Similar documents

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)


A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

untitled

( ) ( )

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

all.dvi

Note.tex 2008/09/19( )

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

08-Note2-web

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

The Physics of Atmospheres CAPTER :

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

70 : 20 : A B (20 ) (30 ) 50 1

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

( )

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

数学演習:微分方程式

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

85 4

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d


A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

Gmech08.dvi


1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

K E N Z OU


Gmech08.dvi

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

TOP URL 1

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

TOP URL 1

LLG-R8.Nisus.pdf

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,


1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

高校生の就職への数学II

48 * *2

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

II 1 II 2012 II Gauss-Bonnet II

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

I 1

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 = 4. () = 8 () = 4

i

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e


all.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

untitled

chap1.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h


6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

I ( ) 2019

Gmech08.dvi

DVIOUT-HYOU

4‐E ) キュリー温度を利用した消磁:熱消磁

29

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

量子力学A


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

dynamics-solution2.dvi

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

chap03.dvi

pdf

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

IA

2000年度『数学展望 I』講義録

QMII_10.dvi


Transcription:

K E N Z U 01 7 16 HP M. 1

1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................ 5.................................. 6 1.3........................ 8 1.3.1............................ 8 1.3.................................. 8 1.3.3................................ 9 1.3.4........................ 9 1.3.5........................... 11................................ 11 1.4.............................. 13 1.4.1....................... 14 1.4......................... 15............................ 17 19.1............................... 19..................................... 19..1................................3.................................... 3.3.1.................................. 3.3........................... 4.3.3........................... 5.3.4....................... 6.3.5................................ 6.4................................. 7........................... 9.5........................... 30.5.1............................ 30.......................... 3................................ 33.5............................ 33.6......................................... 36.7........................... 38........................... 38

................................ 39................................ 39............................ 39................................. 40................................ 40................................ 41 3 43 3.1...................................... 43 3.1.1................................... 43............................. 44 3.1. 4 ( )...................... 47....................... 47 3.1.3............................ 5............................... 53 3...................................... 53 3..1..................................... 53 3.......................... 55............................... 55.................................. 56.................................. 56 3..3............................. 58....................... 59 3..4.......................... 60.................................... 60................................ 6 4 63 4.1........................ 63 4.1.1........................ 63 4.1. 4........... 65 4.1.3 4.......................... 66 4.1.4................................ 67 4.1.5........... 69 4.1.6.................................. 7....................... 7 4................................ 73 4..1................................. 73 4............................ 75 4.3............................. 76 4.3.1.......................... 76 4.3...................... 77 3

1 1.1 3 1 1 3 3 1. 1..1 1 1 1 1 1 S 1 S 1 S S S 1 z S z S V t 0 y y V 4

1 S S V S t (t) = (t) V t (1..1) d (t) dt = d(t) dt V (1..) S 1 S V S S S S 1 (1..) t d (t) dt = d (t) dt (1..3) S, S V S m d (t) dt = f (1..4) f S S f f = f (1..3) m d (t) dt = f (1..5) S (1..4) S S 1.. S S S (1..) V (1..) t d dt = d dt dv dt a = a A (1..6) S 1 S S S m ma = ma ma S ma = f ma (1..7) 3 5

f = f S f ma S S f = 0 (1..7) ma = ma S A S f = ma f 3 ( A θ S A S T θ T sin θ mg A S ma T mg θ 4 S A T m d = ma = T sin θ (1..8) dt 0 m d = 0 = T sin θ ma (1..9) dt ma A S z ω t = 0 S, S P t S, S, = cos ωt y sin ωt y = sin ωt + y cos ωt (1..10) S P f P S mẍ = f mÿ = f y (1..11) 5 (1..10) ẍ = (ẍ ωy ω ) cos ωt (ÿ + ωẋ y ω ) sin ωt ÿ = (ẍ ω y ω ) sin ωt + (ÿ + ωẋ y ω ) cos ωt (1..1) 3 4 5 f S S 6

(1..11), (1..1) f = A cos ωt B sin ωt f y = A sin ωt + B cos ωt A = m(ẍ ω y ω ) B = m(ÿ + ωẋ y ω ) (1..13) A = f cos ωt + f y sin ωt B = f sin ωt + f y cos ωt (1..14) f, y f = f cos ωt + f y sin ωt f y = f sin ωt + f y cos ωt (1..15) (1..14), (1..15) S P P S (1..11) S (1..16) S f f y mω, mω y ω y, ωẋ m ẍ = f + mω + mωy mÿ = f y + mω y mωẋ (1..16) ω z ω z 0 v 0 f 0 o f 0 c ω = (0, 0, ω) (1..17) = (, y ), v = (ẋ, y ) f c f o y f c = mω f o = mv ω (1..18) 6 v S m=1 P f = 1 P S (1..16) «6 a a 3 a b = b b 3, a3 a1 b 3 b 1, a1 a b 1 b y f = 1 ω = v 0 = 10t = 10 S P y y ωt ωt P y S 7

(1..16) f = 0, f y = 0 m ẍ = cos ωt + ω + ωy mÿ = sin ωt + ω y ωẋ Mathematica ω = v 0 = 10 t = 10 P S P 1.3 1.3.1 7 1.3. (1..1) 8 S, S, t S S t t S z V t y S z 0 t = t (1.3.1) y V = V t t = t (1.3.) 9 S v V (1..) v = v V (1.3.3) 7 8 1 9 8

(1.3.3) 0 = t, 1 =, = y, 3 = z, V = (V 1, V, V 3 ) 0 1 3 1 0 0 0 = V 1 1 0 0 V 0 1 0 V 3 0 0 1 0 1 3 µ = G µν V 4 G µν ν (1.3.4) ν=0 1.3.3 1. G A B C C G C = AB. G A AE = EA = A E G E 3. G A AA 1 = A 1 A = E A 1 G 4. 3 ABC A(BC) = (AB)C = ABC (1.3.) G(V ) G(V ) : = V t, t = t (1.3.5) G(V ) : = V t, t = t, t t t G(V )G(V ) G(V + V ) = ( V t) V t = (V + V )t, t = t (1.3.6) G(V )G(V ) = G(V + V ) (1.3.7) 1 10 11 G(0) G(V ) G( V ) 1 1.3.4 t v = vt + 0 13 10 G(V )(G(V )G(V )) = G(V )G(V + V ) = G(V + V + V ), etc 11 1 G(V )G( V ) = G( V )G(V ) = G(0) t v =tan α α 0 P 13 = 1 gt + v 0t + 0 9

= V t t = t (1.3.8) (, t) = (0, 0) t = 0 (1.3.8) = t = 0 t = (1/V ) (t, ) 1/V t t t φ t φ V : φ π/) p p, tan φ = ( p p)/t p,... p = p t p tan φ = p V t p (1.3.10) 1 tp = t p cos φ t p = V = tan φ (1.3.9) t p cos φ = t p 1 + tan φ = 1 + V t p (1.3.11) (1.3.8) 1 + V t t p 1 + V cos φ = A B = t p t p t p A t t φ φ t p B t t 1 + V = t p cos φ,... t 1 + V p = t p (1.3.1) t t t t 1 + V P S v P S V S P P Q sin(α φ) = Q sin(π/ α)... Q sin(α φ) = P Q cos α = Q cos α = tan α cos φ sin φ = cos φ(tan α tan φ) = Q = p, P Q = 1 + V t p t p v V 1 + V p φ p P P, Q P Q = 1 p 1 + V t p = v 1 + V,... v = v V 10

t tan α = v P t φ t 1 + V tan φ = V P α α α φ π/ α Q, 1.3.5 1 1 v ϕ(, t) = A cos(k ωt), (k = π/λ, ω = πν, T = π/ω) (1.3.13) k, ω ν T λ v = λν t = 0 = 0 t 1 = π/ω = 0 V V < v π/ω=1/ν A n A = n 1 ν = n ν (1.3.14) B A t 5 t 4 t 3 t t 1 t α t t 1 + V B λ v = λ 1/ν = tan α ν t A tan 1 v B tan 1 V λ v (tan 1 v tan 1 V ) B = n ν 1 + V (1.3.15) 11

... B sin AB = A B = sin BA sin AB A sin BA = sin(tan 1 v) cos(tan 1 V ) cos(tan 1 v) sin(tan 1 V )) sin(tan 1 v) sin α cos β cos α sin β = sin α = v V 1 v 1 + V (1.3.16) tan 1 v = α cos α = tan 1 V = β cos β = 1, sin α = v 1 + v 1 + v 1, sin β = V 1 + V 1 + V (1.3.16) (1.3.14) (1.3.15) A/B = ν ν 1 1 + V (1.3.16) ν ν = v V v = 1 V v < 1 (1.3.17) V t 1/V t α t 1 + V B B β tan 1 v = α tan 1 V = β A C β A α (π α β) C ν BC = n ν 1 + V (1.3.18) AB BC = sin(α + β) sin α = sin α cos β + cos α sin β sin α = v + V v 1 1 + V (1.3.19) AB = n/ν AB/BC = (n/ν ) 1 + V (1.3.19) ν ν = v + V v = 1 + V v > 1 (1.3.0) 1

1.4 v ρ(, t) ( + y + z 1 ) v t ρ(, t) = 0 (1.4.1) v v V v) S (1.4.1) 1 = V t, t = t = t = t t + t t + t t = = t V 1 14 ( + V v V (1.4.) ρ(, t) v t 1 ) v V t ρ(, t ) = 0 (1.4.3) (1.4.1) V ( ) V E(, t) = 1 ε 0 B(, t) E(, t) = t B(, t) = 0 B(, t) = µ 0 J(, t) + 1 E(, t) c t E B ( + y + z 1 ) c t E(, t) = 0 ( + y + z 1 ) c t B(, t) = 0 (1.4.4) (1.4.5) ( ) 15 c 14 15 13

V (1.4.3) v = c V V v +V v V 16 c + V c V 17 V 1.4.1 1887 V V B L M V B B M A L c + V M M C L c V M A B B A M C A B l A t 1 c + V c V t 1 = l c + V + l c V = C l/c 1 β, β = V c V l ct / ct / V t (1.4.6) B B B t ( ) 1 ( ) 1 ct = l + V t,... t = l c V = l/c 1 β (1.4.7) L β 1 18 ( ) 1 = c(t t 1 ) = l 1 1 β 1 β lβ (1.4.8) V 1 β 16 V, V 17 0.5km/s 30km/s 18 c 3 10 10 cm/sec V V 3 10 6 cm/sec 14

A l/ 1 β t 1 = (l/c)/ 1 β t 1 = t 19 M E M 1 (1.4.4) (S ) V (S ) S S B = µ 0 J + 1 E c t 1 (V E) c E = B t + (V B) B = 0, E = 1 ε 0 ρ (1.4.9) 1.4. 1 0 ( 1 ) ( c t φ(, t) = 0 u 1 ) c w φ(u, w) = 0 (1.4.10) (, t) (u, w) u = A 1 ( ) ( ) ( ) u = A + Bt u A B = w = C + Dt v C D t (1.4.11) = A 1 u, (A 1 0) ( ) A 1 = 1 D B A B, = = AD BC 0 C A C D ( ) ( ) ( ) (1.4.1)... = 1 D B u t C A w = (u, w), t = t(u, w) = u u + w w = A u + C w t = u t u + w t w = B u + D (1.4.13) w 19 A 0 3 1 15

(1.4.10) ( 1 ) c t φ(, t) ) = (A B c u ( D c C ) 1 c w + A B /c = 1 D c C = 1 AC BD/c = 0 ( AC BD ) c u A, B, C, D (1.4.14) w (1.4.14) (1.4.15) 1 c t u 1 c w (1.4.16) (u, w) A, B, C, D (1.4.15) 4 3 1 1 A B, C, D 1 B = c A 1, C = 1 c A 1, D = A (1.4.17) χ A = cosh χ B = c sinh χ, C = 1 sinh χ, D = cosh χ (1.4.18) c B, C, D (1.4.11) u = cosh χ ct sinh χ w = t cosh χ c sinh χ (χ ) (1.4.19) 3 cosh χ = cos(iχ) = eχ + e χ sinh χ = i sin(iχ) (1.4.0) (1.4.19) u = cos(iχ) + ict sin(iχ) icw = sin(iχ) + ict cos(iχ) ( ) ( u cos θ = icw sin θ ) ( ) sin θ cos θ ict (1.4.1) θ = iχ ict iχ (1.4.1) u + (icw) = ( cos θ + ict sin θ) + ( sin θ + ict cos θ) = + (ict) (1.4.) ict icw ict iχ icw u iχ u( ) cosh sinh = 1 3 cosh θ = (e θ + e θ )/, sinh θ = (e θ e θ )/, cos θ = (e iθ + e iθ )/, sin θ = (e iθ e iθ )/i 16

+ (ict) ict iχ + (ict) 3, y, z, ict 4 ict iχ = cos θ + 0 sin θ y = y z = z (1.4.3) ict = sin θ + ict cos θ ict cos θ sin θ 0 0 ict y = sin θ cos θ 0 0, θ = iχ (1.4.4) 0 0 1 0 y z 0 0 0 1 z (ict ) + + y + z = (ict) + + y + z (1.4.5) iχ cosh χ 1 sinh χ χ (1.4.6) (1.4.19) u = ctχ w = t c χ (1.4.7) χ = V/c (1.4.8) u = V t w = t V c = V t t = t (1.4.8) u w t c (1.4.8) 4 u w t 1. (t) = (t) V t, t = t. v = v V 17

3. ( + y + z 1 ) c t φ(, t) = 0 (1.4.9) V (1.4.9) 1 ( + V c V c t 1 ) c V t φ(, t ) = 0 (1.4.30) 4. V 5. V 1 β 6. (1.4.9) ict iχ 7. 18