149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

Similar documents
16_.....E...._.I.v2006

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

01-._..

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

Core Ethics Vol. : - : : : -

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

JFE.dvi


(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

CVaR

12) NP 2 MCI MCI 1 START Simple Triage And Rapid Treatment 3) START MCI c 2010 Information Processing Society of Japan


framing 2 3 reframing 4 LRT LRT LRT LRT 5 2LRT LRT 2.1 LRT JR JR8.0km 45, JR LRT LRT JR3 5 7,000 6,000 5,000 4,000

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

研究シリーズ第40号

Q [4] 2. [3] [5] ϵ- Q Q CO CO [4] Q Q [1] i = X ln n i + C (1) n i i n n i i i n i = n X i i C exploration exploitation [4] Q Q Q ϵ 1 ϵ 3. [3] [5] [4]

...v..&.{..&....


AtCoder Regular Contest 073 Editorial Kohei Morita(yosupo) A: Shiritori if python3 a, b, c = input().split() if a[len(a)-1] == b[0] and b[len(

Kyushu Communication Studies 第2号

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

yasi10.dvi

<303288C991BD946797C797592E696E6464>

28 Horizontal angle correction using straight line detection in an equirectangular image

..,,...,..,...,,.,....,,,.,.,,.,.,,,.,.,.,.,,.,,,.,,,,.,,, Becker., Becker,,,,,, Becker,.,,,,.,,.,.,,

Consideration of Cycle in Efficiency of Minority Game T. Harada and T. Murata (Kansai University) Abstract In this study, we observe cycle in efficien

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

<95DB8C9288E397C389C88A E696E6462>

橡自動車~1.PDF

e-learning e e e e e-learning 2 Web e-leaning e 4 GP 4 e-learning e-learning e-learning e LMS LMS Internet Navigware

) ,

_Y05…X…`…‘…“†[…h…•

RTM RTM Risk terrain terrain RTM RTM 48

Japanese Journal of Family Sociology, 29(1): (2017)

IPSJ SIG Technical Report Vol.2014-EIP-63 No /2/21 1,a) Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on tra

untitled

Vol.1 No Autumn

PDCA

4.1 % 7.5 %


Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L


人文学部研究年報12号.indb


抜刷表紙/芦塚 〃 嶋崎 芦塚

FUJII, M. and KOSAKA, M. 2. J J [7] Fig. 1 J Fig. 2: Motivation and Skill improvement Model of J Orchestra Fig. 1: Motivating factors for a

HP cafe HP of A A B of C C Map on N th Floor coupon A cafe coupon B Poster A Poster A Poster B Poster B Case 1 Show HP of each company on a user scree

NO

Bull. of Nippon Sport Sci. Univ. 47 (1) Devising musical expression in teaching methods for elementary music An attempt at shared teaching

Human Welfare 8‐1☆/5.林

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

MPC MPC R p N p Z p p N (m, σ 2 ) m σ 2 floor( ), rem(v 1 v 2 ) v 1 v 2 r p e u[k] x[k] Σ x[k] Σ 2 L 0 Σ x[k + 1] = x[k] + u[k floor(l/h)] d[k]. Σ k x

21 Effects of background stimuli by changing speed color matching color stimulus

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

00.\...ec5

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag


★結果★ 藤沢市長杯 掲示用ヒート表


オーストラリア研究紀要 36号(P)☆/3.橋本

/ p p

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-MBL-57 No.27 Vol.2011-UBI-29 No /3/ A Consideration of Features for Fatigue Es

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004

SERPWatcher SERPWatcher SERP Watcher SERP Watcher,

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m


IPSJ SIG Technical Report Vol.2011-MUS-91 No /7/ , 3 1 Design and Implementation on a System for Learning Songs by Presenting Musical St

銀行の不良債権問題と資本市場の経営監視機能 鹿野嘉昭


:

DI DI

22.Q06.Q



<8ED089EF8B D312D30914F95742E696E6464>

対朝鮮人絹織物移出と繊維専門商社の生産過程への進出

Microsoft Word - deim2011_new-ichinose doc

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step


IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Ec

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

KII, Masanobu Vol.7 No Spring

p _08森.qxd

A5 PDF.pwd

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

6 2. AUTOSAR 2.1 AUTOSAR AUTOSAR ECU OSEK/VDX 3) OSEK/VDX OS AUTOSAR AUTOSAR ECU AUTOSAR 1 AUTOSAR BSW (Basic Software) (Runtime Environment) Applicat

先端社会研究所紀要 第11号☆/3.李

220 28;29) 30 35) 26;27) % 8.0% 9 36) 8) 14) 37) O O 13 2 E S % % 2 6 1fl 2fl 3fl 3 4

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

シラバス政治学H18.PDF

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

Transcription:

Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1] Newell [6] Mcneil [3] Darroch,Newell, and Morris [1] Miller [4] Miller [4] 148

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) 2 3 4 5 2. 2.1. 1 T : 2 a : 3 a 1 :

15 4 a 2 : 5 b 1 : 6 b 2 : 7 c : c kc (1 k)c k 8 λ 1 λ 4 : 9 µ 1 µ 4 : a 1 = a 1 (1 k)c, b 1 = b 1+kc, a 2 = a 2 (1 k)c, b 2 = b 2 + kc, a = a + (1 k)c 1: 2.2. : a 1 = b 2, a 2 = b 1 T = a 1 + b 1 + = a 2 + b 2 + λ i T µ i b 1 (i = 1, 2), λ i T µ i b 2 (i = 3, 4) a 1, a 2, b 1, b 2, T (2.1)

2.3. 151 2.3.1. t A 1 (t) D 1 (t) A 1 (t) = λ 1 t ( t T ) ( t < a 1 + ) D 1 (t) = µ 1 t µ(a 1 + ) (a 1 + t < t ) λ 1 t (t t T ) (2.2) 2 t n 2 t t = µ 1(a 1 + ) µ 1 λ 1 (2.3) 2: W 1 W 1 S 1 W 1 = S 1 = T A 1 (t)dt T D 1 (t)dt = λ 1µ 1 (a 1 + ) 2 2(µ 1 λ 1 ) W 2 = λ 2µ 2 (a 1 + ) 2 2(µ 2 λ 2 ) (2.4) (2.5)

152 2.3.2. t A 2 (t) D 2 (t) 2.3.1 A 2 (t) = λ 3 t + λ 3 (T a 1 a ) ( t T ) ( t < a ) µ 3 (t a ) (a t < t ) D 1 (t) = λ 3 t + λ 3 (T a 1 a ) (t t < a 1 + a ) λ 3 T (a 1 + a t T ) (2.6) 3 t n 3 t t = λ 3(T a 1 a ) + µ 3 a µ 3 λ 3 (2.7) 3: W 3 = S 2 = T A 2 (t)dt T D 2 (t)dt = λ 3µ 3 (T a 1 ) 2 2(µ 3 λ 3 ) (2.8) W 4 = λ 4µ 4 (T a 1 ) 2 2(µ 4 λ 4 ) (2.9)

2.3.3. 153 W W q W = W 1 + W 2 + W 3 + W 4 = λ 1µ 1 (a 1 + ) 2 + λ 2µ 2 (a 1 + ) 2 2(µ 1 λ 1 ) 2(µ 2 λ 2 ) W W q = (λ 1 + λ 2 + λ 3 + λ 4 )T + λ 3µ 3 (a 2 + ) 2 2(µ 3 λ 3 ) + λ 4µ 4 (a 2 + ) 2 2(µ 4 λ 4 ) (2.1) (2.11) (2.11) (2.1 (2.2) (2.6) 2.4. 2.2 2.3 Min W q s.t. T = a 1 + a 2 + λ i T µ i a 2 (i = 1, 2), λ i T µ i a 1 (i = 3, 4) a 1, a 2, T (2.12) a 1, a 2, T a, λ i, µ i a 3. 3.1. 3.1 (2.12) a 2 a 1 T ρ i = λ i µ i (i = 1, 2, 3, 4) a 1 T (2.12) (3.1) max(ρ 3, ρ 4 )T a 1 T max(ρ 1, ρ 2 )T 2a (3.1) T a 2 + T a 1 (2.12) (3.2) 2 Min W q s.t. max(ρ 3, ρ 4 )T a 1 T max(ρ 1, ρ 2 )T T (3.2) a 1 T ρ i, a

154 3.2. (3.2) W q ( [7] Step [Step 1] W q (Hessian matrix) : 2 W q a 2 1 2 W q = 2 W q T a 1 = 2 W q a 1 T 2 W q T 2 2(A + B) T 2[A(a 1 + ) + Ba 1 ] T 2 2[A(a 1 + ) + Ba 1 ] [A(a 1 + ) 2 + Ba 2 1] T 2 T 3 ( 1 λ1 µ 1 A = + λ ) 2µ 2, 2(λ 1 + λ 2 + λ 3 + λ 4 ) µ 1 λ 1 µ 2 λ ( 2 1 λ3 µ 3 B = + λ ) 4µ 4 2(λ 1 + λ 2 + λ 3 + λ 4 ) µ 3 λ 3 µ 4 λ 4 (3.3) [Step 2] W q det(a λe) = λ : λ = (C + D) ± (C + D) 2 4(CD E 2 ) 2 (3.4) C = 2(A + B), D = 2[A(a 1 + ) 2 + Ba 2 1], E = 2[A(a 1 + ) + Ba 1 ] 2 T 3 T 2 [Step 3] : 1 = (C + D) 2 4(CD E 2 ) = (C D) 2 + 4E 2 > 2 (CD E 2 ) = 16a2 AB > (A >, B > ) < (C + D) (C >, D > ) T 4 3 1 2 [Step 4] W q 2 (positive semi-definite) W q 3.3. 3.3 Step

155 [Step 1] T W q a 1 (a 1 ) W q a 1 = W q a 1 = NT M (3.5) M = [λ 1 µ 1 (µ 2 λ 2 ) + λ 2 µ 2 (µ 1 λ 1 )](µ 3 λ 3 )(µ 4 λ 4 ), N = [λ 3 µ 3 (µ 4 λ 4 ) + λ 4 µ 4 (µ 3 λ 3 )](µ 1 λ 1 )(µ 2 λ 2 ) (3.2) T (T ) W q a 1 (a 1 ) max(ρ 3, ρ 4 )T T max(ρ 1, ρ 2 )T a 1 4 T a 1 1 N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )] T T T 1 a 1 1 = max(ρ 3, ρ 4 )T T T 1 a 1 3 = a 1 = NT M 2 N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )] T T T 2 a 1 2 = T max(ρ 1, ρ 2 )T T T 2 a 1 3 = a 1 = NT M N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )] N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )] 4: T a 1 a 1 a 1 a 1 ( 5)

156 5 1 a 1 max(ρ 3, ρ 4 )T a 1 1 = max(ρ 3, ρ 4 )T W q max(ρ 3, ρ 4 )T NT M 2a (3.6) T T M [1 max(ρ 3, ρ 4 )]N max(ρ 3, ρ 4 )M (N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )]) T (N[1 max(ρ 3, ρ 4 )] > M[1 max(ρ 1, ρ 2 )]) 2 a 1 T max(ρ 1, ρ 2 )T a 1 2 = T max(ρ 1, ρ 2 )T W q T max(ρ 1, ρ 2 )T NT M 2a T T (N[1 max(ρ 3, ρ 4 )] < M[1 max(ρ 1, ρ 2 )]) T N [1 max(ρ 1, ρ 2 )]M max(ρ 1, ρ 2 )N (N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )]) (3.7) (3.8) (3.9) 3 max(ρ 3, ρ 4 )T a 1 T max(ρ 1, ρ 2 )T a 1 3 = a 1 W q max(ρ 3, ρ 4 )T NT M T max(ρ 1, ρ 2 )T 2a T T T M [1 max(ρ 3, ρ 4 )]N max(ρ 3, ρ 4 )M N [1 max(ρ 1, ρ 2 )]M max(ρ 1, ρ 2 )N (N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )]) (N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )]) (3.1) (3.11)

157 5: a 1 a 1

158 [Step 2] a 1 a 1 W q T 1 T W q T (T ) 6 T 6 N[1 max(ρ 3, ρ 4 ) M[1 max(ρ 1, ρ 2 )] N[1 max(ρ 3, ρ 4 ) M[1 max(ρ 1, ρ 2 )] 6: W q T 1 a 1 max(ρ 3, ρ 4 )T a 1 1 = max(ρ 3, ρ 4 )T W q H = W q T = HI [max(ρ 3, ρ 4 )] 2 ( ) 2 T 2 + HJ [1 max(ρ 3, ρ 4 )] 2 > (3.12) 1 2(λ 1 + λ 2 + λ 3 + λ 4 ), I = λ 1µ 1 µ 1 λ 1 + λ 2µ 2 µ 2 λ 2, J = λ 3µ 3 µ 3 λ 3 + λ 4µ 4 µ 4 λ 4 W q T T 1 = (N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )]) T (N[1 max(ρ 3, ρ 4 )] > M[1 max(ρ 1, ρ 2 )]) (3.13)

159 2 a 1 T max(ρ 1, ρ 2 )T a 1 2 = T max(ρ 1, ρ 2 )T W q W q T = HJ [max(ρ 1, ρ 2 )] 2 ( ) 2 T 2 + HI [1 max(ρ 1, ρ 2 )] 2 > (3.14) W q T T (N[1 max(ρ 3, ρ 4 )] < M[1 max(ρ 1, ρ 2 )]) T 2 = (N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )]) (3.15) 3 max(ρ 3, ρ 4 )T a 1 T max(ρ 1, ρ 2 )T a 1 3 = a 1 W q [ W q T = HI N ( ) ] 2 + HJ M 2 2 2a 1 > (3.16) () 2 T W q T M T 3 = [1 max(ρ 3, ρ 4 )]N max(ρ 3, ρ 4 )M (N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )]) N T 3 = [1 max(ρ 1, ρ 2 )]M max(ρ 1, ρ 2 )N (N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )]) T 3 a 1 { max(ρ 3, ρ 4 )T (N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )]) a 1 3 = T 3 max(ρ 1, ρ 2 )T 3 (N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )]) (3.17) (3.18) [Step 3] W q a 1 T 1 N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )] 6 (3.18) T = T 1 T 3 a 1 1 a 1 3 a 1 = max(ρ 3, ρ 4 )T (3.13) (3.17) W q T (3.19) 2 N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )] a 1 = max(ρ 3, ρ 4 )T 2a T = (3.19)

16 T = T 2 T 3 a 1 1 a 1 3 a 1 = T max(ρ 1, ρ 2 )T (3.15) (3.17) W q T (3.2) a 1 = T max(ρ 1, ρ 2 )T = max(ρ 3, ρ 4 )T 2a (3.2) T = 1 2 ( (2.12) (3.2)) a 1 a 2 T (3.21) a 1 = b 2 = max(ρ 3, ρ 4 )T a 2 = b 1 = max(ρ 1, ρ 2 )T T = b 2 = max(ρ 3, ρ 4 )T kc b 1 = max(ρ 1, ρ 2 )T kc 2[a + (1 k)c] T = T b 1 b 2 4 1 N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )] b 2 = max(ρ 3, ρ 4 )T kc ( ) T M [1 max(ρ 3, ρ 4 )]N max(ρ 3, ρ 4 )M b 1 = T max(ρ 3, ρ 4 )T kc ( T M [1 max(ρ 3, ρ 4 )]N max(ρ 3, ρ 4 )M b 2 = NT M b 1 = MT N kc kc (T (T M [1 max(ρ 3, ρ 4 )]N max(ρ 3, ρ 4 )M ) M [1 max(ρ 3, ρ 4 )]N max(ρ 3, ρ 4 )M ) 2 N[1 max(ρ 3, ρ 4 )] M[1 max(ρ 1, ρ 2 )] b 2 = T max(ρ 1, ρ 2 )T kc ( ) T N [1 max(ρ 1, ρ 2 )]M max(ρ 1, ρ 2 )N b 1 = max(ρ 1, ρ 2 )T kc ( T N [1 max(ρ 1, ρ 2 )]M max(ρ 1, ρ 2 )N b 2 = NT M b 1 = MT N kc kc (T (T N [1 max(ρ 1, ρ 2 )]M max(ρ 1, ρ 2 )N ) N [1 max(ρ 1, ρ 2 )]M max(ρ 1, ρ 2 )N ) ) ) (3.21) (3.22) (3.23) (3.24)

161 3.4. a k, c [8] T = 2c 1 [max(ρ 1, ρ 2 ) + max(ρ 3, ρ 4 )]/.9 (3.25) (3.22) (3.25) 2c 1 [max(ρ 1, ρ 2 ) + max(ρ 3, ρ 4 )]/.9 = 2[a + (1 k)c] (3.26) a = ( + k 1)c (3.27) W q a k, c = 1 [max(ρ 1, ρ 2 ) + max(ρ 3, ρ 4 )] 1 [max(ρ 1, ρ 2 ) + max(ρ 3, ρ 4 )]/.9 (3.28) 4. 4.1. 8 9 1 (T = 6 ) (b 1 = 27 ) (b 2 = 21 ) (a = 3 ) (c = 3 ) 2 3 4 2 λ 1 λ 4 3 4 µ 1 µ 4 2 4 λ 1 =.83, λ 2 =.53, λ 3 =.55, λ 4 =.8 µ 1 =.227, µ 2 =.136, µ 3 =.19, µ 4 =.157 (4.1) ρ 1 =.366, ρ 2 =.39, ρ 3 =.289, ρ 4 =.51

162 4.2. 4.1 (3.22) b 2 = max(ρ 3, ρ 4 )T kc = 6.6 b 1 = max(ρ 1, ρ 2 )T kc = 9.44 2[a + (1 k)c] T = = 28.4 (4.2) k =.5 W q (4.2) W q { W q = 13.62 W q = 8.47 (4.3) W q 4.1 1 (4.1) (2.11) W q W q 38% 5., [1] 1)2 4 (ρ i ) 2)

163 ( ) ( ) a c k 3), [1] 3) OR Newell [5], [1] (2.1) 4 A 2424154 [1] J.N. Darroch, G.F. Newell, and R.W.J. Morris: Queues for a Vehicle-Actuated Traffic Light. Operations Research, 12-6 (1964), 882 895. [2] M. Li, Y. Ryu, and Y. Song: Some Results on Opimal Signal Switching Time at an Intersection Based on Arrival of Vehicles. Proceedings of Asian Conference of Management Science and Applications, (213), 122 126. [3] D.R. McNeil: A Solution to the Fixed-Cycle Traffic Light Problem for Compound

164 Poisson Arrivals. Journal of Applied Probability, 5-3 (1968), 624 635. [4] A.J. Miller: Settings for Fixed-Cycle Traffic Signals. Operations Research, 14-4 (1963), 373 386. [5] G.F. Newell: Queues for a Fixed-Cycle Traffic Light, The Annals of Mathematical Statistics, 31-3 (196), 589 597. [6] G.F. Newell: Approximation Methods for Queues with Application to the Fixed-Cycle Traffic Light. SIAM Review OR, 7-2 (1965), 223 24. [7] : (, 21). [8] : (, 1993). [9] : IR, 18 19 (27). [1], : (, 21), 191 194. [11], : -OR,, 14 (212), 43 47. 814-18 8-19-1 E-mail: lmz@fukuoka-u.ac.jp

165 ABSTRACT THE STUDY ON THE OPTIMAL SIGNAL CYCLE AND THE SWITCHING TIME AT AN INTERSECTION Mingzhe Li Yuchao Zhang Fukuoka University In a city, traffic congestion usually occurs because of population and heavy traffic, and it causes a variety of problems including the economic loss, environmental problems etc. One of the biggest reasons of traffic congestion on a general road is because of traffic signals at intersections. In this paper, we focus on the signal control at an intersection, and theoretically find out the optimal signal cycle and the optimal switching time at an objective intersection so as to reduce traffic congestion. Here, we assume that the vehicles arrive in the objective intersection continuously with a constant ratio, and each car arrives in the objective intersection within a signal cycle can pass though it during green light time of the cycle. In the case, we also explore some properties, such as the relationship between the simultaneous red light and the yellow light. Finally, we verify our model though a case study by considering a real intersection in fukuoka.