Size: px
Start display at page:

Download ""

Transcription

1 bukka/qc.html

2

3 π Hückel A-1. Laguerre 165 A-2. Hermite 167 A A A A A III Streitwieser, Molecular Orbital Theory for Organic Chemists, Wiley Eyring, Walter, and Kimball, Quantum Chemistry, Wiley

4

5 1 Schrödinger 1.1 Coulomb r 1 = (x 1, y 1, z 1 ) q 1 r 2 = (x 2, y 2, z 2 ) q 2 q 2 q 1 F 12 (1.1) F 12 = q 1q 2 r 12 4πε 0 r12 2 r 12 (1.2) r 12 = r 1 r 2 = x 1 x 2 y 1 y 2 z 1 z 2 (1.3) r 12 = r 12 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2 ε 0 r 12 /r 12 q 1 q 2 F 21 (1.4) F 21 = F 12 V (r 1, r 2 ) r 12 = r 12 (1.5) V (r 1, r 2 ) = q 1q 2 4πε 0 r 12 = V (r 12 ) r = (x, y, z) e +e F (1.6) F = e2 r 4πε 0 r 2 r (1.7) r = r = x 2 + y 2 + z 2 V (r) (1.8) V (r) = e2 4πε 0 r 1.2 Schrödinger m p +e m e e µ (1.9) µ = m pm e m p + m e 107

6 z r cos θ electron (m, e) e (x,y,z) = (r,θ,φ) proton (m, +e) p φ θ r r sin θ r sin θ sin φ y r sin θ cos φ (x,y,0) x Schrödinger ( ) (1.10) h2 2 2µ x y z 2 Ψ(x, y, z) e2 Ψ(x, y, z) = EΨ(x, y, z) 4πε 0 r Coulomb r r (x, y, z) (r, θ, ϕ) (1.11) (1.12) (1.13) x = r sin θ cos ϕ y = r sin θ sin ϕ z = r cos θ Schrödinger Ψ(r, θ, ϕ) Ψ [ (1.14) h2 1 2µ r 2 ( r 2 Ψ ) + r r 1 r 2 sin θ ( sin θ Ψ ) + θ θ 1 r 2 sin 2 θ 2 ] Ψ ϕ 2 e2 4πε 0 r Ψ = EΨ (1.15) ( r 2 Ψ ) + 1 ( sin θ Ψ ) ) Ψ (E r r sin θ θ θ sin 2 θ ϕ 2 + 2µr2 h 2 + e2 Ψ = 0 4πε 0 r 1.3 Ψ R(r) Y (θ, ϕ) (1.16) Ψ = Ψ(r, θ, ϕ) = R(r)Y (θ, ϕ) = RY (1.17) ( 1 r 2 R ) ) + (E 2µr2 R r r h 2 + e2 = 1 4πε 0 r Y [ ( 1 sin θ Y ) ] Y sin θ θ θ sin 2 θ ϕ 2 r θ, ϕ λ (1.18) (1.19) ( r 2 R ) [ ) ] 2µr 2 + (E r r h 2 + e2 λ R = 0 4πε 0 r 1 sin θ θ ( sin θ Y θ ) Y sin 2 θ ϕ 2 + λy = 0 108

7 1.4 Schrödinger III (1.20) Y l,ml (θ, ϕ) = ( 1) (m l+ m l )/2 2l + 1 (l m l )! 4π l + m l )! P m l l (cos θ)e im lϕ (1.21) P m l l (z) = (1 z 2 ) m l /2 d ml Pl 0(z) (1.22) z = cos θ (1.23) Pl 0 = 1 2 l l! d l dz l (z2 1) l dz m l l (= 0, 1, 2, ) L 2 (1.24) L 2 = h 2 λ = h 2 l(l + 1) m l ( l m l l) z L z (1.25) L z = hm l 1.5 A-1 4Z (1.26) R n,l (r) = 3 (n l 1)! a 3 0 n4 [(n + l)!] 3 ρl e ρ/2 L 2l+1 n+l (ρ) (1.27) ρ = 2r na 0 (1.28) a 0 = 4πε 0 h 2 µe 2 L s k (ρ) Laguerre (1.29) L s k(ρ) = ds dρ s L k(ρ) (1.30) L k = e ρ dk dρ k (ρk e ρ ) n (= 1, 2, ) E n (1.31) E n = w 0 n 2 (1.32) w 0 = µ ( ) e h 2 4πε 0 l 0 l n 1 109

8 1.6 n = 1, 2, 3, l = 0, 1, 2,, n 1 m l = l, l + 1,, 0,, l 1, l s l = 0 p l = 1 d l = 2 1s, 2s, 2p x, 2p y, 2p z, 3s, 1.7 (r, θ, ϕ) dτ = dxdydz = r 2 sin θdrdθdϕ P (r, θ, ϕ)dτ P (r, θ, ϕ) dτ P (r, θ, ϕ) (1.33) P (r, θ, ϕ) = Ψ n,l,ml (r, θ, ϕ) 2 r r + dr P r (r)dr (1.34) P r (r)dr = r 2 π 2π θ=0 ϕ=0 sin θ Ψ n,l,ml (r, θ, ϕ) 2 dθdϕdr l = 0, m = 0 s Ψ n,l,m (r, θ, ϕ) θ, ϕ Ψ(r) (1.35) P r (r)dr = 4πr 2 Ψ(r) 2 dr 4πr 2 r 4πr 2 dr r dr 1.8 A Â A A (1.36) A = dr π dθ 2π r (1.37) r = = = 0 0 dr dr dr π 0 π 0 π dθ dθ dθ 2π 0 2π 0 2π K dϕ r 2 sin θ Ψ n,l,m l (r, θ, ϕ)âψ n,l,m l (r, θ, ϕ) dϕ r 2 sin θ Ψ n,l,m l (r, θ, ϕ)ˆrψ n,l,ml (r, θ, ϕ) dϕ r 2 sin θ Ψ n,l,m l (r, θ, ϕ)rψ n,l,ml (r, θ, ϕ) dϕ r 3 sin θ Ψ n,l,ml (r, θ, ϕ) 2 (1.38) K = = 0 0 dr dr π 0 π 0 dθ dθ 2π 0 2π 0 dϕ r 2 sin θ Ψ n,l,m l (r, θ, ϕ) ˆKΨ n,l,ml (r, θ, ϕ) ) dϕ r 2 sin θ Ψ n,l,m l (r, θ, ϕ) ( h2 2µ 2 Ψ n,l,ml (r, θ, ϕ) 110

9 V (1.39) V = = 0 0 dr dr π 0 π 0 dθ dθ 2π 0 2π 0 dϕ r 2 sin θ Ψ n,l,m l (r, θ, ϕ) ˆV Ψ n,l,ml (r, θ, ϕ) ) dϕ r 2 sin θ Ψ n,l,m l (r, θ, ϕ) ( e2 4πε 0 r Ψ n,l,m l (r, θ, ϕ) 1.9 s l = 0 (1.40) Y 0,0 (θ, ϕ) = 1 4π z θ 2 Y z x φ y x y s 1s (1.41) Ψ 1s = 1 ( ) 3/2 ) 1 exp ( ra0 π a 0 1s 1 (1.42) (1.43) r = = 4 a 3 0 dr π dθ 2π 0 r 3 e 2r/a 0 dr = 3 2 a 0 (1.44) P r (r) = 4πr 2 Ψ 2 1s = 4r2 a 3 e 2r/a 0 0 dϕ r 2 sin θ Ψ 1s(r, θ, ϕ)rψ 1s (r, θ, ϕ) (1.45) dp r (r) dr = 8r(a 0 r) a 4 e 2r/a 0 = 0 0 r = a s 2s (1.46) Ψ 2s = 1 ( ) 3/2 ) ( 1 (2 4 ra0 exp r ) 2π a 0 2a 0 2s 1s r = 2a 0 ns (n 1) 111

10 1.10 p l = 1 R n,1 3 (1.47) 3 Y 1,0 = 4π cos θ (1.48) 3 Y 1,+1 = sin θe+iϕ 8π (1.49) 3 Y 1, 1 = sin θe iϕ 8π 3 z 2p r (1.50) Ψ 2p0 = 4 e r/2a 0 cos θ 2πa 5 0 r (1.51) Ψ 2p+ = 8 e r/2a 0 sin θe +iϕ πa 5 0 r (1.52) Ψ 2p = 8 e r/2a 0 sin θe iϕ πa 5 0 p 0 z p ± z z z x y x y p 0 (m l = 0) p ± (m l = ±1) p p 3 N N N N 2p (1.50) (1.52) n, l, m (1.53) Ψ 2px = 1 2 (Ψ 2p+ + Ψ 2p ) = (1.54) Ψ 2py = i 2 (Ψ 2p+ Ψ 2p ) = r (1.55) Ψ 2pz = Ψ 2p0 = 4 e r/2a 0 cos θ 2πa 5 0 r 4 e r/2a 0 sin θ cos ϕ 2πa 5 0 r 4 e r/2a 0 sin θ sin ϕ 2πa 5 0 (1.53) (1.55) 2p x, 2p y, 2p z 112

11 z z z x y x y x y p x p y p z (1.50) (1.52) (1.53) (1.55) 2p 1.11 d 2 z z z z x y x y x y d 0 (m = 0) d ±1 (m = ±1) d ±2 (m = ±2) z z z z z x y x y x y x y x y d z 2 d xy d z2 y 2 d yz d zx (1) Schrödinger (2) (3) 1-2. R 10 R 31 Schrödinger 1-3. cm n = 1 (1) Bohr Bohr 2 (2) 90 % 1-5. n 1 3 (1) 113

12 (2) z (3) (4) 1-6. m { 0 at r < a (1.56) V (r) = at r a (1) Schrödinger (2) P (r) = rr(r) 1-7. (1) Schrödinger (2) (3) Bohr 1-8. ϕ(x) ψ(x) Ĥ E Φ(x) = A[ϕ(x) + ψ(x)] Ψ(x) = B[ϕ(x) ψ(x)] A, B (1) ϕ(x) ψ(x) (2) ϕ(x) ψ(x) (3) ϕ(x) ψ(x) Ĥ E (4) Φ(x) Ψ(x) Ĥ E (5) Φ(x) Ψ(x) (6) Φ(x) Ψ(x) A, B 1-9. r 1s, 2s, 3s p (1) p +, p, p 0, p x, p y, p z (2) p +, p, p 0, p x, p y, p z z p z s, 2s, 3s, 2p z s, 3p z s, 2s r r + dr r (1) n = 1 r, r 2, r 1 (2) n = 2, l = 0 r, r 2, r (1) 2p +, 2p 0, 2p r (2) p r (1.57) r nl = a 0 2 [3n2 l(l + 1)] (3) p r ( (1.58) ˆp r = i h r + 1 ) r 114

13 1s, 2s, 3s, 2p z p r p 2 r s, 2s, 3s, 2p z R x (1.59) R x = Ψ (n, l, m l )µ x Ψ(n, l, m l)dτ = e Ψ (n, l, m l )xψ(n, l, m l)r 2 sin θdrdθdϕ µ x µ x e y, z (1) Rydberg (2) 1s 2s R = 0 (3) 1s 2p x 115

14 He +, Li 2+ z r cos θ electron (m e, e) (x,y,z) = (r,θ,φ) θ nucleus (m n, +Ze) φ r r sin θ r sin θ sin φ y r sin θ cos φ (x,y,0) x m n, +Ze, m e e Schrödinger Ψ(r, θ, ϕ) Ψ [ (2.1) h2 1 2µ r 2 (2.2) µ = m nm e m n + m e ( r 2 Ψ ) + r r 1 r 2 sin θ ( sin θ Ψ ) + θ θ (2.3) Ψ = Ψ(r, θ, ϕ) = R(r)Y (θ, ϕ) 1 r 2 sin 2 θ (2.4) Y l,ml (θ, ϕ) = ( 1) (m l+ m l )/2 2l + 1 (l m l )! 4π l + m l )! P m l l (cos θ)e im lϕ (2.5) P m l l (z) = (1 z 2 ) m l /2 d ml Pl 0(z) (2.6) Pl 0 = 1 2 l l! (2.7) z = cos θ d l dz l (z2 1) l dz m l 2 ] Ψ ϕ 2 Ze2 4πε 0 r Ψ = EΨ 116

15 4Z (2.8) R n,l (r) = 3 (n l 1)! a 3 0 n4 [(n + l)!] 3 ρl e ρ/2 L 2l+1 n+l (ρ) (2.9) L s k(ρ) = ds dρ s L k(ρ) (2.10) L k = e ρ dk dρ k (ρk e ρ ) (2.11) ρ = 2Zr na 0 (2.12) a 0 = 4πε 0 h 2 µe 2 (2.13) E n = Z2 n 2 w 0 (2.14) w 0 = µ ( ) e h 2 4πε atomic unit (au) (2.15) (2.16) (2.17) m e = 1 h = 1 e 2 4πε 0 = 1 bohr µ m e Bohr a 0 (2.18) a 0 = 4πε 0 h 2 m e e 2 = m hartree µ m e w 0 2 (2.19) e 2 4πε 0 a 0 = h2 m e a 2 0 = 2 w 0 = J = ev Z µ m e Ĥ Ψ 1s W au (2.20) Ĥ = Z r (2.21) Ψ 1s = Z 3 (2.22) W = Z2 2 π e Zr 117

16 2-1. (1) (2) Bohr (3) (4) n = 2 n = 1 118

17 3 1 2 Schrödinger 3.1 Schrödinger Z 2 (3.1) [ h2 2m e ( ) + e2 4πε 0 ( Z Z + 1 )] Ψ( r 1, r 2 ) = EΨ( r 1, r 2 ) r 1 r 2 r 12 (3.2) 2 1 = 2 x y z1 2 (3.3) 2 2 = 2 x y z2 2 (3.4) r 1 = x y2 1 + z2 1 (3.5) r 2 = x y2 2 + z2 2 1 e r 1 r 12 +Ze r 2 2 e (3.6) r 12 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2 (3.7) [ 1 2 ( ) + (3.8) Ĥ = Ĥ 1 + Ĥ 2 + Ĥ ( Z Z + 1 )] Ψ( r 1, r 2 ) = EΨ( r 1, r 2 ) r 1 r 2 r 12 (3.9) Ĥ 1 = Z r 1 (3.10) Ĥ 2 = Z r 2 (3.11) Ĥ = 1 r 12 Ĥ Schrödinger Ĥ Ĥ1 Ĥ2 Schrödinger (3.12) (Ĥ 1 + Ĥ 2 )ψ = E ψ (3.13) ψ = ψ 1ψ 2 = Z3 π e Z(r1+r2) (3.14) E = E 1 + E 2 = 2W = Z 2 119

18 (3.15) Ĥ 1 ψ 1 = E 1ψ 1 (3.16) Ĥ 2 ψ 2 = E 2ψ Ĥ E ψ ϕ (ψ + cϕ) c (3.17) (3.18) (3.19) ψ Ĥ ψ ψ ψ ϕ Ĥ ϕ ϕ ϕ = E 1 ( ) = E 2 ( ) ψ + cϕ Ĥ ψ + cϕ = E 3 ( ) ψ + cϕ ψ + cϕ 3 E 1, E 2, E R 1, R 2, R 3 (3.20) ψ Ĥ ψ = R 1 ( ) (3.21) ϕ Ĥ ϕ = R 2 ( ) (3.22) ψ + cϕ Ĥ ψ + cϕ = R 3 ( ) (3.22) (3.23) ψ Ĥ ψ + c ϕ Ĥ ψ + c ψ Ĥ ϕ + cc ϕ Ĥ ϕ = R 3 (3.20), (3.21) (3.24) c ϕ Ĥ ψ + c ψ Ĥ ϕ = R 3 R 1 cc R 2 c ϕ Ĥ ψ c ψ Ĥ ϕ (3.25) c ψ Ĥ ϕ = (c ϕ Ĥ ψ ) = c ϕ Ĥ ψ ψ, ϕ Ĥ (3.26) ψ Ĥ ϕ = ϕ Ĥ ψ Hermite Ĥ 120

19 Schrödinger (3.27) Ĥψ n = E n ψ n Ĥ (3.28) Ĥ = Ĥ + Ĥ Ĥ Schrödinger En ψ n (3.29) Ĥ ψn = Enψ n Ĥ Ĥ En, ψn ψn (3.30) (3.31) (3.30) ψn ψ m = δ nm ϕ (3.31) ϕ = n c n ψ n Ĥ, Ĥ, Ĥ (3.26) (3.32) Ĥ = Ĥ + λĥ λ λ = 1 λ 1 (3.27) ψ n E n (3.33) ψ n = ψ n + λψ n + λ 2 ψ n + (3.34) E n = E n + λe n + λ 2 E n + Ĥ λ 1 ψ n, E n λ ψ n, E n (3.32), (3.33), (3.34) (3.27) λ (3.35) Ĥ ψn+ λ(ĥ ψ n + Ĥ ψn)+ λ 2 (Ĥ ψ n + Ĥ ψ n)+ = Enψ n+ λ(enψ n + E nψ n)+ λ 2 (Enψ n + E nψ n + E nψ n)+ 121

20 λ λ λ 0 (3.36) Ĥ ψ n = E nψ n (3.29) λ 1 (3.37) Ĥ ψ n + Ĥ ψ n = E nψ n + E nψ n ψ n (3.38) ψ n Ĥ ψ n + ψ n Ĥ ψ n = E n ψ n ψ n + E n ψ n ψ n (3.30) (3.39) E n = ψ n Ĥ ψ n + ψ n Ĥ ψ n E n ψ n ψ n (3.40) ψ n Ĥ ψ n = ψ n Ĥ ψ n = E n ψ n ψ n = E n ψ n ψ n (3.39) (3.40) E n (3.41) E n = ψ n Ĥ ψ n (3.31) (3.42) ψ n = k c k ψ k (3.37) (3.43) c k (En Ek)ψ k = Ĥ ψn E nψ n k c m ψ m Schrödinger (3.44) c m (E n E m) = ψ m Ĥ ψ n H mn for n m (3.30) (3.29) c n = 0 (3.45) E n = E n + H nn H nm (3.46) ψ n = ψn + E n m n Em ψ m (3.47) H mn = ψ m Ĥ ψ n = ψ n Ĥ ψ m = H nm 122

21 3.4 (3.27) (3.7) (3.8) (3.11) ψ n Ψ( r 1, r 2 ) Ĥ (3.32) Ĥ (3.9) (3.10) (Ĥ 1 + Ĥ 2 ) Ĥ (3.11) (3.29) ψ n (3.13) ψ E n (3.14) E E (3.48) E = Z6 e 2Z(r 1+r 2) π 2 d r 1 d r 2 = 5Z r 12 8 r 1, r 2 A-3 ev He Li Be B C (1) (2) 3-2. Ĥ E n ψ n ψ n Ĥ (1) (2) 3-3. m at x 0 (3.49) V (x) = 0 at 0 < x < a at x a (1) Schrödinger (2) V (x) { (3.50) V w at x a/2 (x) = 0 at x < a/2 (3) 3-4. m at x 0 (3.51) V (x) = αx/a at 0 < x < a at x a 123

22 3-5. m { α [1 + cos(8πx/a)] for 0 < x < a (3.52) V (x) = for x 0 or x a 3-6. π π N a ( (3.53) V (x) = α x a ) 2 2 (1) (2) π 2n 3-7. x, y, z a, b, c m a/4 x 3a/4 b/4 y 3b/4 c/4 z 3c/4 V 0 > m e (3.54) V (x) = 1 2 kx2 + eex k E (1) (2) (3.55) y = x + ee k 3-9. m (3.56) V (x) = 1 2 kx2 + αx 3 k α α α m (3.57) V (x) = 1 2 kx αx2 k α α k α m (3.58) V (x) = 1 2 kx2 + αx 4 k α α α He (1) (2) Schrödinger He (3) 124

23 (4) (3.59) e α(r 1+r 2) r 12 dx 1 dy 1 dz 1 dx 2 dy 2 dz 2 = 20π2 α Z 1 (1) (2) Z + 1 (3) Z Z z E (1) (2) (3) Stark R (1) e2 (3.60) V (x) = 4πε 0 R e2 4πε 0 r r for for r < R r > R (2) 1s 2p (3) Lyman R (1) 3e2 (3.61) V (x) = 8πε 0 R 3 e2 4πε 0 R r ) (R 2 r2 3 for for r < R r > R (2) 1s 2p (3) Lyman 125

24 Schrödinger ĤΨ = EΨ E 0 Ψ 0 ϕ (4.1) ϕ Ĥ ϕ ϕ ϕ E = Ψ 0 Ĥ Ψ 0 Ψ 0 Ψ 0 Ψ i (4.2) Ψ i Ψ i = 1 (4.3) Ψ i Ψ j = 0 (i j) (4.4) ϕ = i c i Ψ i c (4.5) ε = ϕ Ĥ ϕ i c j Ψ i Ĥ Ψ j c i c j E j Ψ i Ψ j c i 2 E i i j i j i = = = E 0 ϕ ϕ c i c j Ψ i Ψ j c i c j Ψ i Ψ j c i 2 i j Schrödinger i j i 4.2 (4.6) Ĥ = r (4.7) ϕ = Ae Cr A C (4.8) ε = C2 2 C (4.9) (4.10) C = 1 dε dc = C 1 = 0 126

25 (4.11) ε = 1 2 (4.12) ϕ = Ae Cr2 (4.13) ε = 3 8C 2 C π (4.14) dε dc = πc = 0 (4.15) C = 8 9π (4.16) ε = 4 3π > Z (4.17) Ĥ = 1 2 ( ) Z r 1 Z r r 12 Z C (4.18) ϕ = C3 π e C(r 1+r 2 ) (4.19) ϕ ϕ = C6 π 2 e 2C(r 1+r 2 ) d r 1 d r 2 = 1 ε Z C (4.20) ε = C6 ϕ Ĥ ϕ = π 2 = C 2 + 2C(C Z) C A-3 (4.21) dε dc = 2C 2Z = 0 (4.22) C = Z 5 16 ( (4.23) ε = Z 5 ) 2 16 (ev) He [( e C(r 1+r 2 ) Z Z + 1 ) ] e C(r 1+r 2 ) d r 1 d r 2 r 1 r 2 r

26 C (4.24) ϕ = Ae Cx2 (4.25) ϕ = Ae C x 4-2. m (4.26) V (x) = 1 2 kx2 + αx 3 k α α (4.27) ϕ = Ae Cx m (4.28) V (x) = αx 4 α (4.29) ϕ = Ae Cx m (4.30) V (x) = 1 2 kx2 + αx 4 k α α (4.31) ϕ = Ae Cx (4.32) V (x) = 1 2 k(x2 + y 2 + z 2 ) = 1 2 kr2 (1) (2) 3 (3) 2 C (4.33) ϕ = Ae Cr (4.34) ϕ = Ae Cr (1) 128

27 (2) 2 C (4.35) ϕ = Ae Cr (4.36) ϕ = Ae Cr He + (1) (2) 2 C (4.37) ϕ = Ae Cr (4.38) ϕ = Ae Cr He (1) (2) (4.39) ϕ = Ae C(r1+r2) (3) 4-9. Li + (1) (2) (4.40) ϕ = Ae C(r 1+r 2 ) (3) Ĥ (4.41) Φ = C 1 ϕ 1 + C 2 ϕ 2 ϕ 1 ϕ 2 C 1 C 2 (1) (4.42) { (H11 εs 11 )C 1 + (H 12 εs 12 )C 2 = 0 (H 21 εs 21 )C 1 + (H 22 εs 22 )C 2 = 0 (4.43) H ij = ϕ i Ĥϕ jdτ (4.44) S ij = ϕ i ϕ j dτ H ij = H ji, S ij = S ji (2) C 1 = C 2 = 0 (4.45) (H 11 εs 11 ) (H 12 εs 12 ) (H 21 εs 21 ) (H 22 εs 22 ) = 0 H 21 = H 12, S 21 = S

28 (3) ϕ 1 ϕ 2 (1) (2) a (4.46) Ψ = C 1 x(a x) + C 2 x 2 (a x) m { αx/a for 0 < x < a (4.47) V (x) = for x 0 or x a (1) ( πx ) ( ) 2πx (4.48) Ψ = C 1 sin + C 2 sin a a (2) ( πx ) ( ) 3πx (4.49) Ψ = C 1 sin + C 2 sin a a (3) (1), (2) (4) m (4.50) V (x) = 1 2 kx γx δx4 (4.51) Ψ = C 1 e ξ2 /2 + C 2 (4ξ 2 2)e ξ2, ξ = αx, α 2 = km h r µ e r (1) z E (2) (3) (4.52) ϕ = C 1 ψ 1s + C 2 ψ 2pz ψ 1s 1s ψ 2pz 2p z (4.53) E = 5e ± 3e π 2 ε 2 0 E 2 a ε 0 a 0 64ε 0 a e 2 ε 0 a 0 Bohr (4) E 2 (4.54) 1 + x = 1 + x 2 x2 8 +, 0 x < 1 (5) µ E (4.55) µ = αe α µ (4.56) E = E 0 µde 130

29 (6) (3), (4) (7) ψ 2pz ψ 3pz 131

30 s, 2s, 2p Ψ(r 1, r 2, ) r 1, r 2, (5.1) Ψ(r 1, r 2, ) = ψ 1s ((r 1 )ψ 2s (r 2 ) 5.2 Stern-Gerlach ŝ 2 ŝ 2 s = 1/2 s(s + 1) h 2 = 3 h 2 /4 α, β z ŝ z m s = 1/2 m s h = h/2 α m s = 1/2 m s h = h/2 β s 1/2 m s s m s s 1/2-1/2 α β (5.2) α α = β β = 1 (5.3) α β = β α = Pauli

31 a b c d 2 1 a (5.4) Ψ(1, 2) = ψ 1 (1)ψ 1 (2)α(1)α(2) Pauli b 2 (5.5) Ψ(1, 2) = ψ 1 (1)ψ 1 (2)α(1)β(2) (5.6) Ψ(1, 2) = ψ 1 (1)ψ 1 (2)β(1)α(2) Pauli 1 α 2 β b 2 (5.7) Ψ(1, 2) = ψ 1 (1)ψ 1 (2)[α(1)β(2) + β(1)α(2)] 1 2 (5.8) Ψ(1, 2) = ψ 1 (1)ψ 1 (2)[α(1)β(2) β(1)α(2)] 1 2 (5.7) Pauli (5.8) (5.9) Ψ(1, 2) = [ψ 1 (1)ψ 2 (2) + ψ 2 (1)ψ 1 (2)][α(1)β(2) β(1)α(2)] 1 2 (5.10) Ψ(1, 2) = [ψ 1 (1)ψ 2 (2) ψ 2 (1)ψ 1 (2)][α(1)β(2) + β(1)α(2)] 1 2 (5.11) Ψ(1, 2) = [ψ 1 (1)ψ 2 (2) ψ 2 (1)ψ 1 (2)][α(1)α(2)] 1 2 (5.12) Ψ(1, 2) = [ψ 1 (1)ψ 2 (2) ψ 2 (1)ψ 1 (2)][β(1)β(2)] α(1)β(2) β(1)α(2) α(1)β(2) + β(1)α(2) α(1)α(2) β(1)β(2) 133

32 5.6 Pauli determinant wave function (5.13) Ψ(1, 2) = 1 ψ 1 (1)α(1) 2 ψ 1 (2)α(2) ψ 1 (1)β(1) ψ 1 (2)β(2) Pauli 3 1 (5.14) Ψ(1, 2, 3) = 1 ψ 1 (1)α(1) ψ 1 (1)α(1) ψ 1 (1)β(1) 3! ψ 1 (2)α(2) ψ 1 (2)α(2) ψ 1 (2)β(2) ψ 1 (3)α(3) ψ 1 (3)α(3) ψ 1 (3)β(3) = Pauli 3 2 (5.15) Ψ(1, 2, 3) = 1 3! 2n n (5.16) Ψ(1, 2,, 2n) = ψ 1 (1)α(1) ψ 1 (1)β(1) ψ 2 (1)α(1) ψ 1 (2)α(2) ψ 1 (2)β(2) ψ 2 (2)α(2) ψ 1 (3)α(3) ψ 1 (3)β(3) ψ 2 (3)α(3) 1 (2n)! ψ 1 (1)α(1) ψ 1 (1)β(1) ψ n (1)α(1) ψ n (1)β(1) ψ 1 (2)α(2) ψ 1 (2)β(2) ψ n (2)α(2) ψ n (2)β(2) ψ 1 (2n)α(2n) ψ 1 (2n)β(2n) ψ n (2n)α(2n) ψ n (2n)β(2n) (5.17) Ψ 1 (1, 2) = 1 ψ 1 (1)α(1) ψ 2 (1)α(1) 2 ψ 1 (2)α(2) ψ 2 (2)α(2) (5.18) Ψ 2 (1, 2) = 1 ψ 1 (1)β(1) ψ 2 (1)β(1) 2 ψ 1 (2)β(2) ψ 2 (2)β(2) (5.19) Ψ 3 (1, 2) = 1 ψ 1 (1)α(1) ψ 2 (1)β(1) 2 ψ 1 (2)α(2) ψ 2 (2)β(2) (5.20) Ψ 4 (1, 2) = 1 ψ 1 (1)β(1) ψ 2 (1)α(1) 2 ψ 1 (2)β(2) ψ 2 (2)α(2) (5.17), (5.18) (5.11), (5.12) (5.19), (5.20) (5.21) Ψ t (1, 2) = 1 2 (Ψ 3 (1, 2) + Ψ 4 (1, 2)) (5.22) Ψ s (1, 2) = 1 2 (Ψ 3 (1, 2) Ψ 4 (1, 2)) (5.21) (5.10) (5.22) (5.9) 134

33 ϕ A, ϕ B 2 (1) (2) He (5.23) Ψ + = A + [1s(1)2s(2) + 1s(2)2s(1)] (5.24) Ψ = A [1s(1)2s(2) 1s(2)2s(1)] (1) (2) (3) (4) (5) 5-3. ψ 1 (1), ψ 2 (1) 2 ψ 1 (1) E1 ψ 2(1) E2 4 (5.25) Ψ 1 (1, 2) = 1 ψ 1 (1)α(1) ψ 2 (1)α(1) 2 ψ 1 (2)α(2) ψ 2 (2)α(2) (5.26) Ψ 2 (1, 2) = 1 ψ 1 (1)β(1) ψ 2 (1)β(1) 2 ψ 1 (2)β(2) ψ 2 (2)β(2) (5.27) Ψ 3 (1, 2) = 1 ψ 1 (1)α(1) ψ 2 (1)β(1) 2 ψ 1 (2)α(2) ψ 2 (2)β(2) (5.28) Ψ 4 (1, 2) = 1 ψ 1 (1)β(1) ψ 2 (1)α(1) 2 ψ 1 (2)β(2) ψ 2 (2)α(2) 2 (5.29) Φ(1, 2) = C 1 Ψ 1 (1, 2) + C 2 Ψ 2 (1, 2) + C 3 Ψ 3 (1, 2) + C 4 Ψ 4 (1, 2) (5.30) J = ψ 1 (1)ψ 1 (1) 1 ψ 2(2)ψ 2 (2) r 12 (5.31) K = ψ 1 (1)ψ 2 (1) 1 ψ 1(2)ψ 2 (2) r

34 6 Pauli Hunt 6.1 2s 2p (Z) (Z eff ) σ (6.1) Z eff = Z σ s p s p 6.2 Z Z 1s, 2s, 2p, 3s, 3p, (4s, 3d), 4p, (5s, 4d), 5p, (6s, 4f, 5d), 6p, (7s, 5f, 6d) Ge (Z = 32) (1s) 2 (2s) 2 (2p) 6 (3s) 2 (3p) 6 (3d) 10 (4s) 2 (4p) Pauli Hund 136

35 6.5 1 H 1s 19 K 4s 2 He 1s 2 20 Ca 4s 2 3 Li 2s 21 Sc 3d 4s 2 4 Be 2s 2 22 Ti 3d 2 4s 2 5 B 2s 2 2p 23 V 3d 3 4s 2 6 C 2s 2 2p 2 24 Cr 3d 4 4s 2 7 N 2s 2 2p 3 25 Mn 3d 5 4s 2 8 O 2s 2 2p 4 26 Fe 3d 6 4s 2 9 F 2s 2 2p 5 27 Co 3d 7 4s 2 10 Ne 2s 2 2p 6 28 Ni 3d 8 4s 2 11 Na 3s 29 Cu 3d 9 4s 2 12 Mg 3s 2 30 Zn 3d 10 4s 2 13 Al 3s 2 3p 31 Ga 3d 10 4s 2 4p 14 Si 3s 2 3p 2 32 Ge 3d 10 4s 2 4p 2 15 P 3s 2 3p 3 33 As 3d 10 4s 2 4p 3 16 S 3s 2 3p 4 34 Se 3d 10 4s 2 4p 4 17 Cl 3s 2 3p 5 35 Br 3d 10 4s 2 4p 5 18 Ar 3s 2 3p 6 36 Kr 3d 10 4s 2 4p I M M + + e I 1 M + M 2+ + e I 2 30 He Ne I 1 / ev Ar Zn Kr Cd Xe Hg Rn atomic number 6.7 A (6.2) M + e M

36 Mulliken (6.3) χ = I + A 2 Pauling I 1/eV A/eV EN (M) EN (P) I 1/eV A/eV EN (M) EN (P) 1 H K He < 0 20 Ca 6.11 < Li Sc Be 9.32 < Ti B V C Cr N Mn 7.44 < O Fe F Co Ne < 0 28 Ni Na Cu Mg 7.65 < Zn 9.39 < Al Ga Si Ge P As S Se Cl Br Ar < 0 36 Kr < (1) (2) Pauli (3) Hund s 2p 2p 2s 6-3. C, Cl, Cr, Cs 6-4. N 6-5. (1) (2) (1) H D (2) H D Balmer (3) 6 Li 2+ 7 Li 2+ (1), (2) 6-8. Li 1s +1 2s 1 (1) 1 I 1 (2) I ev (3) Na 3s I 1 = ev 6-9. (1) 138

37 (2) H H (6.4) H + hν H + e 1648 nm (a) (6.5) (a) X + Y X + + Y (b) X + Y X + Y (1) Mulliken (2) Pauling 139

38 7 1 Valence Bond Method Heitler London A, B 2 1, nm ev r A1 +e A 1 e r A2 r R 12 r B1 2 e r B2 +e B 7.2 Born-Oppenheimer Born-Oppenheimer (7.1) Ĥ = r A1 1 r B2 1 r A2 1 r B1 + 1 r R A (7.2) Ĥ A = r A1 (7.3) Ĥ A ϕ A (1) = E H ϕ A (1) (7.4) ϕ A (1) = 1 π e ra1 B (7.6) Ĥ B = r B2 (7.7) Ĥ B ϕ B (2) = E H ϕ B (2) (7.8) ϕ B (2) = 1 π e rb2 (7.5) E H = 1 2 (7.9) E H = 1 2 (7.10) Ĥ = ĤA + ĤB + Ĥ (7.11) Ĥ = 1 r A2 1 r B1 + 1 r R 2 1 A 2 B 1 2 (7.12) Ψ(1, 2) = ϕ A (1)ϕ B (2) 140

39 (7.13) E = Ψ(1, 2) ĤA + ĤB + Ĥ Ψ(1, 2) = 2E H + ϕ A (1)ϕ B (2) Ĥ ϕa (1)ϕ B (2) = 2E H + Q Q Coulomb R 0.09 nm 0.25 ev A B 1 2 (7.14) Ψ(1, 2) = c 1 ϕ A (1)ϕ B (2) + c 2 ϕ A (2)ϕ B (1) c 1 ψ 1 + c 2 ψ 2 2 c 1 c 2 c 1 = c 2 (7.15) Ψ(1, 2) = N[ϕ A (1)ϕ B (2) + ϕ A (2)ϕ B (1)] N 3.14 ev nm 7.5 σ π σ s π 2 p p σ : s-s, s-p z, p z -p z 1 π : p x -p x, p x -d zx 2 δ : d x2 y2 -d x2 y2 N 2 (1s) 2 (2s) 2 (2p x )(2p y )(2p z ) 141

40 σ (2p z ) π (2p y ) (2p x ) 7.6 (1s) 2 (2s) 2 (2p x ) 2 (2p y )(2p z ) 1s, 2s z x : s H, y : s H (7.16) ψ x (1, 2) p x (1)s H (2) + p x (2)s H (1) (7.17) ψ y (1, 2) p y (1)s H (2) + p y (2)s H (1) 90 H 2 O H 2 S 92.2 H 2 Se 90.9 H 2 Te 89.5 x p y H + p x p z + p z + p x p y H' y CH (7.18) (1s) 2 (2s) 2 (2p) 2 2 (7.19) (1s) 2 (2s)(2p x )(2p y )(2p z ) C H (1, 1, 1), (1, 1, 1), ( 1, 1, 1), ( 1, 1, 1) (7.20) (7.21) (7.22) (7.23) ϕ(1, 1, 1) = c 1 s + c 2 (p x + p y + p z ) ϕ(1, 1, 1) = c 1 s + c 2 (p x p y p z ) ϕ( 1, 1, 1) = c 1 s + c 2 ( p x + p y p z ) ϕ( 1, 1, 1) = c 1 s + c 2 ( p x p y + p z ) 142

41 (7.24) ϕ(1, 1, 1) ϕ(1, 1, 1) = c c 2 2 = 1 (7.25) ϕ(1, 1, 1) ϕ(1, 1, 1) = c 2 1 c 2 2 = 0 (7.26) c 1 = c 2 = 1 2 sp 3 hybrid orbital z z ( 1, 1,1) (1,1,1) ( 1,1, 1) y y (1, 1, 1) x x z s, p x, p y xy pz (7.27) (7.28) (7.29) ϕ(1) = 1 2 s + p x 3 3 ϕ(2) = 1 3 s 1 6 p x p y ϕ(3) = 1 3 s 1 6 p x 1 2 p y y y + x x sp x s, p x 143

42 y (7.30) ϕ(1) = 1 2 (s + p x ) (7.31) ϕ(2) = 1 (s p x ) x 2 sp dsp Ni(CN) 2 4, AuCl 4 sp 3 d 5 90, 120, 180 PCl 5, AsF 5, SbCl 5 d 2 sp Co(NH 3 ) 3+ 6, PtCl2 6 sp 3 d SF (1) 2 1s (2) 7-2. (1) (2) C H (1,1,1), (1,-1,-1), (-1,1,-1), (-1,-1,1) (1) 2s, 2p x, 2p y, 2p z 4 (2) (1) 4 (3) (1) 4 2s 2 2p 3 2 1: sp 3 (7.32) ϕ = as + bp x + cp y + dp z (7.33) a 2 : (b 2 + c 2 + d 2 ) = 1 : 3 (1) 1 x a, b, c, d (2) xz (1) a, b, c, d (3) (1), (2) 2 (4) 3, 4 (1), (2) xz a, b, c, d 7-6. sp 2 xy 144

43 (1) 2s, 2p x, 2p y, 2p z 4 (2) 3 (3) (2) 3 (4) (2) (1) dsp 2 (2) sp 3 d (3) d 2 sp 3 (4) sp 3 d 2 145

44 LCAO 8.1 Molecular Orbital Method Hamiltonian (8.1) Ĥ = r A1 1 r B1 + 1 R e 1 (8.2) ϕ A (1) = 1 π e ra1 (8.3) ϕ B (1) = 1 π e rb1 r +e A A1 R r B1 +e B LCAO (Linear Combination of Atomic Orbitals) (8.4) ψ(1) = c A ϕ A (1) + c B ϕ B (1) (8.5) E = ψ(1) Ĥ ψ(1) ψ(1) ψ(1) (8.6) H AA = ϕ A (1) Ĥ ϕ A(1) (8.7) H BB = ϕ B (1) Ĥ ϕ B(1) = c2 A H AA + c 2 B H BB + 2c A c B H AB c 2 A + c2 B + 2c Ac B S (8.8) H AB = ϕ A (1) Ĥ ϕ B(1) = ϕ B (1) Ĥ ϕ A(1) = H BA (8.9) S = ϕ A (1) ϕ B (1) = ϕ B (1) ϕ A (1) S E c A, c B (8.10) E = E = 0 c A c B (8.11) (8.12) c A (H AA E) + c B (H AB ES) = 0 c A (H AB ES) + c B (H BB E) = 0 c A = c B = 0 (8.13) H AA E H AB ES H AB ES H BB E = 0 (8.14) H AA = H BB 146

45 (8.13) (8.15) (H AA E) 2 (H AB ES) 2 = 0 E (8.16) E = (H AA ± H AB )(1 S) (1 + S)(1 S) = H AA ± H AB 1 ± S (8.11), (8.12) (8.17) c B c A = ±1 c A g gerade u ungerade (8.18) ψ g (1) = S [ϕ A(1) + ϕ B (1)] (8.19) E g = H AA + H AB 1 + S 1 (8.20) ψ u (1) = 2 2S [ϕ A(1) ϕ B (1)] (8.21) E u = H AA H AB 1 S Coulomb (8.22) H AA = ϕ A (1) Ĥ ϕ A(1) = E H + J + 1 R J (8.23) J = ϕ A (1) 1 r B1 ϕ A(1) = 1 ( R + e 2R ) R (8.24) H AB = ϕ A (1) Ĥ ϕ B(1) = E H S + K + S R K (8.25) K = ϕ A (1) 1 ϕ B(1) r B1 = e R (1 + R) S (8.26) S = ϕ A (1) ϕ B (1) ( ) = e R 1 + R + R

46 (8.27) E = E H + 1 R + J ± K 1 ± S E H 1 1/R MO (E EH) / au E g E u R / a nm nm 1.76 ev 2.79 ev φ ψ A + φ B 0.4 φ A ψ φ B r / a r / a 0 148

47 ψ ψ r / a r / a R, Ĥ (1) ( ) (8.28) S = ϕ A (1) ϕ B (1) = e R 1 + R + R2 3 (2) Coulomb (8.29) H AA = ϕ A (1) Ĥ ϕ A(1) = 1 ( 2 + e 2R ) R (3) (8.30) H AB = ϕ A (1) Ĥ ϕ B(1) = S 2 + S R e R (1 + R) 8-2. (1) (2) (3) (4) (5) (6) cm 1 149

48 9 2 2 SCF 9.1 (9.1) Ĥ = r A1 r B r A2 r B2 r 12 R = Ĥ1 + Ĥ r 12 R (9.2) Ĥ 1 = r A1 1 r B1 (9.3) Ĥ 2 = r A2 1 r B2 1/r 12 (9.4) Ψ(1, 2) = S [ϕ A(1) + ϕ B (1)][ϕ A (2) + ϕ B (2)] 2 E = Ψ(1, 2) Ĥ1 + Ĥ (9.5) r 12 R Ψ(1, 2) 2(J + K) = 2E H + + Ψ(1, 2) S Ψ(1, 2) + 1 R J (8.23) J K (8.25) K r 12 2 (9.6) Ψ(1, 2) 1 Ψ(1, 2) r 12 = 2J + 2J + 8L + 4K (2 + 2S) 2 J J = ϕ A (1)ϕ B (2) 1 (9.7) r 12 ϕ A(1)ϕ B (2) = 1 ( 1 R e 2R R R ) 4 + R

49 K K = ϕ A (1)ϕ B (2) 1 (9.8) r 12 ϕ A(2)ϕ B (1) ( = e 2R R ) 4 + 3R2 + R [ S 2 (γ + ln R) + S 2 5R 1E i ( 4R) SS 1 E i ( 2R) ] (9.9) J = ϕ A (1)ϕ A (2) 1 ϕ A(1)ϕ A (2) r 12 (9.10) = 5 8 L = ϕ A (1)ϕ A (2) 1 ϕ A(1)ϕ B (2) = 1 16R (9.11) E = 2E H + r 12 [ (5 + 2R + 16R 2 )e R (5 + 2R)e 3R] 2(J + K) 1 + S + ( ) 1 5 2(1 + S) J + 4L + 2K 9.2 (9.12) E = H 11 + H S 12 (9.13) H 11 = ϕ A (1)ϕ B (2) Ĥ ϕ A(1)ϕ B (2) = 2E H + 2J + J + 1 R (9.14) H 12 = ϕ A (1)ϕ B (2) Ĥ ϕ A(2)ϕ B (1) = 2S 2 E H + 2SK + K + S2 R (9.15) S 12 = ϕ A (1) ϕ B (1) ϕ A (2) ϕ B (2) = S 2 (9.16) E = 2E H + 1 R + 2J + J + (2SK + K ) 1 + S 2 VB nm 3.14 ev MO nm 2.68 ev nm 4.74 ev MO (9.17) Ψ(1, 2) = S [ϕ A(1)ϕ B (2) + ϕ B (1)ϕ A (2) + ϕ A (1)ϕ A (2) + ϕ B (1)ϕ B (2)] 2 1 1:1 151

50 9.3 SCF 1 (9.18) Ĥ = r A1 1 r B1 + V SCF (r 1 ) r A2 1 r B2 + V SCF (r 2 ) + 1 R Configuration Interaction 9-1. (1) SCF (2) SCF 9-2. LCAO-MO (1) (2) (3) (4) 9-3. LCAO-MO 1 (1) (2) 9-4. LCAO-MO (1) (2) (3) cm LCAO-MO 9-6. Configuration Interaction 152

51 AO H AA H BB c A 1, c B 0 s-p z 10.2 σ s σs H He ( ) σ 1s s * σ s 1s σ s σ s Li Be ( ) σ s σ s σ p π p π p σ p B C σ 2s s * 2p 2s π x σ s Σ* z * Σ z π y * π x π y σ * s 2s 2p 2s σ s σ s σ s σ p π p π p σ p N O F Ne σ s 2p 2s σ* z π* x π y * π x π y σ z σ * s 2p 2s 10.3 (10.1) Ψ MO = c A ϕ A + c B ϕ B, c A = c B 153

52 10.4 µ n (i = 1 n) q i r i µ n (10.2) µ = q i r i i=1 +q q R µ (10.3) µ = qr q +q +e A R/2 0 +e B R/2 e φa φ B e (10.4) Ψ MO = c A ϕ A + c B ϕ B = N(ϕ A + λϕ B ) N (10.5) 1 = N 2 ( ϕ A ϕ A + 2λ ϕ A ϕ B + λ 2 ϕ B ϕ B ) = N 2 (1 + λ 2 + 2λS) (10.6) N 2 = (10.7) S = ϕ A ϕ B λ 2 + 2λS (10.8) z = Ψ z Ψ = N 2 ( ϕ A z ϕ A + 2λ ϕ A z ϕ B + λ 2 ϕ B z ϕ B ) N 2 (z AA + 2λz AB + λ 2 z BB ) z AA A z BB B (10.9) z AA = 1 2 R (10.10) z BB = 1 2 R R (10.11) z = N 2 [ 1 2 R(λ2 1) + 2λz AB ] z AB 0 Ψ 2 z = 0 +2e z 2e (10.12) µ = 2e z (λ2 1)eR 1 + λ 2 + 2λS 154

53 A +2e 2e B 0 <z> Ψ MO A, B (1) ϕ A, ϕ B MO (10.13) α A E β A ES β A ES α B E = 0 (10.14) α A = ϕ A Ĥeff ϕ A, α B = ϕ B Ĥeff ϕ B (10.15) β = ϕ B Ĥeff ϕ A = ϕ A Ĥeff ϕ B (10.16) S = ϕ B ϕ A = ϕ A ϕ B Ĥ eff MO 1 (2) (3) α A = α B = α (2) (4) α A α B (2) (10.17) E + = α A + β 2 α A α B, β 2 E = α B α A α B (5) (4) α A α B ϕ A ϕ B A, B σ π δ (1) σ1s (2) σ 1s (3) σ2p z (4) π2p (1) (2) H 2, H + 2, H 2 (3) He 2, He (1) B 2 (2) N 2 N + 2 (3) O 2 O

54 10-8. O + 2, O 2, O 2, O NO NO D e D 0 (1) D e D 0 (2) N ev, 2331 cm 1 (3) H 2 (2) De = ev, 4401 cm NaCl nm, NaCl 4.29 ev Na 5.14 ev, Cl 3.61 ev (1) NaCl (2) NaCl Na + Cl Coulomb NaCl (3) (2) NaCl C m (4) (1) (2) KF nm, KF 5.18 ev K 4.34 ev, F 3.40 ev (1) KF (2) KF K + F Coulomb KF (3) (2) KF C m MO (10.18) Ψ MO = N(ϕ A + λϕ B ) (1) λ S (2) λ +δ δ 1/3 HF HCl HBr KI KCl µ/er

55 xy x 2 z (11.1) h 1 = 1 2 (s H + s H ) (11.2) h 2 = 1 2 (s H s H ) xy xz 1s, 2s, 2p x, h 1 xy xz 2p y, h 2 H' x p y + p x p z + p z + p x p y H y xy xz 2p z LCAO (11.3) ψ = c 1 (1s) + c 2 (2s) + c 3 (2p z ) + c 4 (h 1 ) + c 5 (2p y ) + c 6 (h 2 ) + c 7 (2p x ) (11.4) = 0 VB 2a 1 1b 2 3a 2 T. H. Hunting, et al., J. Chem. Phys., 57, 5044 (1972) 157

56 11.2 VB MO y x y x (11.5) ϕ(i) p x + λs H H' p y p H x + + φ(ii) + + φ(i) (11.6) ϕ(ii) p y + λs H p z ϕ(i), ϕ(ii) p x p y ϕ(i) ϕ(ii) ϕ(i), ϕ(ii), p z O(1s) 2 (2s) 2 (2pz) 2 [O(2p x )+ H(1s)] 2 [O(2p y )+ H (1s)] (1) (2) (11.7) = 0 (1) (2) (1) (2) 158

57 12 π Hückel π Hückel π 12.1 n LCAO LCAO n (12.1) Ψ = c i ϕ i i=1 n n c i ϕ i Ĥ c j ϕ j i=1 j=1 (12.2) ε = n n = c i ϕ i c j ϕ j i=1 j=1 n n c i c j ϕ i Ĥ ϕ j i=1 j=1 n i=1 j=1 n c i c j ϕ i ϕ j n n c i c j H ij i=1 j=1 n i=1 j=1 n c i c j S ij n n n n (12.3) ε c i c j S ij = c i c j H ij i=1 j=1 i=1 j=1 ε c i c k c i n n n n (12.4) ε c j S kj + ε c i S ik = c j H kj + c i H ik j=1 i=1 j=1 i=1 (12.5) S ij = S ji (12.6) H ij = H ji n (12.7) c i (H ik εs ik ) = 0 i=1 (12.8) (12.9) (12.10) c 1 (H 11 S 11 ε) + c 2 (H 12 S 12 ε) + + c n (H 1n S 1n ε) = 0 c 1 (H 21 S 21 ε) + c 2 (H 22 S 22 ε) + + c n (H 2n S 2n ε) = 0 c 1 (H n1 S n1 ε) + c 2 (H n2 S n2 ε) + + c n (H nn S nn ε) = 0 c i ε (12.11) (H 11 S 11 ε) (H 12 S 12 ε) (H 1n S 1n ε) (H 21 S 21 ε) (H 22 S 22 ε) (H 2n S 2n ε) (H n1 S n1 ε) (H n2 S n2 ε) (H nn S nn ε) ε c i = 0 159

58 12.2 π Hückel σ π π p i (12.12) H ii = α (12.13) S ii = 1 1 (12.14) S ij = 0 for i j 2 (12.15) H ij = β < 0 for i j, i, j (12.16) H ij = 0 for i j, i, j n n MO MO 2 π π E π (12.17) E π = i ν i ε i ν i i MO r π q r (12.18) q r = i ν i c 2 ir c ir i MO r r s p rs (12.19) p rs = i ν i c ir c is Hückel 12.3 sp 2 C-C σ C-H p π 1 2 p ϕ 1, ϕ 2 (12.20) Ψ = c 1 ϕ 1 + c 2 ϕ 2 c 1, c 2 (12.21) { c1 (α ε) + c 2 β = 0 c 1 β + c 2 (α ε) = 0 160

59 (12.22) α ε β β α ε = 0 (12.23) λ = α ε β (12.24) λ 1 1 λ = λ2 1 = 0 (12.25) λ = ±1 λ = 1 (12.26) ε 1 = α + β (12.27) c 1 = c 2 = 1 2 λ = 1 (12.28) ε 2 = α β (12.29) c 1 = c 2 = 1 2 β < 0 λ = 1 π 2 MO (12.30) E π = 2(α + β) MO 12.4 (12.31) λ λ λ λ = λ 4 3λ = 0 (12.32) λ = 1 + 5, , 1 + 5, (12.33) ε 1 = α β, ε 2 = α β, ε 1 = α 0.618β, ε 1 = α 1.618β π (12.34) E π = 4α β 2 π 2 4(α + β) Delocalization Energy (DE) 0.472β 161

60 12-1. π Hückel π Hückel (1) MO (2) MO (3) π π Hückel (1) MO (2) MO (3) MO (4) π (5) (6) π (7) π Hückel MO π π C 3 H Hückel MO π π π Hückel MO π π Hückel H + 3 H 3, H 3 162

61 van der Waals - r 6 - r 6 r 6 London van der Waals ) (13.1) (P + an2 V 2 (V nb) = nrt a b V 2 r e 1 r 12 2 e r +e A A1 r A2 R r B1 r B2 +e B 2 (13.2) Ψ(1, 2) = ϕ A (1)ϕ B (2) (13.3) Ĥ = 1 r A2 1 r B1 + 1 r A2 + 1 r A2 A B z x 1 A r 1 x x 2 B r 2 x (13.4) r 2 12 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 R) 2 (13.5) r 2 A2 = x y (z 2 + R) 2 (13.6) r 2 B1 = x y (z 1 R) 2 (13.7) t = t t2 +, t 1 R x 1, R x 2 (13.8) (13.9) 1 r 12 = 1 R 1 r A2 = 1 R [ 1 (x 1 x 2 ) 2 + (y 1 y 2 ) 2 2(z 1 z 2 ) 2 2R(z 1 z 2 ) 2R 2 [ 1 x2 2 + y 2 2 2z Rz 2 ) 2R 2 ] 163 ]

62 (13.10) 1 = 1 [ 1 x2 1 + y1 2 2z 2 ] 2 2Rz 1 ) r B1 R 2R 2 (13.11) Ĥ = 1 R (x 1x 2 + y 1 y 2 2z 1 z 2 ) (13.12) E = ϕ A (1)ϕ B (2) Ĥ ϕ A (1)ϕ B (2) H 00 = 0 Ψ (13.13) E 0 = H 0k H k0 = 6 E 0 E k R 6 k 0 (in au) 13.3 X-H Y X O, N, F H X Y O, N, F, Cl H 2O melting point / C ο H 2O 0 H 2Te 2 HF H 2S H Se HI 100 HCl HBr NH SbH 3 3 PH AsH3 3 CH 4 SiH 4 GeH SnH molecular weight / g mol boiling point / C ο HF H Te H 2Se H 2S SbH 3 HI NH3 SnH PH AsH GeH 4 HBr SiH 4 HCl CH molecular weight / g mol

63 A-1 Laguerre Schrödinger (A1.1) 1 r 2 ( d r 2 dr ) [ ) 2µ + (E dr dr h 2 + e2 4πε 0 r ] l(l + 1) r 2 R = 0 Nχ(r) = rr(r) N (A1.2) ρ = r a 0 (A1.3) a 0 = 4πε 0 h 2 µe 2 (A1.4) η = E w 0 (A1.5) w 0 = µ ( ) e h 2 4πε 0 (A1.6) d 2 χ dρ 2 + ρ [ η + 2 l(l + 1) ρ ρ 2 ] χ = 0 (A1.7) χ(ρ) = e ± ηρ ± ρ (A1.8) χ(ρ) = ρ a e ηρ L(ρ) (A1.9) L(ρ) = b 0 + b 1 ρ + b 2 ρ 2 + a, b 0, b 1, (A1.10) χ(ρ) = e ηρ ρ a b m ρ m = e ηρ (A1.11) m=0 [ dχ dρ = ηρ e ρ a η b m ρ m + m=0 b m ρ m+a m=0 ] (m + a)b m ρ m 1 m=0 (A1.12) [ d 2 χ dρ 2 = ηρ e ρ a η b m ρ m 2 η m=0 + (m + a)b m ρ m 1 m=0 ] (m + a)(m + a 1)b m ρ m 2 m=0 ρ 2 e ηρ ρ a (A1.13) [ 0 = e ηρ ρ a ( ) 2 η(m + a) + 2 bm ρ m+1 m=0 ] + ((m + a)(m + a 1) l(l + 1)) b m ρ m m=0 165

64 (A1.14) b m ρ m+1 = b m 1 ρ m m=0 m=1 summation m = 1 summation m = 0 (A1.15) 0 = [a(a 1) l(l + 1)] b 0 + ρ m [ ( 2 ] η(m 1 + a) + 2)b m 1 + ((m + a)(m + a 1) l(l + 1))b m m=1 (A1.16) a(a 1) l(l + 1) = 0, a = 1 + l, or l a < 0 χ ρ = 0 a > 0 (A1.17) a = l + 1 Summation (A1.18) [ 2 η(m + l) + 2 ] bm 1 + [(m + l + 1)(m + l) l(l + 1)] b m = 0 (A1.19) (m + 1)(2l m)b m+1 = 2 [ η(m l) 1 ] b m L(ρ) n r (A1.20) (l + n r + 1) η 1 = 0, n r = 0, 1, 2, L(ρ) n r (A1.21) η = 1 n 2, n = n r + l + 1 = 1, 2, 3,, n l + 1 n Laguerre (A1.22) L k (x) = e x dk dx k (xk e x ), L(ρ) L s k(x) = ds dx s L k(x) (A1.23) L(ρ) = L 2l+1 n+l (2ρ/n) 166

65 A Â (A2.1) Âψ n = A n ψ n ψ n A n 2.2 Φ Ψ (A2.2) Ψ Φ = Φ Ψ 2 Ĉ, Ĉ+ (A2.3) Ψ Ĉ Φ = ĈΦ Ψ = Φ Ĉ+ Ψ 2.3 (A2.4) Ψ Ĉ Φ = Φ Ĉ Ψ Φ = Ψ = ψ Ĉ C (A2.5) ψ Ĉ ψ = C ψ ψ (A2.6) ψ Ĉ ψ = C ψ ψ = C ψ ψ (A2.7) C = C C 2.4 (A2.8) (A2.9) Ĉψ n = C n ψ n Ĉψ m = C m ψ m (A2.10) ψ m Ĉ ψ n = C n ψ m ψ n (A2.11) ψ n Ĉ ψ m = C m ψ n ψ m 167

66 Ĉ (A2.12) ψ m Ĉ ψ n = ψ n Ĉ ψ m (A2.13) C n ψ m ψ n = C m ψ n ψ m C n 0, C m 0, C n C m (A2.14) ψ m ψ n = ψ n ψ m = (A2.15) Φ = c n ψ n n c n ψm (A2.16) ψ m Φ = c n ψ m ψ n = c m (A2.17) Φ Φ = c n 2 (A2.18) Φ = ψ m Φ ψ n n n n 2.6 Ĉ C n Ĉ Ψ Φ Ĉ ψ n C n (A2.19) Φ = (A2.20) Ψ = a n ψ n n b n ψ n n Φ Ĉ Ψ = a n ψ n Ĉ (A2.21) b m ψ m = a n ψ n b m C m ψ m = n m a nb m C m ψ n ψ m = a nb n C n n m n Ψ Ĉ Φ = b n ψ n Ĉ (A2.22) a m ψ m = b n ψ n a m C m ψ m n n m n ( ( ) = b na m C m ψ n ψ m ) = a n b nc n = a nb n Cn n m n n 168 m m

67 (A2.23) C n = C n (A2.21) (A2.22) (A2.24) Ψ Ĉ Φ = Φ Ĉ Ψ Ĉ 169

68 A q Coulomb (A3.1) U(r) = q r 3.2 Q(r) Q(r) ρ Φ(ρ) r V (ρ, r) r dr 4πr 2 Q(r)dr ρ < r r θ ρ R (A3.2) R 2 = r 2 + ρ 2 2rρ cos θ ρ, r (A3.3) 2RdR = 2rρ sin θdθ (A3.4) ρ > r V in (ρ, r)dr = 2π 0 dϕ π 0 = 2πr2 Q(r)dr rρ = 4πr2 Q(r)dr r sin θdθ Q(r) R r+ρ r ρ dr r2 dr r R θ ρ 170

69 (A3.5) V out (ρ, r)dr = 2π 0 dϕ π 0 = 2πr2 Q(r)dr rρ = 4πr2 Q(r)dr ρ sin θdθ Q(r) R ρ+r ρ r dr r2 dr (A3.6) Φ(ρ) = ρ V out (ρ, r)dr + 0 ρ V in (ρ, r)dr (A3.7) (A3.8) Q(r) = e αr Φ(ρ) = 8π [ ( α 3 1 e αρ αρ )] ρ Q (ρ) 2 W (A3.9) W = 2π dϕ π sin θdθ ρ 2 dρq (ρ)φ(ρ) (A3.10) (A3.11) (A3.12) (A3.13) Q (r) = e αr W = 20π2 α 5 = d r A = dx A dy A dz A d r B = dx B dy B dz B e α(r A+r B) d r A d r B r AB 171

70 A-4 (A4.1) (A4.2) Ĥψ n = E n ψ n Ĥ = Ĥ + λĥ n = 1 n = 2 (A4.3) (A4.4) (A4.5) Ĥ ψ 1 = E ψ 1 Ĥ ψ 2 = E ψ 2 Ĥ ψ 3 = E 3ψ 3 E ψ 1, ψ 2 2 (A4.6) ψ = c 1 ψ 1 + c 2 ψ 2 (A4.7) ψ = c 1 ψ 1 + c 2 ψ 2 + k 3 c k ψ k Schrödinger (A4.8) c 1 Ĥ ψ 1 +c 2 Ĥ ψ 2 + k 3 c k Ĥ ψ k +c 1 Ĥ ψ 1 +c 2 Ĥ ψ 2 + k 3 c k Ĥ ψ k = E(c 1 ψ 1 +c 2 ψ 2 + k 3 c k ψ k) ψ 1 ψ 2 (A4.9) (A4.10) (E E H 11)c 1 + H 12c 2 = 0 H 21c 2 (E E H 22)c 1 = 0 2 c 1, c 2, E c 1 = c 2 = 0 (A4.11) (E E H 11) H 12 H 21 (E E H 22) = 0 ψ 1, ψ 2 H 11 = H 22 H 12 = H 21 > 0 (A4.12) E = E + H 11 ± H 12 (A4.13) ψ ± = 1 2 (ψ 1 ± ψ 2) 172

71 A a 11 a 12 a 1n (A5.1) D = a 21 a 22 a 2n a n1 a n2 a nn a ij i j D k m D km A km (A5.2) A km = ( 1) k+m D km 5.2 (A5.3) a 11 a 12 a 21 a 22 = a 11a 22 a 12 a a 11 a 12 a 13 (A5.4) a 21 a 22 a 23 a 31 a 32 a 33 = a 11a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31 a 12 a 21 a 33 a 11 a 23 a n (A5.5) D = n a im A im = i=1 n a kj A kj j=1 n (n 1) 2 a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = a 11 a 22 a 23 a 32 a 33 a 21 a 12 a 13 a 32 a 33 + a 31 a 12 a 13 (A5.6) a 22 a 23 a = a 22 a a 32 a 33 a 12 a 21 a 23 a 31 a 33 + a 13 a 21 a 22 a 31 a 32 = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31 a 12 a 21 a 33 a 11 a 23 a

72 5.5 A-5-1. a 11 a 12 a 13 (A5.7) a 21 a 22 a 23 a 31 a 32 a 33 = a 21 a 22 a 23 a 11 a 12 a 13 a 31 a 32 a 33 = a 12 a 11 a 13 a 22 a 21 a 23 a 32 a 31 a 33 A-5-2. c c ca 11 ca 12 ca 13 (A5.8) a 21 a 22 a 23 a 31 a 32 a 33 = ca 11 a 12 a 13 ca 21 a 22 a 23 ca 31 a 32 a 33 = c a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A-5-3. a 11 a 12 a 13 (A5.9) a 11 a 12 a 13 a 31 a 32 a 33 = a 11 a 11 a 13 a 21 a 21 a 23 a 31 a 31 a 33 = 0 A-5-4. c (A5.10) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = = a 11 a 12 a 13 a 21 + ca 11 a 22 + ca 12 a 23 + ca 13 a 31 a 32 a 33 a 11 a 12 + ca 11 a 13 a 21 a 22 + ca 21 a 23 a 31 a 32 + ca 31 a 33 A-5-1. (1) (4) A-5-2. n A B A B A B 174

73 A µ ϕ( r) (A6.1) µ 0 ϕ( r) = µ 0 µ r 4πr 3 A I n ϕ( r) (A6.2) ϕ( r) = µ 0AI n r 4πr 3 2 (A6.3) µ = AI n 6.2 R (A = πr 2 ) m e e ω (A6.4) (A6.5) (A6.6) L = me r 2 ω n I = ωe 2π µ = ωe 2π πr2 n = e L γel 2m e γ e m z (A6.7) L z = m h (A6.8) µ z = e h 2m e m µ B m µ B Bohr 6.3 z B E (A6.9) E = µ B = µ z B 2m + 1 z x, y 175

74 6.4 m = 2 m = 1 m = 0 m = 1 m = Electron Spin Resonance ( EPR ) (A6.10) µ e = g e γ e m s h g e g B (A6.11) E = g e γ e m s hb = g e µ B B m s = ±1/2 (A6.12) E = E α E β = g e µ B B ν (A6.13) hν = E = g e µ B B ESR ν B B loc (A6.14) hν = g e µ B B loc = g e µ B (1 σ)b gµ B B g σ 6.6 NMR NMR I m I ( I m I I) I 0, 1/2, 1, 3/2, 176

75 6.7 z (A6.15) µ z = γ hm I γ g g I µ N (A6.16) g I µ N = γ h (A6.17) µ N = e h 2m p z B (A6.18) (A6.19) E = µ z B = γ hbm I E = γ hb (%) I g I 1 H / D C C / N N / O O / NMR (A6.20) hν = γ hb = ω h ω Lamor Lamor B B loc (A6.21) (A6.22) B loc = (1 σ)b ω = γb loc = γ(1 σ)b σ σ δ ν B (A6.23) δ = ν ν ν 10 6 = B B B

76 6.9 α α N α β N β Boltzmann (A6.24) N α = N β e E/kBT - α β Boltzmann - A-6-1. (1) A I ( n ) (2) Bohr (3) R (4) Bohr A d A-6-3. (1) z z (2) B (3) (4) A GHz ESR mt g A-6-5. g = GHz ESR ESR A-6-6. (1) z B (2) (3) Lamor A-6-7. (1) z J T 1 (2) g 1 T (3) 10 T 1 T (4) 400 MHz 1 H 2 D 12 C 13 C 14 N I 1/ /2 1 γ I A-6-8. NMR (1) (2) (3) 178

77 A-7 Schrödinger 7.1 self consistent field N Schrödinger N N ) (A7.1) Ĥ = Ĥ j = ( h2 2m 2 j + U j (r j ) j=1 j=1 (A7.2) Ψ N (r 1, r 2,, r N ) = ψ 1 (r 1 )ψ 2 (r 2 ) ψ N (r N ) U j (r j ) j r j Hartree A-7-1. ψ j A-7-2. j U j j ψ i A-7-3. U j ψ j A-7-4. U i ψ i A-7-5. U i 2 4 Fock A-7-1. He Hartree-Fock U 1 (r 1 ) 1 (A7.3) U 1 (r 1 ) = ϕ 1s (r 2 ) 1 ϕ 1s(r 2 ) r 12 ϕ 1s 1s U 1 (r 1 ) A-7-2. Z Z Z Z s (A7.4) s = Z Z s Slater 1. i j s ij i s i (A7.5) s i = j s ij 2. (1s), (2s, 2p), (3s, 3p), (3d), (4s, 4p), (4d), (4f), (5s, 5p), (5d) 3. i j s ij = 0 179

78 4. i j s ij = 1/3 5. i j s ij = 1 H Ar 180

β

β β 01 7 1 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 s s s d 10 s p s p s p 3 s p 4 s p 5 s p 6 1 1H He 1.01 4.00 3Li 4Be 5B 6C 7N 8O 9F 10Ne 6.94 9.01 10.81 1.01 14.01 16.00 19.00 0.18 3 11Na 1Mg 13Al 14Si

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h filename=quantum-dim110705a.tex 1 1. 1, [1],[],[]. 1980 []..1 U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h i z (.1) Ĥ ( ) Ĥ = h m x + y + + U(x, y, z; t) (.) z (U(x, y, z; t)) (U(x,

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

H1-H4

H1-H4 42 S H He Li H He Li Be B C N O F Ne Be B C N O F Ne H He Li Be B H H e L i Na Mg Al Si S Cl Ar Na Mg Al Si S Cl Ar C N O F Ne Na Be B C N O F Ne Na K Sc T i V C r K Sc Ti V Cr M n F e C o N i Mn Fe Mg

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

高知工科大学電子 光システム工学科

高知工科大学電子 光システム工学科 卒業研究報告 題 目 量子力学に基づいた水素分子の分子軌道法的取り扱いと Hamiltonian 近似法 指導教員 山本哲也 報告者 山中昭徳 平成 14 年 月 5 日 高知工科大学電子 光システム工学科. 3. 4.1 4. 4.3 4.5 6.6 8.7 10.8 11.9 1.10 1 3. 13 3.113 3. 13 3.3 13 3.4 14 3.5 15 3.6 15 3.7 17

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30 2.4 ( ) 2.4.1 ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) I(2011), Sec. 2. 4 p. 1/30 (2) Γ f dr lim f i r i. r i 0 i f i i f r i i i+1 (1) n i r i (3) F dr = lim F i n i r i. Γ r i 0 i n i

More information

I II

I II I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

物理化学I-第12回(13).ppt

物理化学I-第12回(13).ppt I- 12-1 11 11.1 2Mg(s) + O 2 (g) 2MgO(s) [Mg 2+ O 2 ] Zn(s) + Cu 2+ (aq) Zn 2+ (aq) + Cu(s) - 2Mg(s) 2Mg 2+ (s) + 4e +) O 2 (g) + 4e 2O 2 (s) 2Mg(s) + O 2 (g) 2MgO(s) Zn(s) Zn 2+ (aq) + 2e +) Cu 2+ (aq)

More information

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru 1. 1-1. 1-. 1-3.. MD -1. -. -3. MD 1 1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Structural relaxation

More information

4 1 Ampère 4 2 Ampere 31

4 1 Ampère 4 2 Ampere 31 4. 2 2 Coulomb 2 2 2 ( ) electricity 2 30 4 1 Ampère 4 2 Ampere 31 NS 2 Fleming 4 3 B I r 4 1 0 1.257 10-2 Gm/A µ 0I B = 2πr 4 1 32 4 4 A A A A 4 4 10 9 1 2 12 13 14 4 1 16 4 1 CH 2 =CH 2 28.0313 28 2

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

RN201602_cs5_0122.indd

RN201602_cs5_0122.indd ISSN 1349-1229 No.416 February 2016 2 SPECIAL TOPIC113 SPECIAL TOPIC 113 FACE Mykinso 113 SPECIAL TOPIC IUPAC 11320151231 RI RIBFRILAC 20039Zn30 Bi83 20047113 20054201283 113 1133 Bh107 20082009 113 113

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

元素分析

元素分析 : このマークが付してある著作物は 第三者が有する著作物ですので 同著作物の再使用 同著作物の二次的著作物の創作等については 著作権者より直接使用許諾を得る必要があります (PET) 1 18 1 18 H 2 13 14 15 16 17 He 1 2 Li Be B C N O F Ne 3 4 5 6 7 8 9 10 Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

note4.dvi

note4.dvi 10 016 6 0 4 (quantum wire) 4.1 4.1.1.6.1, 4.1(a) V Q N dep ( ) 4.1(b) w σ E z (d) E z (d) = σ [ ( ) ( )] x w/ x+w/ π+arctan arctan πǫǫ 0 d d (4.1) à ƒq [ƒg w ó R w d V( x) QŽŸŒ³ džq x (a) (b) 4.1 (a)

More information

untitled

untitled C n π/n σ S n π/n v h N tc C S S S S S S S S S S S S S σ v S C σ v C σ v S. O. C / 8 Grou ABCABC EAAEA E AA - A- AE A - N C v EC C σ v σ v σ v 6 C C σ v σ v σ v X X A X - AXB B A B A B B A A C B C A B...

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information