x(t + 1) = W x(t) w j = w j W w = : 1 x x x , 1 (cellular automata) (1) :

Similar documents
9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

Gmech08.dvi

( ) ( )

gr09.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

( ) Loewner SLE 13 February

KENZOU Karman) x

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

『共形場理論』

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

R R 16 ( 3 )

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

untitled

untitled


変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

6.1 (P (P (P (P (P (P (, P (, P.

K E N Z OU

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =


meiji_resume_1.PDF

untitled

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a


II I Riemann 2003

Korteweg-de Vries

6.1 (P (P (P (P (P (P (, P (, P.101

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

第1章 微分方程式と近似解法


: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ



量刑における消極的責任主義の再構成

05Mar2001_tune.dvi

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

Part () () Γ Part ,

mugensho.dvi

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


Taro13-第6章(まとめ).PDF

行列代数2010A

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

29

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

画像工学特論

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

06佐々木雅哉_4C.indd

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

v er.1/ c /(21)

2011de.dvi

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

sec13.dvi

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

II 1 II 2012 II Gauss-Bonnet II

第10章 アイソパラメトリック要素

all.dvi

振動と波動



PSCHG000.PS


Gmech08.dvi

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

all.dvi

数理.indd

統計的データ解析

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

構造と連続体の力学基礎

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

Z: Q: R: C: 3. Green Cauchy

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

DE-6001 取扱説明書


A

Ł\”ƒ53_4C

all.dvi

10:30 12:00 P.G. vs vs vs 2

73

st.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

TOP URL 1

Transcription:

<asakawa@twcu.ac.jp> (t = 0, 1,,...) t t + 1 1 1 3 x 1, x, x 3 x 1 x ( 1) (+1) A, B A B -1 x1-1 1 1 x 1 1 x3 1: B A 1 W = 0 1 1 1 0 1 1 1 0, (1) W j w j j t 3 (x 1 (t), x (t), x 3 (t)) T = x(t) t + 1 1

x(t + 1) = W x(t) w j = w j W w = 0 0 1 1 8 1: 1 x 1 0 0 0 0 1 1 1 1 x 0 0 1 1 0 0 1 1 x 3 0 1 0 1 0 1 0 1 0, 1 (cellular automata) 1.1 1 (1) 1 0.1 : 1 ( 0.1 ) x 1 0 0 0 0 1 1 1 1 t x 0 0 1 1 0 0 1 1 x 3 0 1 0 1 0 1 0 1 x 1 0 1 0 0 0 1 0 1 t+1 x 0 1 0 1 0 0 0 1 x 3 0 0 1 1 1 1 1 1 (x 1, x, x 3 ) (000),(011),(101) (fxed pont) (001) (110) (lmt cycle) (010),(100),(111) (001)

010 100 001 110 111 000 011 101 : 1 (basn) ( ) (attractor) 1. 1 0.1 3 001 000 011 010 111 101 100 110 3: 1 (111) (000), (110) (000) (110) 3

x = (1, 1, 1, 0) T y = (1, 0, 0) T x T y = W x W 4 x y x1 x x3 x4 y1 y y3 4: ( m x (), y ()), = 1... m j k w jk = m =1 x () j y() k, () (1, 0, 0, 0) (0, 0, 1) (0, 1, 0, 0) (0, 0, 1, 0) (0, 1, 0) (0, 1, 1) (0, 0, 0, 1) (1, 0, 0) (3) ( ) W = 0 0 0 1 0 1 1 0 1 0 1 0, (4) 4

m m (1978) 3 (1979) ( ) n s = (s 1, s,..., s n ) s 1, 0, +1 3 +1 1 0 m () s 1, 0, +1 w ±1 0 ŝ w ŝ = φ (φ (w) s), (5) φ +1, x > 0 φ(x) = 0, x = 0, (6) 1, x < 0 ( ) ( ) 5

4 (Hopfeld & Tank, 1985) 1 1. w j = w j w j = 0. n x = 0, 1 ( = 1,,..., n) n n t(= 0, 1,,...) u (t), x (t) t + 1 x (t + 1) w j θ (t) 1, f u (t) > 0 x (t + 1) = x (t), f u (t) = 0 0, f u (t) 0 u (t) = (7) w j x j (t) θ (t) (8) j x j (t) w j x j (t) θ (t) 1 0 4.1 E = 1 =1 w j x x j + θ x, (9) (7) (8) (9) k 1 http://dope.caltech.edu/ 6

E = 1 w j x x j + θ x 1 x k k j k j k w kj x j 1 x k w k x + θ k x k j t t+1 k (10) x k (t) x k (t + 1) (11) x k = x k (t + 1) x k (t) 1-1 x k E k k ( E k = 1 n ) w kj x j + w k x x k + θ k x k =1 = w kj + w jk =1 x j x k + θ k x k (1) w j = w j E k = w kj x j θ k x k (13) u k E k = u k x k (14) (7) x k > 0 x k 0 1 u k > 0 E k < 0 x k < 0 x k 1 0 u k < 0 E k < 0 x k = 0 E k = 0 E k 0 (15) 4. 4..1 (Travelng salesman problem:tsp) 7

N N A,B,C,D,E 5 TSP 5 BACED 1 3 4 5 A 0 1 0 0 0 B 1 0 0 0 0 C 0 0 1 0 0 D 0 0 0 0 1 E 0 0 0 1 0 N! X x X X Y d XY 1. ( 1 ) x X x Xj = 0 (16) X j. ( 1 ) x X x Y = 0 (17) X Y X 3. ( 1 ) x X = N (18) X ( ) 1 X d XY x X (x Y, 1 + x Y,+1 ) (19) Y X 8

E = A x X x Xj X j + B x X x Y ( X Y X ) + C x X N X + D d XY x X (x Y, 1 + x Y,+1 ) X Y X A = B = 500, C = 00, D = 500, N = 15 (0) E = 1 w X,Y j x X x Y j + θ X x X (1) X Y j X w X,Y j = Aδ XY (1 δ j ) Bδ j (1 δ XY ) C Dd XY (δ j,+1 + δ j, 1 ) θ X = CN δ j { 1, f = j, δ j = 0, f j () (3) programng ụ dt = u τ + nw j x j θ (4) u, t u u = τ + nw j x j θ (5) u u (t + 1) = u (t) + u (6) 4.. 0, 1 1, 1 9

P s x s = (x s 1, x s,..., x s n) (s = 1,,..., P ) s 0 x s E s = 1 wjx s s x s j (7) =1 E s x x j ws j 3 w j s = xs xs j E s = 1 wjx s s x s j = 1 =1 (x s ) ( x s j) (8) =1 ( ) w j = P wj s = s=1 P x s x s j (9) s=1 n P 15 % generalzed nverse matrx Moore Penrose ( ) 1 Z + = Z T Z Z T (30) [ ξ 1, ξ,..., ξ p] N P X W ( ) 1 W = XX + = X X T X X T (31) W 7 px 0, 1 n w j = (x s 1) xs j 1 3 s=1 x -1 1 x 10

5 4 A/D 4 x 0 x 1 x x 3 (0 or 1) A/D a E = 1 = 1 ( a ) x + 1 =0 =0 j =0 x (1 x ) =0 ( +j ) x x j (3) ( 1 + a ) x + 1 a =0 0 3 j j =0 w j = 0 I E = 1 =0 j =0 w j x x j (3) (33) x I (33) =0 w j = (+j) ( j) (34) I = ( 1) + a (35) Lyapunov functon (3) de dt = dx (+j) x dt j ( 1) + a (36) =0 j =0 0 (36) de dt du dt 11

[ ] du dt = j =0 de dt = (+j) x j ( 1) + a ( = 0, 1,..., 3) (37) =0 dx dt x = f(u ) (38) du dt = f (u ) de dt =0 ( ) du (39) dt f(u ) < 0 (1978).. :. (1979).. :. Hopfeld, J. J. & Tank, D. W. (1985). Neural computaton of decsons n optmzaton problems. Bologcal Cybernetcs, 5, 141 15. 1