4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

Similar documents
IA

QMI_10.dvi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Gmech08.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

II

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

4/15 No.

Planck Bohr

02-量子力学の復習

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Mott散乱によるParity対称性の破れを検証


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

30

meiji_resume_1.PDF


Gmech08.dvi

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

The Physics of Atmospheres CAPTER :

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h


Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4


50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

Untitled

I ( ) 2019

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

Part () () Γ Part ,

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

eto-vol2.prepri.dvi


c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

ssp2_fixed.dvi

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x


, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

II

QMI13a.dvi

QMII_10.dvi

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

i

液晶の物理1:連続体理論(弾性,粘性)


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

08-Note2-web

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

Xray.dvi

TOP URL 1

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

eto-vol1.dvi

QMI_09.dvi

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

QMI_10.dvi

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

TOP URL 1

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

PDF

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

pdf


d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

A 99% MS-Free Presentation

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

main.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T



W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

II 2 II

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

Transcription:

2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5,

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = 9677.58 cm 896 Zeeman Zeeman Zeeman Lorentz Zeeman e /m =.6 C/kg 897 Thomson electron e /m =.7 C/kg 94Thomson 94 98 Rutherford 99 Geiger Marsden [] 9 Rutherford Rutherford [2] 93 Geiger Marsden Rutherford [3] Chadwick Rutherford Z Z 93 N. Bohr Planck 932 Chadwick [4]

2.2 Rutherford 5 2.2 Rutherford Coulomb 24 Po 2.2. Coulomb f(r) = a r 2, a =2Ze2 (2.) a =2Ze 2 m [ d 2 r dt 2 r ( ) ] dϕ 2 = f(r) dt r ( d dt mr 2 dϕ dt ) = (2.2) m Coulomb (2.2) L = mr 2 dϕ = (2.3) dt (2.2) r ϕ m d2 r dt 2 L2 mr 3 = f(r) = a r 2 (2.4) impact parameter r Coulomb f(r) v E = 2 mv2 (2.5) Coulomb E p = mv L = pb = mvb (2.6)

6 2 Rutherford b Coulomb 2. (2.5) (2.6) v b = L 2mE (2.7) b E L momentum p x b impact parameter z 2.: 24 Po E =5.4MeV mc 2 = 3727 MeV (2.8) v c =.54 v =.6 7 m/s (2.9) 2.2.2 (2.4) dr/dt t E ( ) dr 2 2 m + W (r) =E (2.) dt W (r) W (r) =V (r)+ L2 2mr 2, V(r) = a r 2 (2.)

2.2 Rutherford 7 V (r) Coulomb (2.) W (r) E > (dr/dt) 2 E W (r) (2.2) r r min r min 2.2 Coulomb r min r 2 a E r W (r min )=E (2.3) L2 2mE r2 2b r b 2 = (2.4) b b r min > r min = b = a 2E 24 Po b = 2Ze2 2E (2.5) ( a ) a 2 2E + + L2 2E 2mE = b + b 2 + b 2 (2.6) hc = Zα E =79 97.32 MeVfm = 2 fm (2.7) 37.36 5.4MeV α = e 2 /( hc) fine structure constant fm= 5 m 7fm 2.2 b =2fm 2.2.3 (2.4) r(t) r(ϕ) (2.23) r = u (2.8)

8 2 Rutherford 2 potential [ MeV ] 5 5 r min E 2 3 4 5 6 7 r [ fm ] 2.2: r r min Coulomb (2.4) dr dt = dr dϕ du = r2 dϕ dt dϕ L mr 2 = L m du dϕ (2.9) d 2 r dt 2 = d ( L ) du = L dt m dϕ m [ d dϕ ( )] du dϕ dϕ dt = L2 d 2 u m 2 dϕ 2 u2 (2.2) d 2 u dϕ 2 + u = am L 2 (2.2) u = am/l 2 (2.2) A ϕ u = A cos (ϕ ϕ ) am L 2 (2.22) ϕ + r ϕ = ϕ r r(ϕ) = L2 am ε cos (ϕ ϕ ) ε = cos ϕ > (2.23)

2.2 Rutherford 9 ϕ = ϕ 2.3 ϕ = ϕ b ϕ r min θ target 2.3: Rutherford θ ϕ = ϕ r min = L 2 am(ε ) (2.24) b b = lim ϕ r(ϕ) sin ϕ = L2 am ε sin ϕ = L 2 am tan ϕ (2.25) L 2 =2mEb 2 b (2.35) 2.2.4 (2.34) ϕ r dϕ dr = dϕ dt dt dr (2.26) r (2.3)

2 2 Rutherford (2.) dϕ dr = ± L mr 2 2 ( E W (r) m ) = ± L 2m r 2 E W (r) (2.27) ± dr/dt + ϕ = Coulomb ϕ =2ϕ 2ϕ r + r min + dr/dt 2.3 2ϕ = rmin L 2m dr r 2 E W (r) + r min L 2m dr r 2 E W (r) = 2L 2m r min dr r 2 E W (r) (2.28) b r = b u dr = b du (2.29) u2 E W (b/u) =E L2 u 2 2mb 2 au ( b = E u 2 a ) ( be u = E u 2 2b ) b u (2.3) 2ϕ = ( 2L ) du 2mE b b/r min (2b /b)u u 2 b/rmin du = 2 (2.3) (2b /b)u u 2 2ϕ =2 [ ] b/rmin tan u + b /b (2b /b)u u 2 = π 2 tan b b (2.32) r min (2.6) 2.3 ϕ =

2.2 Rutherford 2 ϕ = π ϕ =2ϕ θ θ = π 2ϕ (2.33) θ = 2 tan a 2Eb (2.34) θ E b 2.4 (2.34) 2.4: Rutherford b = a 2E tan (θ/2) (2.35) E θ b r min θ r min (θ) = a ( ) + (2.36) 2E sin (θ/2) 2.2.5 m

22 2 Rutherford z z N b b +db dn =2πbdbN (2.37) db b 2.5: b b +db (2.34) θ θ +dθ θ θ +dθ dn =2πb db dθn (2.38) dθ N [ ] dn [ ] R θ θ +dθ 2π sin θr R dθ R 2 θ θ +dθ z dω = 2π sin θr R dθ R 2 =2π sin θ dθ (2.39) θ π 4π

2.2 Rutherford 23 R dθ θ z 2.6: θ θ +dθ (2.38) dω dn = b sin θ N dn dσ dσ = dn N = b sin θ db dωn (2.4) dθ db dω (2.4) dθ dn N σ σ cross section dσ dω = b db (2.42) sin θ dθ differential cross section Rutherford (2.42) Coulomb db/dθ (2.35) db/dθ Coulomb ( ) dσ a 2 dω = 4E sin 4 (θ/2) (2.43) Rutherford Z =79 E =5.4MeV Rutherford 2.7 barn/sr barn = 28 m 2 sr Rutherford θ = Coulomb /r

24 2 Rutherford 5 4 dσ/dω [barn/sr] 3 2 3 6 9 2 5 8 scattering angle θ [degree] 2.7: Rutherford Coulomb 2.2.6 Rutherford Rutherford Coulomb 99 Geiger Marsden Rutherford 24 Po 9 Rutherford Ze Z 79 (2.36) θ = 8

Z =79 E =5.4MeV r min (θ = π) = a 2E 2.2 Rutherford 25 = 42 fm (2.44) 42fm 5 fm E r min E θ E Rutherford Coulomb Coulomb L = 2mE b E =5.4MeV m = 3727 MeV/c 2 L [MeV s]=6.7 22 [MeV s/fm ] b fm (2.45) θ =9 b b = b =2fm L =.4 2 MeV s (2.46) L Planck h L 2 h

26 2 Rutherford 2.3 Rutherford 2.3. Schrödinger V (r) m Schrödinger ( h2 2m + V (r) ) ψ(r) =Eψ(r) (2.47) ψ(r) V (r) lim rv(r) = (2.48) r Coulomb Schrödinger E k k 2 = 2mE 2mV (r) h 2 U(r) = h 2 (2.49) Schrödinger ( + k 2) ψ(r) =U(r) ψ(r) (2.5) z 2.8 ψ(r) (2π) 3/2 [ exp(ikz)+ f(θ) ] exp(ikr) r ( r ) (2.5) f(θ) scattering amplitude θ (2π) 3 exp[ i(k k ) r ]dr = δ(k k ) (2.52) 2π 2π 2π (2π) 3 dx dy dz exp(ikz) 2 = (2.53) 2π

2.3 Rutherford 27 outgoing spherical wave r θ z incoming plane wave 2.3.2 Green 2.8: Schrödinger (2.5) Helmholtz ( + k 2) χ(r) =U(r) ψ(r) (2.54) ( + k 2) G (r) =δ(r) (2.55) G (r) (2.54) Green G (r) (2.54) χ(r) = dr G (r r ) U(r )ψ(r ) (2.56) ( + k 2) χ(r) = dr δ(r r ) U(r )ψ(r )=U(r)ψ(r) (2.57) χ(r) Green G (r) G (r) δ(r) Fourier G (r) = dk G (k ) exp (ik r) δ(r) = (2.58) (2π) 3 dk exp (ik r)

28 2 Rutherford (2.54) ( k 2 k 2 ) G (k )= (2π) 3 (2.59) G (r) Fourier G (r) G (r) = (2π) 3 dk exp (ik r) k 2 k 2 (2.6) k 2.9 r z G (r) = (2π) 3 k 2 dk π sin θ dθ exp (ik r cos θ ) k 2 k 2 2π dϕ (2.6) ϕ 2π θ G (r) = k sin k r 2π 2 r k 2 k 2 dk (2.62) z k r θ k x ϕ y 2.9: k k sin k r exp (±ik r) G (r) = 4π 2 r I ± = k sin k r k 2 k 2 dk = 6π 2 ir 2 [ I + I ] (2.63) ( k + k + ) k exp (± ik r)dk k (2.64) k = k k = k k k 2.

2.3 Rutherford 29 I + C + I C I ± =2πi exp (ikr) (2.65) (2.63) Green G (r) = exp (ikr) (2.66) 4πr C + k k k k C 2.: k I + I z Schrödinger (2.5) ψ(r) = exp (ik r r ) exp (ikz) (2π) 3/2 4π r r U(r ) ψ(r )dr (2.67) Schrödinger ψ(r) Schrödinger f(θ) ψ(r) (2.5) (2.67) r r V r r n r r r r r = r 2 + r 2 2(n r ) r r (n r ) (2.68) r r r r r [ +(n r ) ] r (2.69)

3 2 Rutherford (2.67) [ ψ(r) (2π) 3/2 exp (ikz) { exp (ikr) + (2π)3/2 r 4π exp ( ik r ) U(r ) ψ(r )dr }] (2.7) k k = k n r (2.5) f(θ) f(θ) = (2π)3/2 4π exp ( ik r ) U(r ) ψ(r )dr (2.7) 2.3.3 N φ = exp (ikz) (2.72) (2π) 3/2 z N = j z = [ φ h φ 2m i z h φ ] i z φ (2.73) (2.72) j z = (2π) 3 hk m = v =( hk)/m χ = v (2π) 3 (2.74) exp (ikr) (2π) 3/2 f(θ) (2.75) r r j r = [ χ h χ 2m i r h χ ] i r χ (2.76) r 2 j r = v (2π) 3 f(θ) 2 r 2 (2.77)

2.3 Rutherford 3 ds dn dn = j r ds = v (2π) 3 f(θ) 2 dω (2.78) dω ds dσ = dn N = f(θ) 2 dω (2.79) dσ dω = f(θ) 2 (2.8) 2.3.4 Born f(θ) = (2π)3/2 4π exp ( ik r ) U(r ) ψ(r )dr (2.8) ψ(r ) ψ(r ) ψ(r ) φ(r )= exp (ikz) (2.82) (2π) 3/2 Born f(θ) = exp ( ik r ) U(r ) exp (ikz )dr (2.83) 4π k r n θ q k z V ( r ) 2.:

32 2 Rutherford θ 2. k k hq = hk hk (2.84) k = k hq = h q =2 hk sin θ 2 (2.85) q f(θ) = exp( iq r ) U(r )dr (2.86) 4π q z r f(θ) = r sin qr U(r )dr = j (qr ) U(r ) r 2 dr (2.87) q j (qr ) Bessel V (r ) f(θ) = 2m h 2 = j (qr ) V (r ) r 2 dr (2.88) [ dσ 2m ] 2 dω = h 2 j (qr ) V (r ) r 2 dr (2.89) 2.3.5 Coulomb V (r) = a r aρ(r ) r r dr (2.9) ρ ρ(r)dr =4π ρ(r) r 2 dr = (2.9) (2.9) Coulomb /r r

2.3 Rutherford 33 (2.9) Born (2.87) f(θ) = 4π 2ma h 2 [ I + I 2 ] (2.92) exp (iq r ) ρ(r I = r dr ) exp (iq r ) I 2 = r r dr dr (2.93) g(r) = exp (iq r ) r r dr (2.94) I = g() I 2 = ρ(r ) g(r )dr (2.95) (2.94) g(r) exp (iq r) g(r) g(r) = 4π exp (iq r) (2.96) g(r) =4π exp (iq r) q 2 (2.97) I = 4π q 2 I 2 = (4π)2 q 2 j (qr) ρ(r) r 2 dr (2.98) I 2 f(θ) = 2ma +F (q) h 2 q 2 (2.99) F (q) Fourier F (q) =4π j (qr) ρ(r) r 2 dr (2.) q 2 =4k 2 sin 2 θ 2 = 4m2 v 2 f(θ) = h 2 sin 2 θ 2 a 4E [ +F (q)] sin 2 (θ/2) ( ) dσ a 2 dω = [ +F (q)] 2 4E sin 4 (θ/2) (2.) (2.2) (2.3)

34 2 Rutherford E = 2 mv2 F (q) = ( ) dσ a 2 dω = 4E sin 4 (θ/2) (2.4) Rutherford F (q) = rv (r) (r ) F (q) = Born Born F (q) = F(q) = Born Rutherford V (r) =a/r Schrödinger

2.4 35 2.4 2.4. 4 Coulomb Coulomb Ze 2 ρ(r ) V (r) = r r dr (2.5) ρ(r) ρ(r)dr =4π ρ(r) r 2 dr = (2.6) Ze θ Dirac αz =(Ze 2 )/( hc) dσ dω = dσ dω F (q) 2 (2.7) Mott Mott [5] Ze ( ) dσ Ze 2 2 cos 2 (θ/2) dω = Mott 2E sin 4 (2.8) (θ/2) F (q) ρ(r) Fourier F (q) =4π ρ(r) j (qr) r 2 dr (2.9)

36 2 Rutherford j (qr) Bessel q q q = 2E sin (θ/2) (2.) hc F(q) = F (q) = F (q) ρ(r) Fourier ρ(r) = 2π 2 (2.9) F (q) j (qr) q 2 dq (2.) ρ(r) qr Bessel j (qr) = sin qr qr 6 (qr)2 + 2 (qr)4 (2.2) (2.9) F (q) = 4π ρ(r) r 2 dr q2 6 4π ρ(r) r 4 dr + q4 2 4π ρ(r) r 6 dr = 6 q2 r 2 + 2 q4 r 4 (2.3) r 2 =4π r 2 ρ(r) r 2 dr (2.4) r 2 E reduced de Broglie λ 2π = hc 2 MeV fm E E (2.5) fm E 2 MeV m e =.5 MeV/c 2 p = c E 2 (m e c 2 ) 2 E c (2.6) E = 2 MeV θ =6 q =fm

2.4 37 E = 2 MeV b =fm L = 2m e Eb=4.8 23 MeV s=.7 h (2.7) Coulomb Rutherford (2.7) Mott (2.8) Rutherford cos 2 (θ/2) /2 Dirac σ p/ p 2.4.2 (2.) q F (q) r q 2.2 F (q) 2 Fermi q F (q) 2 Mott q q ρ(r) Fourier (2.9) F (q)

38 2 Rutherford ρ / ρ.2..8.6.4.2. 2 4 6 8 radius r [fm] - -2 F ( q ) 2-3 -4-5 -6..2.4.6.8..2.4 momentum transfer q [fm - ] 2.2: Fermi ρ ρ(r) = ( ) (2.8) r R + exp a Fermi ρ a Fermi 2.3 r = R ρ(r) =ρ /2 a.6 fm r = R.5 fm

2.4 39 9 % % t t = a log e 9=2.2a R..9 t t t = 2.2 a ρ / ρ.5.. 2 3 4 5 6 7 8 9 radius r [fm] 2.3: Fermi R =6fm 5 fm 4fm Fermi R a Fermi ρ.7 fm 3 (2.9) 6fm 3 ρ m mρ =2.8 4 g cm 3 (2.2)

4 2 Rutherford 2.5 2. H. Geiger and E. Marsden, Proc. Roy. Soc. (London), A82 (99) 495 2. E. Rutherford, Phil. Mag. 2 (9) 669 3. H. Geiger and E. Marsden, Phil. Mag. 25 (93) 64 4. J. Chadwick, Nature, 29 (932) 32, Proc. Roy. Sco. (London), A36 (932) 692 5. N.F. Mott, Proc. Roy. Soc. (London) A35 (932) 429, A24 (929) 426 6. 977