revise-01.dvi

Similar documents
kogi dvi

GJG160842_O.QXD

000-Tanikawa_Soma

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

<8CA48B8694EF8E E E816991E C5816A5F8DC58F4994C52E706466>

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k


<82D282A982C1746F95F18D908F57967B95B E696E6464>

秋植え花壇の楽しみ方


320_…X…e†Q“õ‹øfiÁ’F

8-5 中国・四国・九州地方の地殻変動

‚æ4“ƒ.ren

「諸雑公文書」整理の中間報告

学習の手順

000-Tanikawa_Watanabe

青森県2012-初校.indd

IR0036_62-3.indb

untitled

untitled

秋田県2012-初校.indd




Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

岩手県2012-初校.indd


24 Depth scaling of binocular stereopsis by observer s own movements

k = The Last Samurai Tom Cruise [1] Oracle Ken Watanabe (I) has a Bacon number of 2. 1: 6(k 6) (small world p

1. 2. (Rowthorn, 2014) / 39 1


gives eclipses with features described in these records, whendataareavailable Wehavedetermined T s for 19 solar eclipses in this way and shown these i

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2


倉田.indd

〈論文〉興行データベースから「古典芸能」の定義を考える


07_toukei06.dvi

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

[1] 2 キトラ古墳天文図に関する従来の研究とその問題点 mm 3 9 mm cm 40.3 cm 60.6 cm 40.5 cm [2] 9 mm [3,4,5] [5] 1998

Kyushu Communication Studies 第2号


2 ( ) i

ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o

) 6) 2 (1855) 10 (1921) 7) II 8) 75 9)

LAGUNA LAGUNA 10 p Water quality of Lake Kamo, Sado Island, northeast Japan, Katsuaki Kanzo 1, Ni

untitled

‚æ‡PŁflŒå‡P“Z’³4

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

001.indd

Historical Disaster Studies in Kyoto No.

Kyoto University * Filipino Students in Japan and International Relations in the 1930s: An Aspect of Soft Power Policies in Imperial Japan

hPa ( ) hPa

‘¬”R.qx


Oda

A Study on Practical Use of Artificial Intelligence. The purpose of this research paper is to demonstrate the ease of using artificial intelligence in

) km 200 m ) ) ) ) ) ) ) kg kg ) 017 x y x 2 y 5x 5 y )

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds


Taro13-芦北(改).jtd

Taro13-宇城(改).jtd


8 8 0

レジャー産業と顧客満足の課題

2種の(1→3)-β-D-グルカン測定試薬の真菌に対する反応性の比較

製紙用填料及び顔料の熱分解挙動.PDF



Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

浜松医科大学紀要

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

H23,12,30

29 Short-time prediction of time series data for binary option trade

ha ha km2 15cm 5 8ha 30km2 8ha 30km2 4 14

untitled

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

J No J. J

pdf

Fig. 1 Photography of exercise test by Arm Crank Ergometer. Fig. 2 Photography of exercise test by chair with caster. Arm Crank Ergometer Wheelchair T

Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Departmen

宮城県2012-初校.indd

234 50cm

bosai-2002.dvi

11太陽電池作品集表1


操作ガイド(本体操作編)

1793 Detailed Distributions of Seismic Intensity and Tsunami Heights of the Kansei off Miyagi Prefecture Earthquake of February 17, 1793 Yuichi NAMEGA

ha38. 3ha 35. 4ha 3. 4km 40ha B. C m 40m 2. 5m 4 5m b 14 3, 4, 5 2 a 2 a, 3 a 25m 10m 4 9 MH 52 68% 3 b 10 30cm 6,7, 8 JIS A12

untitled


2 1 ( ) 2 ( ) i

在日外国人高齢者福祉給付金制度の創設とその課題

橡博論表紙.PDF


Y X X Y1 X 2644 Y1 Y2 Y1 Y3 Y1 Y1 Y1 Y2 Y3 Y2 Y3 Y1 Y1 Y2 Y3 Y1 Y2 Y3 Y1 X Lexis X Y X X2 X3 X2 Y2 Y1 Y1


TEM

Tsuken Technical Information 1

単位、情報量、デジタルデータ、CPUと高速化 ~ICT用語集~

Transcription:

14???? (2011) 247 3 24 ( ) ( ) (2011 5 20 ; 2011 8 15 ) We examine the value of ΔT at around AD 247. We found that there is a comment in the Jinshu ( ) on the eclipse on March 24, 247 (Julian Calendar). The comment suggests that the eclipse was not total but deep. We obtain ΔT > 7750 in contrast to the result of Tanikawa et al.(2010) which stated the value close around ΔT = 8000 is too large and is improbable. The ΔT result says that the maginitude of the eclipse on March 24, 247 in Kyushu Island is not total but deep. In particular, islands is the north shore of the Kyushu may have experienced a total eclipse. We discuss some implications. 1 [1],.,.,,, 158 7 13 ( ). ΔT. [1],, 7692 < ΔT <7933., 100 247 ΔT = 8500. [1], 247 ΔT = 70,. [1] 2., ΔT,., [1]. 247 ( ). ΔT 4..., (, [8])., 150,., [1],.., 247 ΔT. 1

2 247 ΔT ( 247 3 24 ).,., ΔT,.., : ( )... :,,.,.,, [ ],, [ ], [ ]. [ ], [ ],,..... ( 3 III,,, 1977,, p.74).,.,. ( ) :., ( ). ( ), 247 3 24.,,.,,, ΔT., ΔT >7750 ( 1 ). 0.99, 7750 < ΔT <8900 ( 2)., 0.99.., ΔT 9700 ( 3). 2

Solar Eclipse 247 3 24 Chengdu Jianye 100 110 120 1 1 TT - UT = 7750.0 sec Corr. to tidal term 0.00 "/cy^2 1: 247 3 24. 0.99, 0.95. ΔT = 7750,. Solar Eclipse 247 3 24 Chengdu Jianye 100 110 120 1 1 TT - UT = 8900.0 sec Corr. to tidal term 0.00 "/cy^2 2: 247 3 24. 0.99, 0.95. ΔT = 8900, 0.99. 3

Solar Eclipse 247 3 24 Chengdu Jianye 100 110 120 1 1 TT - UT = 9700.0 sec Corr. to tidal term 0.00 "/cy^2 3: 247 3 24. 0.99, 0.95. ΔT 9700. 3 247, 247 ΔT >7750. ΔT ( )., 247., 1.,., (, 280 ), (, ), (, )..,.,,.,,., ( 265 ),., 1, 2, 3 (Chengdu), (Jianye), 247 3 24, 0.95 ΔT >8900.. 243 6 5. ΔT 4. ΔT 15000,.. ( ) 243,. 247 3 24. 4

,. 243,.. ( ), 648,... 60 Solar Eclipse 243 6 5 50 Chengdu Jianye 20 80 90 100 110 120 1 1 TT - UT = 8500.0 sec Corr. to tidal term 0.00 "/cy^2 4: 243 6 5. 0.9. ΔT = 8500...,, 200 370,, ΔT. 2. ( ),,, ΔT., ΔT,.. 200, 212, 216, 221 ΔT 10000. ( 1,2). 223 1 19,. ΔT <7500 8900 < ΔT ( 12 ). ΔT <7500, 8900 < ΔT., 247 3 24 7750 < ΔT, 24 223 ΔT.,, ΔT. 4. 5

1: No. 3420 221 8 5 (,, ) :? (,, ) 3421 222 1 ( ) (, ) 3423 223 1 19 ( ) (, ) - 224 12 27 ( ) ( ) 3444 232 1 10 ( ) (, ) - 232 2 9 (, ) 3447 233 6 25 (,, ) 3463 2 8 5 (, ) - 242 5 17 (, ) 3470 243 6 5 ( ) ( ) 3472 244 5 24 (, ) 3474 245 5 13 (, ) 3475 245 11 7 (, ) 3478 247 3 24 ( ) (, )... ( ) - 248 2 12 (, ) 3482 249 3 2 (, ) 3506 259 8 6 (, ) 3507 260 1 (,, ) (, ) 3511 261 6 15 (,, ) 3514 262 11 29 ( )? ( ) ( ) 6

2: ΔT OPP.# YMD Delta T Remarks 3372 200.09.26 ΔT <11110 ( ) 3399 212.08.14 ΔT <11800 38 216.06.03 ΔT <121 ( ) 3420 221.08.05 ΔT <10480 3423 223.01.19 ΔT <7500 8900 < ΔT 3478 247.03.24 7750 < ΔT 3538 273.05.04 200 < ΔT <10900 3546 277.02.20 ΔT <60 70 < ΔT 3571 288.07.16 ΔT <10600 3611 6.07.27 6500 < ΔT <7850 ( ) 3632 316.07.06 ΔT <5150 5650 < ΔT 3687 341.03.04 ΔT <7770 80 < ΔT < 0.99 37 360.08.28 7100 < ΔT <9450 3747 368.04.04 ΔT <110 ( ), ;. ( )... 273 5 4, 200 < ΔT, ΔT <10900 ( 11 ). 277 2 20,., ΔT <60, 70 < ΔT ( 12 ). 288. 6 7 27, 6500 < ΔT <7850., 6, 316, 341, 360 368 2. Stephenson([2]). Fotheringham([13]), Stephenson 364 6 16., ΔT = 8100, ΔT = 80 ΔT = 80. 3 ΔT,.,, 3 1. 1, 2,.., 2 50,, 2., Stephenson (1997) 360 ΔT 2 ΔT. 4 200 ΔT [1], 158 100 ΔT 500,.,. Stephenson (1997) Fig 14.1, ΔT, 1 1 ( ). 1 7

,,, 2, ΔT 2., ΔT 2,., 19 ΔT. ΔT TT UT ΔT =TT UT. TT Newcomb ET. Newcomb 19 100 UT., 19 100 ΔT,. 150 ΔT 66. LOD (Legth of Day), 1970 24 +3 ms, 19 24, 1998, 2011 LOD 24 +1 ms., 150 LOD 3ms 1ms ( 5 UT1 UTC( ) UTC TAI( ), 6 LOD 24h, UT 1955 7. UT1, UTC, TAI, 19 UT1 UTC 32.184 ΔT ). 4 0-4 -8-12 -16-20 -24-28 -32-36 4 0-4 -8-12 -16-20 -24-28 -32-36 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 5: UT1 TAI( ) UTC TAI( ) 200 ΔT. Stephenson (1997), ΔT 200 LOD 24 26 ms. ΔT 100 950. 100 500, LOD 24 +14 ms, ms., ω, ω ms/24 h = 4.6 10 7. 8

ms 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0-0.5-1.0 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 6: LOD 24h L = Iω, ω, I. I 4.6 10 7. I =0.4MR 2 (M, R ), I =0.33MR 2 =8.0 10 37 kg m 2., M =5.972 10 24 kg, R =6.37 10 6 m.,,,. ΔI =(2/3)mR 2 (m ) ΔI =(4.6 10 7 ) (8.0 10 37 )kgm 2 =3.7 10 31 kg m 2, R =6.37 10 6 m m =1.4 10 18 kg = 1.4 10 21 g. 3.61 10 8 km 2 =3.61 10 18 cm 2, 1.0 g/cm 3 ( 1.01 1.05 g/cm 3 ), h h =(1.4 10 21 g)/(1.0 g/cm 3 )/(3.61 10 18 cm 2 ) = 390 cm, 4m., 1.4 10 7 km 2 =1.4 10 17 cm 2, 0.9 g/cm 3, D D =(1.4 10 21 g)/(0.9 g/cm 3 )/(1.4 10 17 cm 2 )=11, 000 cm = 110 m, 100 m. 100, LOD 24 +14 ms.,. 9

5 [1], 247 ΔT >7750.. 247 3 24. ΔT = 8500, 8900, 9700 3, 0.99. 7,,, 0.99 0.98.,.,, ([12]). 247,,,. [1], : 2010, 13, 85 99. [2] Stephenson, F.R.: 1997, Historical Eclipses and Earth s Rotation, Cambridge University Press. [3] ( ): 1964,,. [4],,, ( ): 1994, ( ),, 4 1. [5], : 2009, :,,, 713 715. [6], : 2008, 11-34. [7] Sôma, M., Tanikawa, K. and Kawabata, K.-A.: 2003, Earth s rate of rotation between 700 BC and 1000 AD derived from ancient solar eclipses, Journées 2003. [8] : 1987,, ; ( ),,106 137. [9] :,. [10] :,. [11] :,. [12] : 2003,,. [13] Fotheringham, J.K.: 1920, MN 81, 104 126. 10

Solar Eclipse 247 3 24 36 35 34 33 32 125 126 127 128 129 1 131 132 133 134 135 TT - UT = 8500.0 sec Corr. to tidal term 0.00 "/cy^2 - - - Magnitude 0.990 Solar Eclipse 247 3 24 36 35 34 33 32 125 126 127 128 129 1 131 132 133 134 135 TT - UT = 8900.0 sec Corr. to tidal term 0.00 "/cy^2 - - - Magnitude 0.990 Solar Eclipse 247 3 24 36 35 34 Asuka 33 32 128 129 1 131 132 133 134 135 136 137 138 TT - UT = 9700.0 sec Corr. to tidal term 0.00 "/cy^2 - - - Magnitude 0.990 7: 247 3 24., 0.99. ΔT = 7750,. 11

. 2 ΔT. 50 Solar Eclipse 200 9 26 Jianye Asuka 110 120 1 1 TT - UT = 11110.0 sec Corr. to tidal term 0.00 "/cy^2 8: 200 9 26., 0.95. 12

Solar Eclipse 212 8 14 35 105 110 115 120 125 TT - UT = 11800.0 sec Corr. to tidal term 0.00 "/cy^2 9: 212 8 14., 0.95 Solar Eclipse 216 6 3 35 105 110 115 120 125 TT - UT = 121.0 sec Corr. to tidal term 0.00 "/cy^2 10: 216 6 3. 13

Solar Eclipse 221 8 5 35 105 110 115 120 125 TT - UT = 10480.0 sec Corr. to tidal term 0.00 "/cy^2 11: 221 8 5. 14

Solar Eclipse 223 1 19 Chengdu Jianye Asuka 100 110 120 1 1 TT - UT = 7500.0 sec Corr. to tidal term 0.00 "/cy^2 Solar Eclipse 223 1 19 Chengdu Jianye Asuka 100 110 120 1 1 TT - UT = 8900.0 sec Corr. to tidal term 0.00 "/cy^2 12: 223 1 19., 0.95. 15

Solar Eclipse 273 5 4 35 100 105 110 115 120 125 1 TT - UT = 10900.0 sec Corr. to tidal term 0.00 "/cy^2 Solar Eclipse 273 5 4 35 100 105 110 115 120 125 1 TT - UT =-200.0 sec Corr. to tidal term 0.00 "/cy^2 13: 273 5 4., 0.95. ΔT = 10900, ΔT = 200. 16

Solar Eclipse 277 2 20 Kyoto Mizushima Asuka 100 110 120 1 1 TT - UT = 70.0 sec Corr. to tidal term 0.00 "/cy^2 Solar Eclipse 277 2 20 Kyoto Mizushima Asuka 100 110 120 1 1 TT - UT = 60.0 sec Corr. to tidal term 0.00 "/cy^2 14: 277 2 20., 0.95. 17

Solar Eclipse 288 7 16 Chengdu Jianye Asuka 100 110 120 1 1 TT - UT = 8100.0 sec Corr. to tidal term 0.00 "/cy^2 Solar Eclipse 288 7 16 Chengdu Jianye Asuka 100 110 120 1 1 TT - UT = 10600.0 sec Corr. to tidal term 0.00 "/cy^2 15: 288 7 16., 0.95. 18

Solar Eclipse 6 7 27 Kyoto Mizushima Asuka 100 110 120 1 1 TT - UT = 7850.0 sec Corr. to tidal term 0.00 "/cy^2 Solar Eclipse 6 7 27 Kyoto Mizushima Asuka 100 110 120 1 1 TT - UT = 6500.0 sec Corr. to tidal term 0.00 "/cy^2 16: 6 7 27., 0.95. 19

Solar Eclipse 316 7 6 Kyoto Mizushima Asuka 100 110 120 1 1 TT - UT = 5650.0 sec Corr. to tidal term 0.00 "/cy^2 Solar Eclipse 316 7 6 Kyoto Mizushima Asuka 100 110 120 1 1 TT - UT = 5150.0 sec Corr. to tidal term 0.00 "/cy^2 17: 316 7 6., 0.95. 20

Solar Eclipse 341 3 4 Kyoto Mizushima Asuka 100 110 120 1 1 TT - UT = 80.0 sec Corr. to tidal term 0.00 "/cy^2 - - - Magnitude 0.990 Solar Eclipse 341 3 4 Kyoto Mizushima Asuka 100 110 120 1 1 TT - UT = 7770.0 sec Corr. to tidal term 0.00 "/cy^2 - - - Magnitude 0.990 18: 341 3 4. 0.99. 21

Solar Eclipse 360 8 28 Kyoto Mizushima Asuka 100 110 120 1 1 TT - UT = 7100.0 sec Corr. to tidal term 0.00 "/cy^2 Solar Eclipse 360 8 28 Kyoto Mizushima Asuka 100 110 120 1 1 TT - UT = 9450.0 sec Corr. to tidal term 0.00 "/cy^2 19: 360 8 28., 0.95. 22

Solar Eclipse 368 4 4 35 110 115 120 125 1 135 1 TT - UT = 110.0 sec Corr. to tidal term 0.00 "/cy^2 20: 368 4 4., 0.95. 23