TiO2ナノ粒子の部分硫化による可視光応答性光触媒の開発

Similar documents
微粒子合成化学・講義

untitled

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

Table 1. Shape and smelting properties of chrome ores as delivered. Table 2. Chemical composition of chrome ores (%). Table 3. Chemical composition of

untitled

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

製紙用填料及び顔料の熱分解挙動.PDF

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

CHEMOTHERAPY APR Fig. 1 Chemical structure of cefotetan (CTT, YM09330)

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization



橡

J. Jpn. Inst. Light Met. 65(6): (2015)

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

untitled

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets


Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of

Feature Article Earozoru Kenkyu, 26 1, Preparation of Nanoparticles by Ultrasonic Spray Pyrolysis 1 Takashi OGI 1 and Kikuo OKUYAMA 1 Rec

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

Fig. 2 Effect of oxygen partial pressure on interfacial tensions between molten copper and fayalite slag (Fe/Si0 2=1.23) at 1473 K. Fig. s Effect or o

** Department of Materials Science and Engineering, University of California, Los Angeles, CA 90025, USA) Preparation of Magnetopulmbite Type Ferrite

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,


_XAFS_ichikuni

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

(43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND

10生活環境研究報告.indd

資源と素材

Fig. la PL spectra of PSL prepared on Si specimen (p = 1 k Q m) with electrochemical etching in HF solution (26wt %) under galvanostatic conditions of

perature was about 2.5 Ž higher than that of the control irrespective of wind speed. With increasing wind speeds of more than 1m/s, the leaf temperatu

T05_Nd-Fe-B磁石.indd

<8B5A8F70985F95B632936EE7B22E696E6464>

SPring8菅野印刷.PDF

Microsoft PowerPoint - S-17.ppt

利隆塑料

X線分析の進歩36 別刷

日立金属技報 Vol.34

Netsu Sokutei 19 (4) Thermal Transitions and Stability of Fatty Acid-Containing and Defatted Bovine Serum Albumin (BSA) Michiko Kodama, Shinji

304 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /., No.0, -*. -*3 (,**1) 58 * ** *** : * : ** *** Development of Sorting System Based on Potato Starch C

Fig.1 A location map for the continental ultradeep scientific drilling operations.

9 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /,, No.0,,/+,/0 (,**/) 251 * * E#ects of Microbial Transglutaminase on Melting Point and Gel property of G


平成26年度 化学物質分析法開発報告書

ヒト血漿中オキシステロールの高感度分析法

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

Table 1. Main specifications of VAD plant. Fig. 2. Typical operating pattern of low alloy steel.

110 B U N S E K I K A G A K U Vol Fig. 1 system Schematic diagram of the plasma measurement Fig. 2 Photograph of a time-resolved obserbation

Fig. 1. Relation between fatigue crack propagation rate and stress intensity factor range. Fig. 2. Effect of stress ratio on fatigue crack opening rat

474 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No.3,.1..2* (,**0) 24 Measurement of Deterioration of Frying Oil Using Electrical Properties Yoshio

620 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /0, No. +,, 0,* 0,1 (,**3) 14 Use of Rice Paste in Rice Bread Processing Yasuko Kainuma Keywords : rice,

食品工学.indb

ナノ粒子のサイズ・形態制御と 構造敏感型触媒プロセスへの応用

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

Tetsu-to-Hagane Vol. 87 (2001) No. 5 Table 1. Physical properties of particles. (a) side view (b) front view Fig. 1. Experimental apparatus with semic

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

Synthesis and Property of the Mn Doped Oxide Red Phosphors in the Calcium Aluminates Koji INOUE, Shinya IWATA and Shinobu HASHIMOTO Recently, the deve

untitled

Table 1 Properties of parent coals used Ebenezer, Massel Buluck ; Australia, Datong; China Table 2 Properties of Various chars CY char: Captured char

平成26年度 化学物質分析法開発報告書

強相関電子系ペロブスカイト遷移金属酸化物による光エレクトロニクス 平成 12 年 11 月 ~ 平成 18 年 3 月 研究代表者 : 花村榮一 ( 千歳科学技術大学光科学部 教授 )

Al-Si系粉末合金の超塑性

Oxidative Dimerization of Tocopherols in Saturated and Unsaturated Triglycerides. III Formation of 5-(ƒÂ-Tocopheroxy)-ƒÂ-5-tocopherol and 5-(ƒÂ-Tocoph

Decreasing Behavior of Acetylene in Oil-Immersed Transformers Takahiro Ohno, Member (Tokyo Electric Power Co.,Ltd.), Masami Katayama, Member, Toshi.tu

0810_UIT250_soto

no15

原著03_高橋.indd

1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ

J. Soc. Cosmet. Chem. Jpn. 7-chome, Edogawa-ku, Tokyo 132, Japan 2.1 J. Soc. Cosmet. Chem. Japan. Vol. 31, No

Vol. 19, No. 3 (2012) 207 Fig. 2 Procedures for minute wiring onto polyimide substrate. Fig. 3 Ink - jet printing apparatus as part of laser sintering

9) H. SCHMCLZRIED: Z. Elektrochem. 66 (l%1) p ) W. D. KINGERY et al.: J. Am. Chem. Soc., 42 (1959), p ) F. HUND: Z. Phys. Chem., 199 (195


Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed

UDC : ' : '24' : '24'26' : : A Study of Condition of Pits Formation and Their Fe


緩衝材透水特性II 技術資料.PDF

スライド タイトルなし

橡

平成26年度 化学物質分析法開発報告書

36 th IChO : - 3 ( ) , G O O D L U C K final 1

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe


3-2 -

Fig. 1 Sampling positions from the ingot. Table 2 Chemical compositions of base metal (%) Fig. 2 (unit: mm) Shape and size of fatigue test specimen. T

0900906,繊維学会ファイバ8月号/報文-01-高橋

320 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /., No.1, -,* -,/ (,**1) 8 * ** *** * ** *** E#ect of Superheated Steam Treatment on the Preservation an

CuおよびCu‐Sn系化合物のSn‐Pbはんだ濡れ性解析

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

Corrosion Wear of Alloy Tool Steel (SKD 11) Coated with VC and Precipitation Hardening Stainless Steel (SUS 630) in Sodium Chloride Aqueous Solution T

技術研究報告第26号


Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6


Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee


LAGUNA LAGUNA 10 p Water quality of Lake Kamo, Sado Island, northeast Japan, Katsuaki Kanzo 1, Ni

Transcription:

2002 CdS, ZnS

by

CdS CdS, ZnS

CdS CdS, ZnS

52 36 15 14 14 10 10 10 3 3

(a) (b) (c) (d) (e) (f) (g) (h)

ev, nm 1240 nm

TiO 2 =3.2eV (= 390nm)

(a) (b) (c)pt

1 Fe 2 O 3 2.2 TiO 2 (rutile) 3.0 Cu 2 O 2.2 TiO 2 (anatase) 3.2 In 2 O 3 2.5 SrTiO 3 3.2 WO 3 2.7 ZnO <3.3 Fe 2 TiO 3 <2.8 BaTiO 3 3.3 PbO 2.8 CaTiO 3 3.4 V 2 O 5 2.8 KTaO 3 3.5 FeTiO 3 2.8 SnO 2 3.6 Bi 2 O 3 2.8 ZrO 2 5.0 Nb 2 O 3 3.0

2 Si 1.1 GaAs 1.4 CdSe, n 1.7 GaP 2.25 CdS, n 2.4 ZnS, n 3.5

P-1. P-2. P-3. P-4. * * P-5. N P-6. P-7.

P-8. P-9. TiO2 P-10. TiO2 P-11. V4+ * * * P-12. * ** ** *** **** * ********** * ** *** **** KAST***** P-13. * * P-14. Ti TiOxNy

TiO 2 O S R.Asahi, T.Morikawa, T.Ohwaki, K.Aoki,, and Y. Taga, Science, 293, 269 (2001).

Umebayashi (TiS 2 ) 500 600 T.Umebayashi T.Yamaki, S.Tanaka,, and K.Asai,, Chem. Lett., 32, 330 (2003).

Ohno

400 700 UV 500 600nm X 700 S T.Ohno, F.Tanigawa, K.Fujihara, S.Izumi,, and M.Matsumura,, J. Photochem. Photobiol., A:127, 107 (1999). T.Ohno, Y.Masaki, S.Hirayama,, and M.Matsumura,, J. Catal., 204, 163 (2001). T.Ohno, T.Mitsui,, and M.Matsumura,, Chem. Lett., 32, 364 (2003).

TiO 2

TiO 2 - ST01 ST01 20nm

TiO 2 TiO 2

TiO 2 (ST01, ) 110 TiO 2 TiO 2 900 Ti(OH) 4

TG Sample (100 Evacuation N 2 refilling CS 2 /N 2 gas flow (5/50 ml/min) Heating (1 ºC/ min) TG curve Telescope Quartz spring Thermal shield Gas inlet Water-cooled cap Sample in Electrical Quartz basket furnace Height meter Gas outlet Schematic drawing of thermobalance

TG curves of sulfurization of TiO 2 powders with CS 2 45 Weight change(%) 30 15 0 Heating rate: 1 C/min Gas flow rate: CS 2 : 5 ml/min N 2 : 50 ml/min Sample: a. ST01 b. Dried ST01 c. Anatase d. Rutile e. Ti(OH) 4 TiS 2 Ti 1.08 S 2 Ti 3 S 4 a b e c d -15 0 250 500 750 1000 Temperature (ºC )

XRD patterns of sulfurized TiO 2 powders Rutile Ti 3 S 4 Ti 1.08 S 2 e. Ti(OH) 4 Intensity (a.u.) d. Rutile c. Anatase b. Dried ST01 a. ST01 10 20 30 40 50 60 2Θ ( degrees)

Reactions Sulfurization TiO 2 +CS 2 TiS 2 + CO 2 Decomposition TiS 2 Ti 1.08 S 2 Ti 3 S 4 Dehydration Ti(OH) 4 TiO 2 + 2H 2 O

TiO 2 -ST01 TiO 2 -ST01 TG T>450 T<

TiO 2 XRD j. 500 C i. 450 C h. 400 C Intensity (a.u.) g. 350 C f. 300 C e. 250 C d. 200 C c. 150 C b. 100 C a. ST01 TiS 2 TiO 2 10 20 30 40 50 60 2Θ (º) 450 TiS 2

TiO 2 100 ST01 80 150 C 200 C 250 C 60 100 C 300 C %R 40 350 C 20 400 C 500 450 C 0 200 300 400 500 600 700 Wave length, nm

TiO 2 (a) TiO 2 (a) 100 TiO 2 (a) 150 TiO 2 (a) 200 TiO 2 (a) 250 TiO 2 (a) 300 TiO 2 (a) 350 TiO 2 (a) 400 450 TiO 2 (a) TiS 2 500 TiO 2 (a) TiS 2 505 4.0 745 780 743 833 637 516 595 93 109 8.4 6.8 8.8 9.5 8.5 4.3 0.0 0.0 0.0

TiO 2 ST01 500

SrTiO 3 n

Introduction SrTiO 3 Band gap energy = 3.3 ev Active for photodecomposition of the water by UV light irradiation Sr 1.15 TiS 3 Band gap energy = 0.3 ev Absorb the visible light Dissolve in water by irradiation of light Partially sulfurized SrTiO 3 : It could be chemically stable and enhance the photocatalytic activity of SrTiO 3.

Materials SrTiO 3 nanoparticles (SR-01) were prepared by sol-gel method. Ti(OPri) 4 were mixed with tri-ethanol amine (0.05:0.1) and maintained for 24 hours in argon atmosphere. De-carbonated water were added to complete 100 ml (stock solution). 5,3 g of Sr(OH) 2 8H 2 O were dissolved in 10ml H 2 O and mixed with 10 ml of stock solution. The formed gel was heated in autoclave at 250 for 3hrs. The powders were obtained after rinsing with water ultrasonically and centrifugal separation. The powders were dried at R.T. for 1d. Commercial SrTiO 3 were obtained from Wako Pure Chemical Co. Ltd. (SR-02) and High Purity Chemicals Co. Ltd. (SR-03).

TEM microphotographs of initial materials 50 nm 200 nm 200 nm SR-01 SR-02 SR-03 The particle size of SR-01 is smaller than 40 nm.

A cubic SrTiO 3 phase was founded in initial materials. XRD patterns for initial materials a. SR-01 Intensity/a.u. b. SR-02 c. SR-03 SrTiO 3 (Cub., JCPDS 35-734) 10 20 30 40 50 60 2θ/degree

TG curves of initial materials in Ar atmosphere Weight change/% 0-2 -4-6 -8-10 -3.9 SR-01 SR-02 Samples: SrTiO 3 Heating rate: 5 ºC/min, in argon atmosphere 0 250 500 750 1000 Temperature/ºC SR-03-0.90-6.73 Carbonates SR-01 only contents 3.9 % of adsorbed water and 2.83 % of OH groups.

TG curves of sulfurization in CS 2 30 Gas flow: N2 50 ml/min CS2 5mL/min Heating Rate: 1 C/min Weight change/% 25 20 15 10 5 0-5 SR-01 starts to sulfurize at 280 ºC -1.9 SrTiS 3 Sr 1.05 TiS 3 Sr 1.15 TiS 3 SR-01 SR-03 20.0 SR-02 0 250 500 750 1000 Temperature/ C 17.1 SR-02 and SR-03 start to sulfurize at 550 ºC 19.8 16.5 SR-01 is sulfurized at lower temperatures than SR-02 and SR-03

XRD patterns for Sulfurized SR-02 d. 1000 C Intensity/a.u. c. 750 C b. 650 C a. As-received SR-02 Sr 1.15 TiS 3 (JCPDS 49-1367) SrTiO 3 (Cub., JCPDS 35-734) 10 20 30 40 50 60 2Θ/degree A hexagonal Sr 1.15 TiS 3 phase was founded as final product in SR-02.

XRD patterns for sulfurized SR-03 d. 1000 C Intensity/a.u. c. 750 C b. 650 C a. As-received SR-03 Sr 1.15 TiS 3 (JCPDS 49-1367) SrTiO 3 (Cub., JCPDS 35-734) 10 20 30 40 50 60 2 /degree A hexagonal Sr 1.15 TiS 3 phase was also founded as final product in SR-03.

XRD patterns for Sulfurized SR-01 e. 1000 C d. 750 C Intensity/a.u. c. 650 C b. 550 C a. As-prepared SR-01 Sr 1.15 TiS 3 (Hex., JCPDS 49-1367) SrTiO 3 (Cub., JCPDS 35-734) 10 20 30 40 50 60 2Θ/degree However, a hexagonal Sr 1.15 TiS 3-x phase was founded in SR-01.

Sulfurization SR-02 and SR-03 Between 550 and 950 ºC C the sulfurization of SrTiO 3 is carried on SrTiO 3 Sr 1.15 TiS 3 Sr 1.15 SR-01 At temperature below 180 ºC C is produced the desorption of water. Between 180 and 280ºC, the adsorption of CS 2 on SrTiO 3 surface occurs. Between 280 and 850ºC, SrTiO 3 is sulfurized. At higher temperatures, the decomposition of obtained Sr 1.15 TiS 3 is produced. SrTiO 3 Sr 1.15 TiS 3 Sr 1.15 TiS Sr 1.15 Sr 1.15 TiS 3-x

Conclusions SrTiO 3 nanoparticles was sulfurized at low temperatures in comparison with commercial powders. The sulfurization behavior of SR-01 could be summarized as follows: Evaporation of water, adsorption of CS 2, sulfurization of SrTiO 3 and decomposition of Sr 1.15 TiS 3.

BaTiO 3

Introduction BaTiO 3 is used as Dielectric material. Supported catalyst for CO 2 reforming and partial oxidation of CH 4 at higher temperatures. Catalyst for processing of hazard pollutants by non-thermal plasma reactors. However, BaTiO 3 is unknown photocatalyst due to High band energy of 3.27 ev (378 nm). Photoactivity in UV spectra.

Preparation of BaTiO 3 14.429 g TIPO* 14.949 g TEA* De-carbonated water *TIPO: titanium tetra-iso-propoxide TEA: tri-ethanol-amine Solution Argon atm. Overnight Stock Solution TIPO:TEA 0.05:0.1 10 ml stock solution 6.315 g Ba(OH) 2 10 ml de-carbonated water Stirring 30 min Gel Teflon autoclave Heating: 3 hrs T: 250 C BaTiO 3 Cleaning Centrifugation Drying at r. t. BaTiO 3

Partial sulfurization of BaTiO 3 BaTiO 3 Sulfurization Purification Evacuation N 2 refilling CS 2 /N 2 gas Flow rate: 5/50 ml/min Heating : 3 ºC/min T: 100-500 ºC Toluene 100 ºC Vacuum Partially Sulfurized BaTiO 3 Thermocouple Electric furnace Quartz tube Gas inlet Gas outlet Quartz boat Sample:1 g BaTiO 3 Schematic drawing of reaction tube

Characteristics of ultrafine BaTiO 3 particles 200 nm TEM microphotograph of BaTiO 3 BaTiO 3 particles were obtained by using TIPO and TEA as precursors. Characteristics: Phase: Cubic Particle size: 95 nm Lattice parameter: 4.0061 Å Specific area:12.42 mg/m 2 H 2 O (%): 1.6

Sulfurization behavior of BaTiO 3 25 20 BaTiS 3 Weight change/% 15 10 5 0 Starting temperature of sulfurization 19.2 Gas flow: N 2 50 ml/min CS 2 5mL/min Heating Rate: 1 C/min 18.4-0.6-5 0 100 200 300 400 500 600 700 800 900 1000 Temperature/ C BaTiO 3 reacts slowly with CS 2 at around 400 ºC forming BaTiS 3. Reaction: BaTiO 3 +1.5CS 2 BaTiS 3 +1.5CO 2

XRD patterns for partially sulfurized BaTiO 3 500 C Sulfide Sulfide 400 C Intensity/a.u. 300 C 200 C 100 C Initial Material BaTiO 3 (cub., JCPDS 31-174) BaTiS 3 (hex., JCPDS 15-328) 10 20 30 40 50 60 2Θ/degree Peaks corresponding to BaTiS 3 appears only when BaTiO 3 is sulfurized at 500ºC

Variation of lattice parameter 4.02 Lattice parameter a/ Å 4.015 4.01 4.005 Lattice parameter : 4.031 Å JCPDS 31-174 Cubic BaTiO 3 Formation of hex. BaTiS 3 4 0 100 200 300 400 500 Temperature/ºC Lattice parameter increases with increasing the sulfurization temperature. However, it decreases with formation of sulfide.

XPS of S2p 3/2 for partially sulfurized BaTiO 3 Sulfate Sulfide Intensity/a.u. 500 ºC 400 ºC 300 ºC 200 ºC Sulfite Sulfur 100 ºC 174 172 170 168 166 164 162 160 158 Binding energy/ev From 200 and 500 ºC, a peak assigned to sulfide appears at around 161.4 and 160.8 ev whose intensity increases with the temperature.

UV-Vis Vis spectra for partially sulfurized BaTiO 3 Band gap of BaTiO 3 : 100 BaTiO 3 378 nm 80 100 º C R /% 60 40 200 ºC 300 ºC 400 ºC 20 500 ºC BaTiS 3 0 200 300 400 500 600 700 800 Wave length/nm Increasing the sulfurization temperature, the absorption of visible light increases in sulfurized BaTiO 3 samples.

Conclusions Partially sulfurized BaTiO 3 absorbed higher visible light than initial BaTiO 3 sample. The absorption increased with increasing the temperature of sulfurization. Since sulfide as BaTiS 3 is formed above 400 ºC, it is suggested that absorption of visible light is caused by replacement of sulfur by oxygen in the initial BaTiO 3 structure.