三木研授業2009.key

Similar documents

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

Xray.dvi

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

CoPt 17

15

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

c 2009 i

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

LLG-R8.Nisus.pdf

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

ssp2_fixed.dvi

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

4‐E ) キュリー温度を利用した消磁:熱消磁


untitled

Mott散乱によるParity対称性の破れを検証

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4


chap1.dvi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

35

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Undulator.dvi


85 4

Gmech08.dvi

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

SO(2)

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

pdf

From Evans Application Notes

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

untitled

TOP URL 1

温泉の化学 1

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

untitled

Microsoft Word - 学士論文(表紙).doc

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

08-Note2-web

研修コーナー

PDF

数学Ⅱ演習(足助・09夏)

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

パーキンソン病治療ガイドライン2002

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21


MOS FET c /(17)

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

nsg02-13/ky045059301600033210

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

Gmech08.dvi

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit


II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

X X 0 X 4 K K 1 K 2 K 1 K 2 6[eV] 6[eV] X 3: % 23.8[eV]

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B


0.1 I I : 0.2 I

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

Microsoft Word - 章末問題

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

2 3

3/4/8:9 { } { } β β β α β α β β

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

eto-vol1.dvi

untitled

1 Tokyo Daily Rainfall (mm) Days (mm)

表紙


untitled

QMI_09.dvi

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

‘¬”R.qx

吸収分光.PDF

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

7

Transcription:

( )

1980 1.54A 1.54A ( ) 1A 0.98A 2.29A ( )

2dsinθ = λ (2d hkl sinθ hkl = λ) ()? Bragg

2dsinθ = λ 2θ 1 d sinθ = λ 2d Bragg

2dsinθ = λ? Bragg?

2dsinθ = λ? λ 2 I t 3 λ 2 exp( µt) UW Arndt, J. Appl. Cryst. (1984) 17, 118-119 Blundel & Johnson λ 3 2 2

2dsinθ = λ? λ 3 µ aλ 3 a =0.22mm 1 Å 3 λ 3

λ 3 1A 2A 2 8

I t 3 λ 2 exp( µt) λ = 3 2 3at a =0.22mm 1 Å 3 Arndt, U.W., J. Appl. Cryst. (1984) 17, 118-119 ( ) 2 3 0.3mm

I t 3 λ 2 exp( µt) t =0.3mm (A ) Arndt, U.W., J. Appl. Cryst. (1984) 17, 118-119 3 0.3mm 2.16A 2A? ( )

?

(A ) ( ) < 0.7 0.7 ~ 3.0 ( ) > 3.0 2

(A ) ( ) < 0.7 0.7 ~ 1.5 1.5 ~ 3.0 ( ) > 3.0 softer longer wavelength softer longer wavelength

f X 2θ ( )

F hkl = n i=1 f i e 2πi(hx i+ky i +lz i ) i i

f sinθ/λ (Å 1 ) http://www.crl.nitech.ac.jp/~ida/education/structureanalysis/3/3.pdf y sinθ=0

ω 0 (ev) kev = 12.4/Å? XAFS ω0

( ) f = ω 2 (ω 2 ω 2 0 ) ikω λ = 2πc ω damping term 1 2 (?) ( ) ( ) ω ω0

( ) f (S,λ) = f 0 (S) + f (λ) + i f S (λ)

Im f f 0 Re 180 ( )

Im f if f 0 f Re ( )

F hkl = n i=1 f i e 2πi(hx i+ky i +lz i ) f (S,λ) = f 0 (S) + f (λ) + i f (λ)

C N O S H?

6.2 3.1 2.0 1.55 1.24 1.03 0.89 A f 0 = 16 f f (ev) http://skuld.bmsc.washington.edu/scatter/ ( ) 16 f0 16 5.0155A (2.4720keV) 8( ) 4

2.07 1.55 1.24 1.03 0.89 A f 0 = 16 f f 1.54A (ev) http://skuld.bmsc.washington.edu/scatter/ Cu 1.54A

(S) Im f 16 0.3 1.54A 0.6 Re 1.54A 0.3 0.6 16

(S) Im 1.54A f Re

F anom F = 2N A N T f Z eff N A N T Z eff Hendrickson & Teeter, Nature (1981) 290, 107-113 ( ) NA NT Zeff Zeff 6.7 ( )

F anom F = 2N A N T f Z eff KVFGRCELAA AMKRHGLDNY RGYSLGNWVC AAKFESNFNT QATNRNTDGS TDYGILQIDS RWWCNDGRTP GSRNLCNIPC SALLSSDITA SVNCAKKIVS DGNGMNAWVA WRNRCKGTDV QAWIRGCRL NA NT NA 10 NT 1957

2.48 1.24 0.83 A F anom F (ev) ( ) 2%

2.07 1.55 1.24 1.03 0.89 A 1.54A F anom F (ev) (1.54A ) 0.8% 0.8%

short long (ev) (A )

1.54Å Cu Kα Ramagopal et al., Acta Cryst. (2003) D59, 1020. 1981 Crambin 6S/344 Hendrickson & Teeter 1982 Rhe 2S/833 Wang (1985 ) 1.54Å 1999 Lysozyme 10S+7Cl/1001 Dauter et al. 1.74Å 2000 Obelin 8S/3043 Liu et al. 1.77, 1.91Å... 1981 Hendrickson&Teeter crambin 1982 Wang Rhe Wnag Cu Kα 1.54A Cr 2.29A 1999 Dauter 1.54A 17 2000 BC Wang Obelin 1.74A 1.77 1.91 BC Wang 1985 Cr Kα (2.29A )

2.07 1.55 1.24 1.03 0.89 A 2.29A 1.54A F anom F (ev) (1.54A ) 0.8% Cu Cr 2.29A Cu Cr

(A ) F f anom F (%) Cu Kα 1.54 0.56 0.84 Cr Kα 2.29 1.14 1.7 Cu Cr ( )

F anom F with 1.54Å with 2.29Å calculated for the Chromosome I of C. elegans C elegans 1 Cu 1.54A Cr 2.29A 1% 2.29Å

short long

Cr K 2.29A Cr

Cr/Cu Kα Rigaku FR-E Super Bright Cr Cu Osmic CMF Cr or RED for Cu Cr or Cu Kα Cu Kα R-AXIS VII 2kW, 60kV Cu: 45kV 45mA Cr: 40kV 40mA Cr Cr Cu 2

Cr Kα F anom F 2004 2 2 Cr 2 3.5% 2.5%

PH1109 from Pyrococcus horikoshii 1.72% 3.5% 2.5%

PH1109 from Pyrococcus horikoshii

1mm

VV

0.5 mm 50% 50%

0.5 mm Kitago, Y., Watanabe, N. and Tanaka, I., Acta Cryst., D61, 1013-1021 (2005).

1mm

( )

0.5 mm Kitago, Y., Watanabe, N. and Tanaka, I., Acta Cryst., D61, 1013-1021 (2005).

Hypothetical protein PH1109 from Pyrococcus horikoshii

90%(69%

(1)

(2)

1/10 1/10

A4 1