$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

Similar documents
一般演題(ポスター)

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

第85 回日本感染症学会総会学術集会後抄録(I)

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

日本糖尿病学会誌第58巻第2号

第89回日本感染症学会学術講演会後抄録(I)

2301/1     目次・広告

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

jigp60-★WEB用★/ky494773452500058730

プログラム



日本内科学会雑誌第98巻第3号

yakuri06023‡Ì…R…s†[

\mathrm{m}_{\text{ }}$ ( ) 1. :? $\dagger_{\vee}\mathrm{a}$ (Escherichia $(E.)$ co $l\mathrm{i}$) (Bacillus $(B.)$ subtilis) $0\mu

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$


ron04-02/ky768450316800035946

tnbp59-20_Web:P1/ky108679509610002943

第101回 日本美容外科学会誌/nbgkp‐01(大扉)

27巻3号/FUJSYU03‐107(プログラム)

パーキンソン病治療ガイドライン2002

本文27/A(CD-ROM

プリント

2011年10月 179号 新レイアウト/001     4C

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

サイバニュース-vol134-CS3.indd

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

日本糖尿病学会誌第58巻第1号

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

tnbp59-17_Web:プO1/ky079888509610003201

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\

untitled

<8CA48B8694EF8E E E816991E C5816A5F8DC58F4994C52E706466>

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

日本糖尿病学会誌第58巻第3号



(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

プログラム

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

p6-18/村松様

チュートリアル:ノンパラメトリックベイズ

The Plasma Boundary of Magnetic Fusion Devices

日本分子第4巻2号_10ポスター発表.indd

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{


Ł\”ƒ-2005

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}

Title ゾウリムシの生物対流実験 ( 複雑流体の数理とその応用 ) Author(s) 狐崎, 創 ; 小森, 理絵 ; 春本, 晃江 Citation 数理解析研究所講究録 (2006), 1472: Issue Date URL

日本内科学会雑誌第101巻第12号

dプログラム_1

日本内科学会雑誌第97巻第3号

Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: Issue Date URL R

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

第86回日本感染症学会総会学術集会後抄録(II)

higp-15(プロ1日目)/ky220147284100029951

(Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1,.,,,,.,,.,.,,,.. $-$,,. -i.,,..,, Fearn, Mullin&Cliffe (1990),,.,,.,, $E

aisatu.pdf

Sigma

Sigma

プラズマ・核融合学会

<966B91E58C6F8DCF8A AF918B89EF89EF95F18E8F5F8DC58F495F8B5E8E E696E6464>

核融合…予稿集

Microsoft Word - ■3中表紙(2006版).doc

ω ω

横組/中高 技術科問題           ●


2日目 10月31日(金曜日)プログラム

本文/本文

280-NX702J-A0_TX-1138A-A_NX702J.indb

本文/110 国際競争時代のコストP21‐41

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL


プログラム 3日目:11月16日(日曜日)

0428_HP用.pdf


第88回日本感染症学会学術講演会後抄録(III)

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

第85 回日本感染症学会総会学術集会後抄録(III)

untitled

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

Title 絶対温度 <0となり得る点渦系の平衡分布の特性 ( オイラー方程式の数理 : 渦運動 150 年 ) Author(s) 八柳, 祐一 Citation 数理解析研究所講究録 (2009), 1642: Issue Date URL

GM-01A_usermanual

スポーツ科学 20年度/01 目次



112 Landau Table 1 Poiseuille Rayleigh-Benard Rayleigh-Benard Figure 1; 3 19 Poiseuille $R_{c}^{-1}-R^{-1}$ $ z ^{2}$ 3 $\epsilon^{2}=r_{\mathrm{c}}^{

EP7000取扱説明書

みどり野43号-P01

CSR レポート 2009

規定/規定

日本呼吸器学会雑誌第49巻第4号


nsg01-04/ky695749460500060152

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2

RX501NC_LTE Mobile Router取説.indb

Transcription:

1413 2005 60-69 60 (Namiko Mitarai) Frontier Research System, RIKEN (Hiizu Nakanishi) Department of Physics, Faculty of Science, Kyushu University 1 : [1] $[2, 3]$ 1 $[3, 4]$.$\text{ }$ [5] 2 (collisional flow ) (frictional flow ) ( 1(a)) ( $1(\mathrm{c})$ ) 2 [4]

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-r_{j}$ $I_{\dot{l}}(I_{j})$ $\models_{ij}\mathrm{t}<\sigma$) $\omega$: $\omega_{j}$ tj $v_{\dot{l}j}$ : $\mathrm{k}\mathrm{s}n=r_{ij}/ r_{\dot{\iota}j} =(n_{x}, n_{y},0)$ kffl4 $\text{ }$ $v_{1j}.=(c_{*}$. $-c_{j})+n\mathrm{x}(_{2}^{j}\sigma\omega_{1}$. $+ \frac{\sigma_{j}}{2}\omega_{j})$, (1) $t_{0}$ $t$ $u_{t}$ vt $v_{n}=n\cdot v_{\dot{l}j}$, $v_{t}=t\cdot v_{1j}.$, $u_{t}= \int_{t_{0}}^{\ell}v_{t}\mathrm{d}t$, (2) $i$ $t=(-n_{y}, n_{x}, 0)$ $j$ $F_{1j}^{n}$. $F_{\dot{l}j}^{t}$ $F_{ij}^{n}$ $=$ $2Mk_{n}(. \frac{\sigma_{1}+\sigma_{j}}{2}- r_{\dot{l}j} )-2M\eta_{n}v_{n}$, (3) $F_{*\dot{\mathrm{n}}}^{t}$ $\min( h_{t}, \mu F_{n} )\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(h_{t})$. $=$ (4) $h_{t}=-2mk_{t}u_{t}-2m\eta_{t}\dot{v}_{t}$ $M=m/2$ $e_{\mathrm{p}}$ $\tau_{c}$ $e_{p}= \exp(-\frac{\pi\eta_{n}}{\sqrt{2k_{n}-\eta_{n}^{2}}})$, $\tau_{\mathrm{c}}=\frac{\pi}{\sqrt{2k_{n}-\eta_{n}^{2}}}$ (5)

$\tau_{\mathrm{c}}$ 62 2: $E$ ( (a) (b)) Nc( ) ( (c) (d)) $e_{p}$ $\eta_{n}$ $k_{\mathrm{n}}$ ( ) $e_{p}$ (5) $1/\sqrt{k_{n}}$ $k_{n}arrow\infty$ $( h_{t} <\mu F_{n} )$ $\beta_{0}$ 2 $e_{p}=\sqrt 0=0.7,$ $\mu=0.5$ $\sigma$ $0.8\sigma$ $\sigma$ \sigma m $\sqrt{\sigma}/g$($g$ ) $k_{n}$ $2(\mathrm{a})$ $1/k_{n}$ $(1/k_{n}<10^{-5})\sim$ ( $1(\mathrm{a})$ ) ( $2(\mathrm{b})$ ) ( 1(c)) $(1/k_{n}<10^{-5})\sim$ $k_{n}$

$\mathrm{i}$ $\dot{\gamma}$ $\mathrm{i}$ $\dot{\gamma}^{2}$ 63 t $N_{c}\tau_{c}$ ( 2(c)) $\mathrm{v}^{\mathrm{a}}1/k_{n}<10^{-5}\sim$ $k_{n}arrow\infty$ ( 2(d)) ( 1(c)) 1 $\omega$ $(\nabla \mathrm{x}\mathrm{v}/2)$ 1(a) 1 $(\nabla \mathrm{x}\mathrm{v}/2)_{z}-\omega$ $1(\mathrm{b})$ [3] 3 \S 2 52 ( ) [5] 3.1 $S$ $\text{ }$ [6]

$\dot{\gamma}$ 64 $\theta$ $T(\mathrm{c})_{\text{ }}T/\dot{\gamma}^{2}(\mathrm{d})$ 3: (a) \mbox{\boldmath $\nu$}(b) $y$ H=50 BC 1 $\mathrm{b}\mathrm{c}2$ $\theta=20^{\text{ }}$ $H=100$ (c) $\tilde{t}\propto T$, $T$ ( ) $\tilde{t}$ 0456, 0.513, 0.571, 0.696 $(\theta=20^{\text{ }})$ $(\theta=21^{\text{ }})$ $(\theta=22^{\text{ }})$ $(\theta=23^{\text{ }})$ $n$ ( ) \sigma $m$ $\dot{\gamma}$ $\sigma,$ $m,$ $n,\dot{\gamma}$ $S=S(\sigma, m, n,\dot{\gamma})$ $S=A(\nu)m\sigma^{2-d}\dot{\gamma}^{2}$ (6) $d$ $\nu\propto n\sigma^{d}$ $A(\nu)$ $g$ [6, 7, 8] ( 3)

$\theta$ $\mathrm{c}$ 85 $H$ [8] ( ) $N$ $S$ $\dot{\gamma}^{2}$ $N=B(\nu)m\sigma^{2-d}\dot{\gamma}^{2}$ (7) $B(\nu)$ $S$ $A(\nu)$ $s/n=\tan\theta$ (8) (8) (6) (7) $A(\nu)/B(\nu)=\tan\theta$ (9) (9) $\nu$ (9) $\theta$ 3.2 $A(\nu)_{\text{ }}B(\nu)$ [9] 1 / $T$ n v $< $. $\mathrm{c}>$ $T\equiv m<(\mathrm{c}-\mathrm{v})^{2}>/d$ $S$ } $y$ $m\dot{\gamma}^{p}(\nu)n\sqrt{t/m}$ ( ) $\ell(\nu)$ $S=f_{2}(\nu)m^{1/2}\sigma^{1-d}T^{1/2}\dot{\gamma}$ (10)

66 $f_{2}(\nu)$ $\nu$ N r $q$ $N=f_{1}(\nu)\sigma^{-d}T$, (11) $\Gamma=f_{3}(\nu)m^{-1/2}\sigma^{-d-1}T^{3/2}$, (12) $q=-f_{4}(\nu)m^{-1/2}\sigma^{1-d}t^{1/2}\partial_{y}t$ (13) (10) (14) $f_{1}.(\nu)$ $\dot{\gamma}$ (6) (10) (6) $T$ $\dot{\gamma}^{2}$ \nearrow $-\partial_{y}q+s_{\dot{\gamma}}-\gamma=0$ (14) $q$ (14) $\Gamma$ $\partial_{y}q$ $S\dot{\gamma}$ (10) (12) $T=[f_{2}(\mu)/fs(\nu)]m\sigma^{2}\dot{\gamma}^{2}$, (15) $T\alpha\dot{\gamma}^{2}$ $\Gamma$ $S\dot{\gamma}$ $\partial_{y}q$ (15) (10) (11) (8) $(15)_{\text{ }}$ $\tan\theta=\sqrt{f_{2}(\nu)f_{3}(\nu)}/f_{1}(\nu)$ (16) $\theta$ $fi(\nu)$ $\nu$ $.3 2 [8] m \sigma $I=m\sigma^{2}/10$ 2 $e_{p}$ 092 ( $ ht <\mu F_{n} $ ) $\beta 0$ 1 [8] $\beta$ 1

$\mathrm{a}\mathrm{a}_{\mathrm{o}}$ 67 4: $\theta$ $N/T(\mathrm{a})$ $S/(\sqrt{T}\dot{\gamma})(\mathrm{b})$ $\nu$ $f1(\nu)(\mathrm{a})$ $f2(\nu)(\mathrm{b})$ $k_{n}=2\cross 10^{5}$ 52 $2\sigma$ (BC1 ) $\sigma$ (BC2) $T(\mathrm{C})_{\text{ }}T/\dot{\gamma}^{2}(\mathrm{d})$ $\theta$ 3 \mbox{\boldmath $\nu$}(b) $y$ H=50 BC 1 $\theta=20^{\text{ }}$ $H=100$ BC2 $3(\mathrm{b})$ $\nu$ $ \partial_{y}q $ $s\dot{\gamma}$ $\Gamma$ (15) $\beta$ $e_{\mathrm{p}}$ $fi(\nu)_{\backslash }f2(\nu)_{\text{ }}f_{3}(\nu)$ [10] $1_{\mathrm{O}}^{\mathrm{a}}$ [5] [10] $\omega=<w>$ ($w$ ) $\omega$ $\omega=(\nabla \mathrm{x}v)_{z}/2$ ( [3]) $\tilde{t}\equiv I<(w-\alpha \mathit{1})^{2}>$ $f2(\nu)$ $f3(\nu)$ [10] 1 $3(\mathrm{b})$ $T$ $T$ $\tilde{t}$ $\theta$ 05 $f2(\nu)$ $f3(\nu)$ 1 4 $N/T(\mathrm{a})$ $S/(\dot{\gamma}\sqrt{T})(\mathrm{b})$ $\nu$ $y<10$ \acute /

68 $\theta$ $S\dot{\gamma}/T^{3/2}$ 5: $\nu$ ( ) ( ) $f\mathrm{s}(\nu)$ ( ) $\sqrt{f_{2}(\nu)f_{3}(\nu)}/fi(\nu)$ ( ) (b) (a), $\tan\theta$ $(y>10)$ (10) (11) BC1 BC2 4 $f_{1}(\nu)_{\text{ }}f_{2}(\nu)$ $f2(\nu)$ 0 $5_{\sim}<\tilde{T}/T<\sim 1$ $\tilde{t}/t=1$ $\Gamma$ $f_{3}(\nu)$ $5(\mathrm{a})$ $f\mathrm{s}(\nu)$. $S\dot{\gamma}/T^{3/2}$ $(15<y<35)$ $f3(\nu)$ ( ) $\text{ }\tilde{t}/t\sim \mathit{0}.5$ $\nu=\nu_{\mathrm{c}}$ $f3(\nu)$ $5(\mathrm{b})$ $\tan\theta$ $\nu$ $\sqrt{f2(\nu)f3(\nu)}/fi(\nu)$ $\tan\theta$ (16) $f3(\nu)$ $\nu=\nu_{\mathrm{c}}$ 4

$\mathrm{c}_{\text{ }}$ 16540344) 69 [4] [3] [5] $f_{3}(\nu)$ ( [1] J. T. Jenkins and S. B. Savage, J. Fluid Mech. 130, 187 (1983); C. S. Campbell, Annu. Rev. Fluid Mech. 22, 57 (1990). [2] H. Xu, M. Louge, and A. Reeves, Continuum Mech. Thermodyn. 15, 321 (2003). [3] N. Mitarai, H. $\mathrm{h}\mathrm{a}\mathrm{y}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{w}\mathrm{a} $, and H. Nakanishi, Phys. Rev. Lett. 88, 174301 (2002). [4] N. Mitarai and H. Nakanishi, Phys. Rev. $\mathrm{e}67$,021301 (2003). [5 N. Mitarai and H. Nakanishi,. ($\mathrm{h}\mathrm{t}\mathrm{t}\mathrm{p}://\mathrm{x}\mathrm{x}\mathrm{x}.\mathrm{a}\mathrm{r}\mathrm{x}\mathrm{i}\mathrm{v}$.org/abs/cond-mat/0407651) [6] R. A. Bagnold, Proc. R. Soc. London A225, 49 (1954). [7] 0. Pouliquen, Phys. Fluids 11, 542 (1999). [8] L. E. Silbert et al., Phys. Rev. $\mathrm{e}64$,051302 (2002); L. E. Silbert, G. S. Grest, S. J. Plimpton, and D. Levine, Phys. Fluids 14, 2637 (2002). [9] M. Y. Louge, Phys. Rev. $\mathrm{e}67$,061303 (2003); in Proceedings of International Conference on Multiphase Flow, Yokohama, 2004, paper no. K13. [10] J. T. Jenkins and M. W. Richman, Phys. Fluids 28 (1985) 3485.