Similar documents
JFE.dvi

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

浜松医科大学紀要

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

JMP V4 による生存時間分析

untitled

28 Horizontal angle correction using straight line detection in an equirectangular image

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

25 Removal of the fricative sounds that occur in the electronic stethoscope

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

2 ( ) i

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

dvi

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

yasi10.dvi

7,, i

わが国企業による資金調達方法の選択問題

2 1 ( ) 2 ( ) i

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

ばらつき抑制のための確率最適制御

untitled

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

II

k2 ( :35 ) ( k2) (GLM) web web 1 :

Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Social Networking

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

29 Short-time prediction of time series data for binary option trade

2007-Kanai-paper.dvi


22 Google Trends Estimation of Stock Dealing Timing using Google Trends

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2

4.1 % 7.5 %

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

活用ガイド (ソフトウェア編)

1 1 tf-idf tf-idf i

井手友里子.indd

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

TF-IDF TDF-IDF TDF-IDF Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Sat

24 Depth scaling of binocular stereopsis by observer s own movements

Web Web Web Web Web, i

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

soturon.dvi

16

_念3)医療2009_夏.indd

ISSN NII Technical Report Patent application and industry-university cooperation: Analysis of joint applications for patent in the Universit

ohpmain.dvi


1..FEM FEM 3. 4.

エクセルカバー入稿用.indd

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal


udc-2.dvi

201711grade1ouyou.pdf

,,,,., C Java,,.,,.,., ,,.,, i

03.Œk’ì

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

01_.g.r..

早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Ec


1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

NotePC 8 10cd=m 2 965cd=m Note-PC Weber L,M,S { i {

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

SC-85X2取説


<4D F736F F F696E74202D C835B B E B8CDD8AB B83685D>

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

untitled

,,.,.,,.,.,.,.,,.,..,,,, i

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

<95DB8C9288E397C389C88A E696E6462>

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

25 D Effects of viewpoints of head mounted wearable 3D display on human task performance

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

waseda2010a-jukaiki1-main.dvi

塗装深み感の要因解析

paper.dvi

Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット


困ったときのQ&A

Visit Japan Campaign OD OD 18 UNWTO 19 OD JNTO ODUNWTO 1 1

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

日本統計学会誌, 第44巻, 第2号, 251頁-270頁


untitled

こんにちは由美子です

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

Web Basic Web SAS-2 Web SAS-2 i

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

Public Pension and Immigration The Effects of Immigration on Welfare Inequality The immigration of unskilled workers has been analyzed by a considerab

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Transcription:

2014 3

2014 3

Reliability Data Analysis and its Application Based on Linear Bivariate History of Two-Dimensional Time Scale Masahiro Yokoyama Abstract In reliability engineering, the failure mechanism is a key concept to identify the lifetime distribution and its time scale. However a failure phenomenon could be occurred by two or more failure mechanisms. Therefore the analysis of field reliability data may lead us to a conclusion different from the results of lab experiments. This thesis investigates the problem of multiple time scales, especially in bivariate cases, to assess the effects of failure mechanisms on field reliability by estimating the joint distribution function of the product lifetime on these time scales. Pons (1986) proposed a nonparametric estimator of the joint cumulative hazard function of bivariate survival data in the presence of censoring. However this estimator does not consider the fact that each product has a bivariate history up to a failure or a censoring on a two-dimensional space. Intrinsically the lifetime distribution of a product on multiple time scales is univariate. Therefore this thesis proposes a simple estimator of the cumulative hazard function which takes usage histories of each product into consideration for analyzing field failure data of industrial products.

This estimator is proposed in Chapter 4 under the assumption that a sample path can be modeled as a straight line. Chapter 5 shows the analysis of an actual field reliability data to demonstrate that it enables estimation of the usage-frequency-dependent failure probability. The difference between this estimator and the estimator proposed by Pons (1986) is discussed in Chapter 6. The estimator in Chapters 4 through 6 is proposed for the cases in which the product bivariate history is linear and only the event point, failure or censoring, is observed. Chapter 7 investigates the cases in which every product history is observed. Variables which affect the failure mechanism are commonly referred to covariates. For example, the temperature and the relative humidity are sometimes included into the analysis of reliability data as covariates. Recently, covariates can be obtained continuously by the use of Information and Communication Technology (ICT). Using a conversion model from a failure time to a new value taking covariate information, a method to estimate the value of a covariate effect on failure mechanism is shown. According to the above studies, it is shown that user s information such as usage-frequency and covariate becomes possible to be utilized for lifetime estimation.

i 1 1 1.1............................. 1 1.2.............. 2 1.3.............................. 4 1.4......................... 6 1.5.......... 8 1.6................................ 8 1.7................................ 9 2 11 2.1.................. 11 2.2. 12 2.3............. 13 2.3.1..... 13 2.3.2 14 3 16 3.1 Nelson-Aalen........................... 16 3.2 Pons[14].... 17 3.3..................... 18

ii 4 19 4.1................ 19 4.1.1............ 19 4.1.2.................. 22 4.2 Pons[14]. 23 5 25 5.1....................... 25 5.1.1........ 25 5.1.2 3............... 30 5.1.3............. 32 5.2 Pons[14].................. 35 5.2.1 Pons[14]........... 35 5.2.2 Pons[14] 36 6 38 6.1 38 6.2................ 42 6.2.1........... 42 6.2.2 ε i j 0.5 12.... 43 6.2.3 ε i j 2.5 13.... 46 6.2.4.......... 48 6.2.5...... 49 6.3 Pons....................... 52

iii 7 54 7.1.............. 54 7.2.............. 54 7.3........... 55 7.3.1..... 55 7.3.2......................... 56 7.4....................... 57 7.5....................... 59 7.5.1......................... 59 7.5.2..................... 60 7.5.3..................... 63 7.6........................... 68 8 70 8.1................................ 70 8.2................................ 71 A 72 B MSE kl 76

iv 1 :, :, 8988................................... 3 2........................... 4 3 :, :, 1080 5 4 3 :, :, :, :,1080.... 5 5 2 :, :, 7908............................ 7 6 0.2 (5 5)........... 21 7 (5 5) E 23............................. 23 8 Pons[14] (5 5) E 23........ 24 9................... 26 10 3 log 10 Ĥ ˆF....... 31

v 11 η i 1.0 0.5,, 200 39 12 ε i j 0 0.5, x i j,, 200 40 13 ε i j 0 2.5, x i j,, 200 41 14 ε i j 0.5 50 10 {10 1.85 < x 10 1.90 }.. 45 15 ε i j 2.5 50 10 {10 1.85 < x 10 1.90 }... 47 16, x i j,, 200 η i 0.2 0.5 ε i j 0.5 0.5....................... 48 17 ε i j 0.5 13 {10 1.85 < x 10 1.90 }..................... 51 18 ε i j 0.5 13 {10 1.85 < x 10 1.90 }.............................. 53 19 z q J = 4................ 59 20 T (β).............................. 60 21 17 η = 100 β 1 β1 = 1.00 1000 ±........ 66

vi 22 17 β 1 η = 100 n = 10000 1000 β 1 = 1.00...................... 67 23 0.2 (5 5) {(x,y) : 10 1.4 < x 10 1.6,10 1.2 < y 10 1.4 }................................ 73 24.............................. 73

vii 1 0.1 d kl..... 28 2 0.1 c kl.. 28 3.................... 29 4 Ĥ.......................... 30 5.................................... 32 6.... 34 7 Pons[14]................ 35 8 Pons[14] 37 9 [ ] 37 10 ε i j 0.5 n = 10000 50.................................... 44 11 ε i j 0.5 Pons[14] n = 10000 50................................ 44 12 ε i j 0.5 n = 10000 50 44

viii 13 ε i j 0.5 n = 25000 50 5 5......................... 50 14 ε i j 0.5 n = 25000 50 5 5.......................... 50 15 [ ] ε i j 0.5 n = 10000 50................................ 50 16 Ti β 1 = β 2 = 1.00 µ = 2.0, n = 1000, : 500......................... 63 17 Ti (β ) Ti (β) β 1000 β 1 = β 2 = 1.00) 65 18 T i (β ) β 1000 β 1 = β 2 = 1.00)........... 69 19 24............................ 74 20 [ ]................................ 75 21 ε i j 2.5 n = 10000 50........... 77 22 ε i j 2.5 MSE kl n = 10000 50...... 78

ix 23 ε i j 2.5 Pons[14] MSE kl n = 10000 50.. 79

1 1 1 1.1

1 2 1.2 8988 8988 904 8084 (x i,y i,e i ), i = 1,...,8988, i x i i y i i e i = 1 (x i,y i ) e i = 0 (x i,y i ) 1 T C T F(t) C T G(c) i T i C i i x i T i C i x i = min{t,c} T i C i T i > C i

1 3 1: :, :, 8988

1 4 T 1 T 2 C 1 C 2 (T 1,T 2 ) F(t 1,t 2 ) (C 1,C 2 ) (T 1,T 2 ) G(c 1,c 2 ) i (T 1i,T 2i ) (C 1i,C 2i ) (0,0) T 1i C 1i T 2i C 2i C 1i < T 1i C 2i < T 2i 1.3 (, ) (50,1000) (120,2200) (200,4000) 2 2: 3 1080 1080 4 4

1 5 3: :, :, 1080 4: 3 :, :, :, :,1080

1 6 1.4 x i y i a i = y i /x i i 4 a i a i 4 a i A A A (T 1,T 2 ) F(t 1,t 2 A) A (C 1,C 2 ) (T 1,T 2 ) G(c 1,c 2 A) A

1 7 5: 2 :, :, 7908 1 3 7908 5 4 5 (x i,y i,e i )

1 8 1.5 Information and Communication Technology ICT PC 7 1.6 3 Pons[14] Pons[14] 3

1 9 1.7 8 2 6 7 8 2 3 Nelson-Aalen Nelson[12], Aalen[1] Pons[14] 4 Pons[14]

1 10 5 8988 Pons[14] 6 5 7 8

2 11 2 4 2.1 S(t) = P{T > t}, t 0 F(t) = P{T t} = 1 S(t), t 0 S(t) F(t) f (t) F(t) = t 0 f (u)du λ(t) = f (t) S(t) λ(t)

2 12 (2.1) λ(t) Λ(t) Λ(t) = t 0 λ(u)du = log λ(u)du + log λ(u)du t 0 = log t λ(u)du = logs(t) = log(1 F(t)) (2.1) (2.1) Λ(t) F(t) 2.2 1 A A A (T 1,T 2 ) S(t 1,t 2 A) F(t 1,t 2 A) S(t 1,t 2 A) = P{T 1 > t 1 T 2 > t 2 A} F(t 1,t 2 A) = P{T 1 t 1 T 2 t 2 A} f (t 1,t 2 A) F(t 1,t 2 A) S(t 1,t 2 A) > 0 F(t 1,t 2 A) f (t 1,t 2 A) λ(t 1,t 2 A) λ(t 1,t 2 A) = f (t 1,t 2 A) S(t 1,t 2 A) Λ(t 1,t 2 A) Λ(t 1,t 2 A) = t1 t2 0 0 λ(u 1,u 2 A)du 1 du 2 (2.2)

2 13 4 Λ(t 1,t 2 A) (2.1) F(t 1,t 2 A) f (t 1,t 2 A) F(t 1,t 2 A) f (t 1,t 2 A) A P{A} P{A} A f (t 1,t 2 A) P{A} 2.3 2.3.1 (t 1,t 2 ) S(t 1,t 2 ) F(t 1,t 2 ) S(t 1,t 2 ) = P{T 1 > t 1 T 2 > t 2 } F(t 1,t 2 ) = P{T 1 t 1 T 2 t 2 } S(t 1,t 2 ) > 0 F(t 1,t 2 ) f (t 1,t 2 ) λ(t 1,t 2 ) λ(t 1,t 2 ) = f (t 1,t 2 ) S(t 1,t 2 ) Λ(t 1,t 2 )

2 14 Λ(t 1,t 2 ) = t1 t2 0 0 λ(u 1,u 2 )du 1 du 2 (2.3) Λ(t 1,t 2 ) 3 (2.3) Λ(t 1,t 2 ) F(t 1,t 2 ) 2.3.2 [ t1 t2 logs(u 1,u 2 ) du 1 du 2 = logs(u 1,u 2 ) v 1 v 2 0 0 ] u1 =t 1 u 2 =t 2 u 1 =0 u 2 =0 ( ) S(0,0) S(t 1,t 2 ) = log S(t 1,0) S(0,t 2 ) (2.4) t1 t2 0 0 t1 t2 logs(u 1,u 2 ) du 1 du 2 v 1 v { 2 S(u 1,u 2 )/ v 1 v 2 S(u 1,u 2 ) = S(u 1,u 2 )/ v 1 S(u 1,u 2 )/ v 2 du 1 du 2 0 0 S(u 1,u 2 ) S(u 1,u 2 ) { t1 t2 ( u2 ) ( f (u 1,u 2 ) = 0 0 S(u 1,u 2 ) f (u 1,v 2 )dv u1 ) 2 f (v 1,u 2 )dv } 1 du 1 du 2 S(u 1,u 2 ) S(u 1,u 2 ) { t1 t2 ( u2 ) ( f (u 1,v 2 )dv u1 ) 2 f (v 1,u 2 )dv } 1 = Λ(t 1,t 2 ) du 1 du 2 S(u 1,u 2 ) S(u 1,u 2 ) 0 0 = Λ (t 1,t 2 ) ( ) (2.5) }

2 15 (2.4) (2.5) (2.6) ( ) Λ S(0,0) S(t 1,t 2 ) (t 1,t 2 ) = log S(t 1,0) S(0,t 2 ) (2.6) (2.6) S(t 1,t 2 ) (2.7) S(t 1,t 2 ) = exp(λ (t 1,t 2 )) S(t 1,0) S(0,t 2 ) (2.7) F(t 1,t 2 ) (2.8) S(t 1,0) = t1 0 F(t 1,t 2 ) = t1 t2 0 0 f (u 1,u 2 )du 1 du 2 = 1 S(t 1,0) S(0,t 2 ) + S(t 1,t 2 ) (2.8) f (u 1,u 2 )du 1 du 2 S(0,t 2 ) = 0 t2 t 1,t 2 f (u 1,u 2 )du 1 du 2 (2.8) 5 6

3 16 3 3.1 Nelson-Aalen Nelson-Aalen Nelson[12], Aalen[1] Nelson-Aalen [8] n i i = 1,,n X i T i C i T i C i i X i = min{t i,c i } e i = I {Xi =T i } I {} {} 1 0 N(t) = R(t) = n I {Xi t,e i =1} i=1 n I {Xi t} i=1

3 17 [t,t + dt) dn(t) = N((t + dt) ) N(t ) dn(t) [t,t + dt) N(t) N(t ) = lim u t 0 N(u) Nelson[12], Aalen[1] R(t) > 0 Λ(t) ˆΛ(t) = t 0 dn(u) R(u) (3.1) (3.1) Lawless[10] 4 (4.6) (4.6) (3.1) 3.2 Pons[14] Pons[14] n x y i i = 1,,n (T 1i,T 2i ) (C 1i,C 2i ) (T 1i,T 2i ) (C 1i,C 2i ) i P Pons[14] N(t 1,t 2 ) = R P (t 1,t 2 ) = I {T1i <t 1,T 2i <t 2,C 1i >T 1i,C 2i >T 2i } 1 i n I {min{t1i,c 1i }>t 1,min{T 2i,C 2i }>t 2 } 1 i n

3 18 [(t 1,t 2 ),(t 1 + dt 1,t 2 + dt 2 )) dn(t 1,t 2 ) = N((t 1 + dt 1,t 2 + dt 2 ) ) N((t 1,t 2 ) ) dn(t 1,t 2 ) [(t 1,t 2 ),(t 1 + dt 1,t 2 + dt 2 )) N(t 1,t 2 ) N((t 1,t 2 ) ) = lim u1 t 1 0 lim u2 t 2 0 N(u 1,u 2 ) Pons[14] Λ(t 1,t 2 ) ˆΛ P (t 1,t 2 ) = t1 t2 0 0 dn(u 1,u 2 ) R P (u 1,u 2 ) (3.2) (3.2) 4.2 (3.2) (4.8) 3.3 1 Pons[14] 1 4

4 19 4 1 4.1 4.1.1 2 ( ) a i 10 1.2 (x i,y i,e i ), i = 1,...,n, x i,i = 1,...,n, (V k 1,V k ], k = 1,...,K

4 20 y i,i = 1,...,n, (W l 1,W l ], l = 1,...,L K L V 0, V K W 0, W L V 0 < min i x i, max i x i V K, W 0 < miny i, maxy i W L, i i 1 K (logv K logv 0 ) = 1 L (logw L logw 0 ) V k,k = 1,...,K 1, W l,l = 1,...,L 1, V k = V 0 10 k{(logv K logv 0 )}/K, k = 1,...,K 1 {(logv K logv 0 )}/K = {(logw L logw 0 )}/L W l = W 0 10 l{(logv K logv 0 )}/L, l = 1,...,L 1 K L E kl = {(x,y) V k 1 < x V k,w l 1 < y W l } K L L K = (logw L logw 0 ) (logv K logv 0 ) logv 0 = log minx i, i logw 0 = log miny i, logv K = log maxx i, logw L = log maxy i i i i

4 21 K L 1 K (logv K logv 0 ) = 1 L (logw L logw 0 ) (4.1) K = L = 5, V 0 = W 0 = 10, V K = W L = 100 (4.1) 0.2 6 6: 0.2 (5 5) 6(b) 6(a) 6(a) 6(b) k l = m A m = { E k l k l = m } (4.2) A m, m = 1 L,...,0,...,K 1, x y y i /x i K + L 1

4 22 4.1.2 A k l E kl E kl A k l E kl { Ek l k l = k l, k k, l l } E kl R A kl A A k l d kl c kl d kl = i:(x i,y i ) E kl e i, c kl = i:(x i,y i ) E kl (1 e i ) (4.3) R A kl min{k k,l l} R A kl = ( ) dk+ j,l+ j + c k+ j,l+ j j=0 (4.4) E kl (V k V k 1 ) (W l W l 1 ) δ kl h A kl ˆ h A kl = d kl R A kl δ kl (4.5) A k l E kl H A kl ˆ H A kl = 0 ( ) ha ˆ k+ j,l+ j δ k+ j,l+ j = j= min{k 1,l 1} 0 j= min{k 1,l 1} d k+ j,l+ j R A k+ j,l+ j (4.6)

4 23 7: (5 5) E 23 {logv 0 = 1.0,logV 1 = 2.0,...,logV 5 = 6.0},{logW 0 = 1.0,logW 1 = 2.0,...,logW 5 = 6.0} 25(= 5 5) E 23 7 E 23 R A 23 7 E 23 Ĥ23 A 7 4.2 Pons[14] Pons[14] E kl R P kl RP kl } R P K L kl = {d j1 j2 + c j1 j2 (4.7) j 1 =k j 2 =l

4 24 E kl δ kl ĥ P kl d kl ĥ P kl = R P kl δ kl Ĥ P kl ĤP kl Ĥ P kl = = k j 1 =1 k j 1 =1 l j 2 =1 l j 2 =1 {ĥ Pj1 j2 δ j1 j2 } { d j1 j 2 R P j 1 j 2 } (4.8) 8 7 (5 5) E 23 E 23 R P 23 8 E 23 Ĥ23 P 8 8: Pons[14] (5 5) E 23

5 25 5 1.2 8988 Pons[14] 5.1 5.1.1 (1) x y 9(a) 9(b) x V 0 = 10 0.8, V K = 10 2.6 y W 0 = 10 1.2, W L = 10 4.0 9(c) 0.1 (18 28)

5 26 9:

5 27 (2) d kl 1 c kl 2

5 28 1: 0.1 d kl 2: 0.1 c kl

5 29 (3) {10 1.6 < x 10 2.3,10 2.7 < y 10 3.6 } 1 2 R A kl 3 3 1 3:

5 30 5.1.2 3 1.2 {10 1.6 < x 10 2.3,10 2.7 < y 10 3.6 } 1 2 4 4 log 10 Ĥ 4 4: Ĥ 4 x y log 10 Ĥ 3 3

5 31 10 3 log 10 Ĥ ˆF ˆF = 1 exp( Ĥ) 10: 3 log 10 Ĥ ˆF 10

5 32 5.1.3 Ĥ ˆF = 1 exp( Ĥ) 5 (4.6) 5:

5 33 5 {10 1.2 < x 10 1.3 } {10 2.2 < y 10 2.3 } A {10 1.2 < x 10 1.3 } {10 2.8 < y 10 2.9 } B A B 5 A B {10 1.9 < x 10 2.0 } A 2.9% B 22.2% {10 3.2 < y 10 3.3 } A 15.5% B 10.5%

5 34 5 6 2.2 6: 5 6 B B 5 6

5 35 5.2 Pons[14] 5.2.1 Pons[14] 5.1 (1) (2) (3) 7 Pons[14] {10 1.6 < x 10 2.3,10 2.7 < y 10 3.6 } R P kl 3 7: Pons[14]

5 36 5.2.2 Pons[14] 8 Pons[14] 2.3.2 9

5 37 8: Pons[14] 9: [ ]

6 38 6 Pons[14] 6.1 i j, ( j = 1...,J i 1), ( j = J i ) x i j j 1 j y i j j 1 j x i,y i x i = J i j=1 x i j y i = J i j=1 y i j (6.1) η i ε i j

6 39 y i j = η i x i j + ε i j (6.1) η i 11 η i 1.0 0.5 4, 100 11: η i 1.0 0.5,, 200

6 40 12 11 ε i j ε i j 1 4 12 ε i j 0 0.5 x i j = 5 12: ε i j 0 0.5, x i j,, 200

6 41 13 11 0 2.5 ε i j 12 0 13: ε i j 0 2.5, x i j,, 200

6 42 6.2 4, 70 6.2.1 Pons[14] F(t 1,t 2 ) = P{T 1 t 1 T 2 t 2 } F = n I n {T1i t 1 T 2i t 2 } I {T1i t = i=1 I {T1i 1 T 2i t 2 } 0 T 2i 0} i=1 n (6.2)

6 43 6.2.2 ε i j 0.5 12 12 ε i j 0.5 10000 80.5% 50 10 11 10000 12 25% 75% 14 10 {10 1.85 < x 10 1.90 } 50 Pons[14]

6 44 10: ε i j 0.5 n = 10000 50 11: ε i j 0.5 Pons[14] n = 10000 50 12: ε i j 0.5 n = 10000 50

6 45 14: ε i j 0.5 50 10 {10 1.85 < x 10 1.90 }

6 46 6.2.3 ε i j 2.5 13 13 ε i j 2.5 10000 15 14 ε i j 0.5 12 MSE ε i j 2.5 MSE(mean squared error) k l ˆF kl F kl 50 k l MSE MSE kl MSE kl = 50 ( ˆF kl F kl ) 2 r=1 50 MSE kl 10000 MSE kl 0.0257 Pons[14] MSE kl 0.0301 MSE kl B

6 47 15: ε i j 2.5 50 10 {10 1.85 < x 10 1.90 }

6 48 6.2.4 16 16 η i 0.2 0.5 ε i j 0.5 0.5 j x i j = 5 16:, x i j,, 200 η i 0.2 0.5 ε i j 0.5 0.5

6 49 16 4, 70 50 MSE kl 0.0365 Pons[14] MSE kl 0.0154 6.2.5 10 10000 25000 5 5 10 12 50 13 14 10000 10 15 13 14 15 17 13 {10 1.85 < x 10 1.90 } 17 14

6 50 13: ε i j 0.5 n = 25000 50 5 5 14: ε i j 0.5 n = 25000 50 5 5 15: [ ]ε i j 0.5 n = 10000 50

6 51 17: ε i j 0.5 13 {10 1.85 < x 10 1.90 }

6 52 Pons[14] 18 Pons[14] MSE kl 0.0082 Pons[14] MSE kl 0.2393 Pons[14] 6.3 Pons Pons[14] Pons[14] Pons[14] 18

6 53 18: ε i j 0.5 13 {10 1.85 < x 10 1.90 }

7 54 7 7.1 T T 7.2

7 55 7.3 7.3.1 Hong and Meeker[5][6] Nelson[13] (7.1) t ( ) z(t) (7.1) T T (β) T (β) = T 0 exp[β z(s)]ds (7.1) z(t) = z 1 (t) z 2 (t). z Q (t) : t Q β = [β 1 β 2 β Q ] : (7.1) Meeker and Escobar[11] proportional quantities(pq) scale accelerated failure-time(saft)

7 56 β β Hong and Meeker[5][6] T (β ) β 7.3.2 T (β ) β T (β ) T (β ) Hong and Meeker[5][6] β T (β) T (β ) Hong and Meeker[5][6] ˆβ T ( ˆβ) T (β ) T (β) β

7 57 7.4 µ σ T (β ) (7.2) L LN (β,µ,σ) = { } n exp[β z(ti, o 1 B i )] i=1 2πσT i (β) exp[ (lnt i (β) µ)2 2σ 2 ] (7.2) (7.2) β T (β ) 0 β g ln (β) = n i=1 (z(t o i,b i )) n i=1 Ti Ti (β) (β) 1ˆσ n i=1 {( log(t i (β)) ˆµ ˆσ ) } T i (β) Ti (β) (7.3) T i (β ) (log-location-scale) (7.4) i=1 n logl wei (β) = (β z(ti,b o i )) log( ˆσ) logti (β) i=1 i=1 i=1 { } n log(ti + (β)) ˆµ exp( log(t i (β)) ˆµ ) ˆσ ˆσ n n (7.4) g wei (β) (7.5) {( ) n g wei (β) = (z(ti,b o n Ti i )) n (β) (β) 1ˆσ exp( log(t i (β)) ˆµ ) 1 ˆσ i=1 i=1 T i i=1 T i } (β) i (β) T (7.5) T (β ) 0 β

7 58 exp( log(t i (β)) ˆµ ˆσ ) = exp(x) x = 0 Taylor exp(x) = exp(0) + exp(0) x = 1 + x (7.6) g wei (β) n i=1 (z(t o i,b i )) n i=1 Ti Ti (β) (β) 1ˆσ n i=1 {( ) } ( log(t i (β)) ˆµ ) T i (β) ˆσ Ti (β) = g ln (β) (7.6) T (β ) β

7 59 7.5 7.5.1 19 t o j, ( j = 1,...,J), t o j 19: z q J = 4 T : t o j J q : ( j = 1,...,J) : : (q = 1,...,Q) z q (t o j ) : to j z q T = t o J

7 60 20 19 T T (β) 20: T (β) i = 1,...,n, T i z(t o i j ) to i j, ( j = 1,...,J i) Ti (β) 7.5.2 T i (β ) β z(t o i j ) T i

7 61 T i (β ) T i (β ) z(t o i j ) 19 z(t o i j ) z 1,z 2 i ti o j z 1(ti o j ), z 2(ti o j ) 1.0 0.1 β 1,β 2 1.0 T i T i (β ) z(t o i j ) T i ti1 o = (to i2 to i1 ) = = (to i, J i 1 to i, J i 2 ) = 1 (: ) (ti, o J i ti, o J i 1 ) < 1 (: 1 ) Ti (β J i 1 ) = j=1 exp[β 1 z 1 (t o i j) + β 2 z 2 (t o i j)] + exp[β 1 z 1 (t o i, J i ) + β 2 z 2 (t o i, J i )] (t o i, J i t o i, J i 1 ) t o i, J i = T i T i

7 62 Kordonsky and Gertsbakh[9] T c.v.(t i (β)) = T i i (β) (β) (7.7)

7 63 7.5.3 T i (β ) T i (β ) T i (β ) 16 T i (β ) β 1 = β 2 = 1.00 µ σ 1000 1 500 β σ β 16: Ti β 1 = β 2 : 500 µ σ ˆβ1 ˆβ2 ˆβ1 ˆβ2 2.0 1.0 0.991 0.997 0.165 0.119 0.301 0.286 1.305 1.489 2.0 0.7 0.994 0.991 0.619 0.605 0.209 0.222 0.489 0.493 2.0 0.5 1.001 0.998 0.801 0.795 0.168 0.163 0.244 0.053 2.0 0.1 1.001 0.999 0.979 0.977 0.032 0.035 0.032 0.035 2.0 0.01 1.000 1.000 1.000 1.000 0.003 0.004 0.003 0.004 = 1.00 µ = 2.0, n = 1000, 500 500

7 64 T i (β ) Ti (β) β β 1 = β 2 = 1.00 T i (β ) β 1000 17 m η n 21 17 η = 100 β 1 17 21 β m β m β 22 17 β 1 η = 100 n = 10000 m

7 65 17: Ti (β ) Ti (β) β 1000 β1 = β 2 = 1.00)

7 66 (a) m = 1 (b) m = 2 (c) m = 3 (d) m = 4 (e) m = 5 (f) m = 6 21: 17 η = 100 β 1 β 1 = 1.00 1000 ±

7 67 22: 17 β 1 η = 100 n = 10000 1000 β 1 = 1.00

7 68 18 m 7.6 T i (β ) β 1,β 2 T (β ) m

7 69 18: T i (β ) β 1000 β 1 = β 2 = 1.00)

8 70 8 8.1 3 3

8 71 8.2 4 7

A 72 A 23(a) {logx 0 = 1.0,logX 1 = 1.2,,logX 5 = 2.0},{logY 0 = 1.0, logy 1 = 1.2,,logY 5 = 2.0} (5 5) {(x,y) : 10 1.4 < x 10 1.6,10 1.2 < y 10 1.4 } 23(b) {(x,y) : 10 1.4 < x 10 1.6,10 1.2 < y 10 1.4 } 23(a) 23(b) 23(a) 24(a)(b)

A 73 23: 0.2 (5 5) {(x,y) : 10 1.4 < x 10 1.6,10 1.2 < y 10 1.4 } 24:

A 74 24 19 4 20 19: 24

A 75 20: [ ]

B MSE KL 76 B MSE kl 21 ε i j 2.5 22 23 ε i j 2.5 50 MSE kl MSE kl MSE kl

B MSE KL 77 21: ε i j 2.5 n = 10000 50 (a) {1.6 < x 18} (b) {18 < x 200}

B MSE KL 78 22: ε i j 2.5 MSE kl n = 10000 50 (a) {1.6 < x 18} (b) {18 < x 200}

B MSE KL 79 23: ε i j 2.5 Pons[14] MSE kl n = 10000 50 (a) {1.6 < x 18} (b) {18 < x 200}

80 [1] Aalen, O. (1978) : Nonparametric inference for a family of counting processes, The Annals of Statistics, Vol.6, pp.701-726. [2] Burke, M. D. (1984) : Estimation of a bivariate distribution function under random censorship, Biometrika, Vol.75, pp.379-382. [3] Dabrowska, D. M. (1988) : Kaplan-Meier estimate on the plane, The Annals of Statistics, Vol.16, pp.1475-89. [4] Fleming, T. R. and Harrington, D. P. (1991) : Counting Processes and Survival Analysis, Wiley. [5] Hong, Y. and Meeker, W. Q. (2010): A model for field failure prediction using dynamic environmental data, Mathematical and Statistical Models and Methods in Reliability Statistics for Industry and Technology, Springer, pp.223-233. [6] Hong, Y. and Meeker, W. Q. (2013): Field-failure predictions based on failure-time data with dynamic covariate information, Technometrics, Vol. 55, pp. 135-149. [7] Hougaard, P. (2000) : Analysis of Multivariate Survival Data (Statistics for Biology and Health), Springer. [8], (1983) :,.

81 [9] Kordonsky, K. B. and Gertsbakh, I. B. (1993): Choice of the best time scale for system reliability analysis, European Journal of Operational Research, Vol. 65, pp.235-246. [10] Lawless, J. F. (2003) : Statistical Models and Methods for Lifetime Data Second Edition, Wiley. [11] Meeker, W. Q. and Escobar, L. A. (1998) : Statistical Methods for Reliability Data, Wiley. [12] Nelson, W. (1972) : Theory and applications of hazard plotting for censored failure data, Technometrics, Vol.14, pp.945-966. [13] Nelson, W. (2001): Prediction of fieldreliability of units, each underdifferingdynamicstresses, from accelerated test data, Handbook of Statistics, Elsevier, Vol. 20, pp.611-621. [14] Pons, O. (1986) : A test of independence between two censored survival times, Scandinavian Journal of Statistics, Vol.13, pp.173-185.

82

1 2 26 1,, Vol.36, pp.63-73. 2 : Masahiro Yokoyama and Kazuyuki Suzuki Integrated Reliability and Safety Information System for Personalized Risk Communication 22 10, The 8th ANQ Congress, Delhi, JP25. : Masahiro Yokoyama, Toshie Yamashita, Watalu Yamamoto and Kazuyuki Suzuki Personalized Prediction of Optimal Replacement Point Using Data Assimilation 23 9, The 9th ANQ Congress, Ho Chi Minh City, JP11.