03 縺 縺05 縺 (00) チ

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

( ) ( )

untitled

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

nsg04-28/ky208684356100043077

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

抄録/抄録1    (1)V

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

chap1.dvi

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

chap03.dvi

Microsoft PowerPoint - 島田美帆.ppt

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,


2000年度『数学展望 I』講義録

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

本文/目次(裏白)

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

DVIOUT-fujin

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h


さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

Gmech08.dvi


加速器の基本概念 V : 高周波加速の基礎


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

i


Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

振動と波動


1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π


1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

Part () () Γ Part ,


TOP URL 1

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

1).1-5) - 9 -

°ÌÁê¿ô³ØII


The Physics of Atmospheres CAPTER :

meiji_resume_1.PDF

Gmech08.dvi

SO(2)

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

Transcription:

X X 1 1 2 Free Electron Laser: FEL 2.1 2 2 3 SACLA 4 SACLA [1]-[6] [7] 1: S N

λ [9] XFEL OHO 13 X [8] 2 2.1 2(a) (c) z y y (a) S N 90 λ u 4 [10, 11] Halbach (b) 2: (a) (b) (c) (c)

1 2 [11] B y = n=1 B n,0 cos nk u z cosh nk u y (2-1) B z = n=1 B n,0 sin nk u z sinh nk u y (2-2) B y B z y z k u =2π/λ u n k n =1+4k n =1 5 9 13 B n,0 B n,0 =2B r F n (4)G n H n (2-3) B r F n G n H n F n (M) = sin nπ/m nπ/m G n = e πng/λu H n = 1 e 2πnh/λu g H 3 (2-1) (2-2) λ u B 1,0 B y z y 3: B z y =0 y 0 B z XFEL GeV 2B r B n,0 3

1 M =4 2.1.1 1 F n F n (4) 4 90 M M =2 2 M =6 6 60 M 360/M M F n (M) 2.1.2 2 G n G n n 5 g/λ u 2 G 1 0 4: F 1 (M) 4 n =1 F 1 M M =2 6 M =4 9 M 5: G 1 H 1 1

2.1.3 3 H n H n h = H n =1 5 h/λ u 3 H 1 2.2 K K K = eb 1,0λ u 2πmc (2-4) 2.1.2 [8] β x β x = K γ sin k uz (2-5) γ (2-5) z x e = λ uk 2πγ cos k uz (2-6) (2-5) (2-6) Kγ 1 λ u K/(2πγ) z z v z c [8] λ 1 λ 1 = λ u(1 + K 2 /2) 2γ 2 (2-7) λ 1 XFEL XFEL λ 1 λ 1 [7] λ 1 ω 1 =2πc/λ 1 K K λ u B 1,0 λ u K 2.3 B de/dv d 3 E dxdydz = 1 2 BH = 1 B 2 2μ 0 (2-1) (2-2)

E = LW B 4μ 1,0(g) 2 0 g/2 g/2 = LW 2μ 0 B 2 1,0(g) = LW 4μ 0 gb 2 1,0(g) (cosh 2 k u y +sinh 2 k u y)dy g/2 0 cosh 2k u ydy W x L z B 1,0 g g λ u 2 g g +Δg ΔE Δg 0 E g f(g) = LW 4μ 0 = LW 4μ 0 B 2 1,0(g) [ B1,0(g)+g 2 db2 1,0 (g) ] dg ( 1 2πg ) λ u LW 4μ 0 B 2 1,0(g) SACLA L =5m W =30mm B 1,0 =1.3 T( 3.7 mm ) 5 2.4 1) 2) 2 g 6: 1) B r 2) i H c B r i H c 6 B r i H c 2.5 5 [8] 2.3 7

7: y 1 1 2.3 2 2 z 2.6.1 7 y

λ λ λ 8: (a) (b) y d 3 2 7 3.5 2.6 1% 1 2 2.6.1 2.2 λ 1 λ 1 z ( ) c Δl(z) = 1 dz λ 1 z 0 v z z ( ) 1 = 2γ 2 + β2 2 λ 1 dz 0 λ 1 φ(z) = 2πΔl(z) λ 1 φ(z) =0 λ 1 8(a) λ 1 /c φ(z) 0 8(b) (b) (a) XFEL 2.6.2

I 1x,1y = I 2x,2y = L/2 L/2 L/2 L/2 B x,y (z)dz dz z L/2 B x,y (z )dz L I 1x,1y I 2x,2y 9 9: θ δ [8] θ δ I 1x,1y I 2x,2y θ x,y = δ x,y = e γmc I 1y,1x e γmc I 2y,2x SPring- 8 SACLA XFEL COD θ δ 2.7 1) 2) 2 2.7.1 2 10(a) 10(b) 10(c) Φ Φ= L/2 L/2 zw L/2 B y(z)dz Φ= 2W ( ) L L 2 I 1y I 2y

10: (a) (b) (c) (d) y 2) 3) 0 1) NMR 100ppm/cm 11 1T 0.1V 10mA I 2y = L 2 I 1y L 2W Φ 10(c) Φ Φ 2.7.2 50μm 50μm 1) 11: 2) 2 B T

2 SPring-8 3) z 2 12: (a) (b) (c) SACLA 12 3.5 mm 1.47T 2.7.3 λ 1 λ 1 /n n n 3 3

SPring-8 [12] 1 SPring-8 10 1 SPring-8 2 13 13: 12(b) (c) 3 SACLA [13]-[15] SACLA 3.1

h min g min g min = h min +2(t d + d sp ) t d d sp t d + d sp 2mm h min 4mm G n 2.1.2 SACLA 18mm e 2π(t d+d sp)/λ u =e 2π 4/18 2 2 3.2 14 z 3.2.2 z z 2 3.2.1 2 2 3.2.3 10 3 XFEL

14: ±0.1 3.2.4 2.7.3 50μm 30μ m 3.2.5 0.1mm 3.3 4 4

3.3.1 5μm 5 SACLA SPring-8 2 3.3.3 140 3.3.2 100 SPring-8 125 300 3.4 SPring-8 [16] 2000kA/m 3.3.3 [17] SPring-8 5

3.5 SPring-8 [18, 19] 3.5.1 2.7.2 2 z 15 z x ) y (z ) y (2-1) 5m z x y 30 μm 18mm 50ppm 15: 16 16(a) z

SPring-8 SPring-8 SAFALI 16: 16(b) 2 g 2 3 g 3 G n SPring-8 32mm SACLA 18mm In-situ 3.5.2 SAFALI z x y SPring-8 17 z φ5mm 2mm Position Sensitive Detector: PSDz x y 2 z Self-Aligned Field Analyzer with Laser Instrumentation SAFALI SAFALI

PSD 17: SAFALI 3.5.3 SACLA SAFALI 18(a) (b) 3.3 7.2 SACLA 5m 3 6 18(c) SACLA 18 4 XFEL [8] 100 m

[20] 4.1 K 3 4.1.1 18: SAFALI (a) (b) (c) SACLA XFEL 100 m BPM XFEL BPM BPM 4.1.2 K (2-7) XFEL K K (2-4) K B 1,0 y (2-1) K K

K K K 4.1.3 K 6 2π 1 4.2 4.2.1 SPring-8 FEL 6 [8] 1: (FWHM) 8GeV 75 pc 20 fsec 3.5 ka 0.7 mm mrad 10 4 18 mm K 2.18 5m 6.15 m 18 SIMPLEX[21] 1 [8] 0.124nm 10keV BPM i x i = R i σ x R i 0 1 σ x BPM BPM FEL 100 σ x,y =10μm 19 σ x,y =0 0.19 mj σ x,y =10

μm BPM σ x,y =10 μm 20: σ x,y 4.2.2 19: σ x,y =10μm σ x,y 20 σ x σ y BPM σ x,y x i x i = x i x i 1 D D BPM y σ x,y σ x,y σ x,y = 2σx,y D 2 20 100 E Σ E E 2Σ E 2Σ E FEL 50% 97.5% 90% 2 K 2 5 10 4

BPM 2.2 - μm 0.50 0.22 (x) μrad 0.48 (y) K 5.0 1.8 10 4 1.9 0.6 μm 60 10 μm 30 15 degree 2: SACLA 4.4 SACLA 1.0μ m 60μ m 4.3 SACLA 2 4.3.1 21 80 m X 4.3.2 BPM BPM ±2 μm 2 LCLS BPM BPM Beam Based Alignment 132 m 5μ m BPM BPM 110 m 190 m 220 m 21: SACLA

y' (μrad) 2.0 1.5 1.0 0.5 0.0-0.5-1.0-1.5-2.0-2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0 x' (μrad) 22: SACLA γ 1 60μ rad μ rad X SACLA CCD 22 23: 23 100 0.22 μrad 0.48 μrad 0.50 μrad SACLA SACLA 4.3.3 K 2.6.1 hω 1 K [7]

ω 1 = 4πcγ 2 λ u (1 + K 2 /2+γ 2 θ 2 ) SACLA f( hω,k,z,δx, ΔY,E,σ e, x, y, x,y,σ x,σ y,σ x,σ y ) hω Z ΔX ΔY E σ E x x σ x σ x Z ΔX ΔY 4 x y x y σ x σ y σ x σ y 4 f( hω,k,e,σ e ) Z Twiss K E σ E SACLA K 24(a) x y 10mm SPring-8 SPECTRA [22] 24(b) 0.5mm 0 24(a) K 24(a) ω 1 ( K 24(a) K 25 7.8 GeV 10keV (2-7) K 2.1

25: 10keV K 24: (a) 10mm 10mm (b) 0.5mm 0.5mm 3.88 mm 3.87 mm K 2.1 ( ) a3 g f(g) =(a 1 + a 2 g)erf + a 5 (4-1) erf a 1 a 5 a 3 25 a 3 =3.8736 mm K K a 4 ( a 3 ) K 0 26 0.1mm 4.3.4 2 27(a)

26: 10keV 2 30.4 mm 32.4 mm 27(b) 7 27(b) 30.4 mm 34.2 mm 39.6 mm 4.4 7 30.4mm 27: (a) 2 (b) a) 9.988keV 1 23

25 26 100 2 5 SACLA XFEL X SPring-8 SACLA SPring-8 XFEL 4 XFEL OHO SACLA [1] H. Motz, J. Appl. Phys. 22 (1951) 527. [2] B. M. Kincaid, J. Appl. Phys. 48 (1977) 2684. [3] D. Attwood et al., Science 228 (1985) 1265. [4] K. J. Kim, Nucl. Instrum. Meth. A246 (1986) 71. [5] D. F. Alferov et al., Sov. Phys. Usp. 32 (1989) 200. [6] R. P. Walker, Nucl. Instrum. Meth. A335 (1993) 328. [7] K. J. Kim, in Physics of Particle Accelerators, AIP Conf. Proc. 184 (Am. Inst. Phys., New York, 1989), p. 565. [8], OHO 13 X. [9] H. Winick, Synchrotron Radiation Sources - A Primer (World Scientific, 1995), chap. 14. [10] K. Halbach, Nucl. Instrum. Meth. 187 (1981) 109. [11] K. Halbach, J. Physique C1 (1983) 211. [12] T. Tanaka et al., Nucl. Instrum. Meth., A465 (2001) 600. [13] S. Yamamoto et al., Rev. Sci. Instrum. 63 (1991) 400. [14] T. Hara et al., J. Synchrotron Rad 5 (1998) 403. [15] T. Tanaka et al., Proc. 27th Int. Free Electron Laser Conf. (FEL2005), 370. [16] T. Bizen et al., Nucl. Instrum. Meth. A467-468 (2001) 185. [17] T. Bizen et al., Nucl. Instrum. Meth. A515 (2003) 850. [18] T. Tanaka et al., Proc. 30th Int. Free Electron Laser Conf. (FEL2008), 371. [19] T. Tanaka et al., Phys. Rev. ST-AB, 12 (2009) 120702. [20] T. Tanaka et al., Phys. Rev. ST-AB 15 (2012) 110701. [21] T. Tanaka, Proc. 26th Int. Free Electron Laser Conf. (FEL2004), 435 URL

http://radiant.harima.riken.go.jp/ simplex/index.html [22] T. Tanaka et al., J. Synchrotron Rad., 8 (2001) 1221 URL http://radiant.harima.riken.go.jp/ spectra/index.html