112 Landau Table 1 Poiseuille Rayleigh-Benard Rayleigh-Benard Figure 1; 3 19 Poiseuille $R_{c}^{-1}-R^{-1}$ $ z ^{2}$ 3 $\epsilon^{2}=r_{\mathrm{c}}^{

Size: px
Start display at page:

Download "112 Landau Table 1 Poiseuille Rayleigh-Benard Rayleigh-Benard Figure 1; 3 19 Poiseuille $R_{c}^{-1}-R^{-1}$ $ z ^{2}$ 3 $\epsilon^{2}=r_{\mathrm{c}}^{"

Transcription

1 Rayleigh-Benard (Kaoru Fujimura) Department of Appiied Mathematics and Physics Tottori University 1 Euclid Rayleigh-B\ enard Marangoni ( ) 3 Boussinesq 1 Rayleigh-Benard Boussinesq 2 Rayleigh-Benard Marangoni [2] [11] Boussinesq 1 Rayleigh-Benard 1 5 $[4][12]$ 5 Knobloch [13] Knobloch 2 Rayleigh-B6nard Boussinesq 1 Rayleigh-Benard Stuart-Landau Stuart-Landau $O(\epsilon^{7})$ Stuart-Landau $\frac{dz}{dt}=\epsilon^{2}(\sigma+\epsilon^{2}\sigma^{(1\}}+\epsilon^{4}\sigma^{(2)}+\cdots)z+(\lambda_{1}+\epsilon^{2}\lambda_{1}^{(1)}+\epsilon^{4}\lambda_{1}^{(2)}+\cdots) z ^{2}z$ $+(\lambda_{2}+\epsilon^{2}\lambda_{2}^{\{1)}+\cdots) z ^{4}z+(\lambda_{3}+\cdots) z ^{6}z+\cdots$

2 112 Landau Table 1 Poiseuille Rayleigh-Benard Rayleigh-Benard Figure 1; 3 19 Poiseuille $R_{c}^{-1}-R^{-1}$ $ z ^{2}$ 3 $\epsilon^{2}=r_{\mathrm{c}}^{-1}-r^{-1}$ ( $R$ Rc)/R $R$ $O(\epsilon^{2})$ Reynolds Rayleigh $\frac{dz}{dt}=\epsilon^{2}\sigma z+\lambda_{1} z ^{2}z+\lambda_{2} z ^{4}z+\lambda_{3} z ^{6}z+\cdots$ Poiseuille Stuart-Landau Herbert $[10]$ Table Figl Stua$\mathrm{r}\mathrm{t}$-Landau Poiseuille Rayleigh-Benard Stuart-Landau 4 Prandfl Landau Table 1 Fig 2 $P<02515$ Poiseuille Landau $P\geq 02515$ $P=02515$ 2 Landau

3 113 Figure Rayleigh-Benard $P=0025$ $(R-R_{c})/R_{\mathrm{c}}$ $ z ^{2}$ $P\geq 071$ Landau Fig 2 Prandtl Stuart-Landau Prandtl Poiseuille $\Gamma_{h}=\mathrm{D}_{6}\dotplus \mathrm{t}^{2}$ 6 $\overline{z}_{2}\overline{z}_{3}$ $z_{1}$ $z_{2}$ $z_{3}$ 1

4 $\mathrm{t}^{2}$ $\mathrm{c}$ 114 $\Gamma_{h}$ $(z_{1} z_{2} z_{3})$ $(z_{1} z_{2} z_{3})arrow(\overline{z}_{1}\overline{z}_{2}\overline{z}_{3})$ $\mathrm{d}_{6}\{$ $\mathrm{d}_{3}\{\begin{array}{l}\mathrm{r}_{2\pi/3}(z_{1}z_{2}z_{3})arrow(z_{2}z_{3}z_{1})\sigma_{v}\cdot(z_{1}z_{2}z_{3})arrow(z_{1}z_{3}z_{2})\end{array}$ $(s t)\cdot z=(\mathrm{e}^{is}z_{1} \mathrm{e}^{-\iota^{-}(s+t\}}z_{2} \mathrm{e}^{it}z_{3})$ 1 (R) (H) 2 $\mathrm{r}\mathrm{a}$ 2 (T) ( ) $\Gamma_{h}$ $\dot{z}_{1}=z_{1}\mathcal{h}(\lambda u_{1} \sigma_{1} \sigma_{2} \sigma_{3} q)+\overline{z}_{2}\overline{z}_{3}\mathcal{p}(\lambda u_{1} \sigma_{1_{7}}\sigma_{2} \sigma_{3} q)$ $=h_{1}(\lambda \sigma_{1} \sigma_{2} \sigma_{3)}q)+u_{1}h_{3}(\lambda_{?}\sigma_{1} \sigma_{2} \sigma_{3} q)+u_{1}^{2}h_{5}(\lambda$ $\sigma_{1}$ $\sigma_{2}$ $\sigma_{3}$ $q)$ $\mathcal{p}=p_{2}(\lambda \sigma_{1} \sigma_{2} \sigma_{3_{7}}q)+u_{1}p_{4}(\lambda \sigma_{1} \sigma_{2} \sigma_{3} q)+u_{1}^{2}p_{6}(\lambda \sigma_{1} \sigma_{2} \sigma_{3} q)$ $u_{j}= z_{j} ^{2}$ $\sigma_{1}=u_{1}+u_{2}+u_{3}$ $\sigma_{2}=u_{1}u_{2}+u_{2}u_{3}+u_{3}u_{1}$ $\sigma_{3}=u_{1}u_{2}u_{3}$ $q=z_{1}z_{2}z_{3}+\overline{z}_{1}\overline{z}_{2}\overline{z}_{3}$ $p_{2}p_{4}p_{6}$ [4] $h_{1}$ $h_{3}$ $h_{5}$ $(z_{1} z_{2} z_{3})=(x 00)$ $x\in \mathrm{r}$ $0=H(x)$ $z_{\mathrm{j}}(t)=r_{j}(t)\mathrm{e}^{i\theta_{j}(t)}$ $\theta_{1}+\theta_{2}+\theta_{3}=\theta(t)$ $z_{1}=z_{2}=z_{3}$ $0=H(r \cos \mathrm{o}-)+r\cos\theta\cdot P(r \cos\theta)$ $0=\sin\Theta\cdot P(r \cos \mathrm{o}-)$ $\cos \mathrm{o}-=\pm 1$ $x\in \mathrm{r}$ $(z_{1} z_{2} z_{3})=(x x x)$ $+$ up-hexagons $l$-hexagons $\mathrm{h}_{+}$ down-hexagons $g$-hexagons $\mathrm{h}_{-}$ $0=\mathcal{H}(r;\cos\Theta=\pm 1)\pm r P(r;\cos\Theta=\pm 1)$ Sch\"ulter Lortz and Busse PDE $p_{2}$ 0 [19] $\cos\theta=\pm 1$ $q$ 4 $(O(4))$ $\cos\ominus\neq\pm 1$ $(z_{1} z_{2} z_{3})=(z z z)z\in \mathrm{c}$ $0=7\mathrm{f}(r \cos\theta)$ $0=\mathcal{P}(r \cos \mathrm{o}-)$ $r$ $\Theta(\neq n\pi)$ 5

5 $\mathrm{r}$ 0 $\mathrm{h}$ $\mathrm{t}$ g_{1}}{\partial x_{1}}$ g_{1}^{r}}{\partial x_{1}}+2\frac{\partial g_{1}^{r}}{\partial x_{2}}(1)$ $3 \frac{\partial g_{1}^{i}}{\partial y_{1}}(1)$ g_{1}^{r}}{\partial x_{1}}$ $-$ g_{1}^{r}}{\partial x_{2}}(2)$ g_{1}^{\mathrm{i}}}{\partial y_{1}}+2\frac{\partial g_{2}^{i}}{\partial y_{2}}(1)$ g_{2}^{r}}{\partial x_{2}}-\frac{\partial g_{2}^{t}}{\partial x_{3}}(1)$ $\lambda_{1}$ $\lambda_{2}$ $\lambda_{1}\lambda_{2}=\frac{\partial g_{1}^{r}}{\partial x_{1}}(\frac{\partial g_{2}^{r}}{\partial x_{2}}+\frac{\partial g_{2}^{r}}{\partial x_{3}})-2\frac{\partial g_{1}^{r}}{\partial x_{2}}\frac{\partial g_{2}^{r}}{\partial x_{1}}$ g_{1}^{r}}{\partial x_{1}}$ $\lambda_{1}\lambda_{2}=(\frac{\partial g_{1}^{r}}{\partial x_{1}}+2\frac{\partial g_{1}^{r}}{\partial x_{2}})(\frac{\partial g_{1}^{\mathrm{i}}}{\partial y_{1}}+2\frac{\partial g_{1}^{i}}{\partial y_{2}})-(\frac{\partial g_{1}^{r}}{\partial y_{1}}+2\frac{\partial g_{1}^{\tau}}{\partial y_{2}})(\frac{\partial g_{1}^{i}}{\partial x_{1}}+2\frac{\partial g_{1}^{i}}{\partial x_{2}})$ $\mathrm{z}_{2}$ 115 Table 2 Label I 1 2 Jacobi ( ) Eigenvalue (multiplicity) $(6)$ (1) g_{1}^{t}}{\partial x_{1}}(1)$ g_{2}^{r}}{\partial x_{2}}+\frac{\partial g_{2}^{r}}{\partial x_{3}}(2)$ g_{2}^{r}}{\partial x_{2}}-\frac{\partial g_{2}^{r}}{\partial x_{3}}(2)$ 0 (2) RA 0 (2) $\lambda_{1}+\lambda_{2}=\frac{\partial g_{1}^{r}}{\partial x_{1}}+\frac{\partial g_{2}^{\tau}}{\partial x_{2}}+\frac{\partial g_{2}^{r}}{\partial x_{3}}$ 0 (2) $- \frac{\partial g_{1}^{r}}{\partial x_{2}}+\frac{\partial g_{1}^{i}}{\partial y_{1}}-\frac{\partial g_{1}^{i}}{\partial y_{2}}(2)$ $\lambda_{1)}\lambda_{2}$ $\lambda_{1}+\lambda_{2}=\frac{\partial g_{1}^{r}}{\partial x_{1}}+2\frac{\partial g_{1}^{r}}{\partial x_{2}}+\frac{\partial g_{1}^{i}}{\partial y_{1}}+2\frac{\partial g_{1}^{i}}{\partial y_{2}}$ $(z_{1} z_{2} z_{3})=(x y y)$ $x$ $y\in \mathrm{r}$ 2 up-hexagons down-hexagons Jacobi $g_{j}^{i}$ Table 2 $g_{j}^{r}$ $g_{\mathrm{i}}$ $x_{j}={\rm Re} z_{j}$ $y_{j}={\rm Im} z_{j}$ 4 $z=1/2$ $zarrow 1-z$ w\rightarrow -w $\thetaarrow-\theta$ $(z_{1} z_{2} z_{3})$ $\sigma_{h}$ $(z_{1} z_{2)}z_{3})arrow(-z_{1} -z_{2} -z_{3})$ \Gamma h\tilde =D6\dotplus T2\oplus Z2 $\dot{z}_{1}---z_{1}\mathcal{l}(\lambda u_{1} \sigma_{1} \sigma_{2} \sigma_{3} q^{2})+\overline{z}_{2}\overline{z}_{3}q\mathcal{m}(\lambda u_{1} \sigma_{1} \sigma_{2} \sigma_{3} q^{2})$ $=l_{1}(\lambda \sigma_{1} \sigma_{2} \sigma_{3} q^{2})+u_{1}l_{3}(\lambda \sigma_{1} \sigma_{2} \sigma_{3} q^{2})+u_{1}^{2}l_{5}(\lambda \sigma_{1} \sigma_{2} \sigma_{3} q^{2})$ $\mathcal{m}=m_{5}(\lambda \sigma_{1} \sigma_{2} \sigma_{3} q^{2})+u_{1}m_{7}(\lambda \sigma_{1} \sigma_{2} \sigma_{3_{2}}q^{2})+u_{1}^{2}m_{9}(\lambda \sigma_{1} \sigma_{2} \sigma_{3} q^{2})$ [12]

6 116 1 \S 3 (R) (H) (PQ) (RT) 2 (T) $\mathrm{r}\mathrm{a}$ ( ) 2 4 $x\in \mathrm{r}$ $z_{j}=r_{j}(t)\mathrm{e}^{i\theta_{j}(t\rangle}$ $\theta_{1}+\theta_{2}+\theta_{3}=\theta(t)$ $(z_{1} z_{2} z_{3})=(0 x x)$ $z_{1}=z_{2}=z_{3}$ $0=\mathcal{L}(r \cos^{2}\theta)+2r^{4}\cos^{2}\theta\cdot M(r \cos^{2}\theta)$ $0=\cos\Theta\sin\Theta\cdot M(r \cos^{2}\theta)$ $\cos\theta=\pm 1$ $(z_{1} z_{2} z_{3})=(x x x)$ $x\in \mathrm{r}$ $q$ 2 $0=\mathcal{L}(r;\cos^{2}\ominus=1)+2r^{4}\mathcal{M}(r_{7}\cos^{2}\Theta=1)$ $\cos\ominus=\pm 1$ up-hexagons down-hexagons 4 $\cos \mathrm{o}-=0$ $(z_{1} z_{2} z_{3})=(\mathrm{i}x \mathrm{i}x \mathrm{i}x)$ $x\in \mathrm{r}$ $0=\mathcal{L}(r;\cos \mathrm{o}-=0)$ $2r^{4}\lambda \mathit{4}$ $\cos^{2}\theta=10$ 7 5 \S 3 $\cos\theta\neq\pm 1$ $(z_{1} z_{2} z_{3})=(z z z)$ $z\in \mathrm{c}$ $0=\mathcal{L}(r \cos^{2}\theta)$ $0=\mathcal{M}(r \cos^{2}\mathrm{o}-)$ $r$ $\Theta(\neq n\pi/2)$ 7 \S Rayleigh-B6nard $\mathrm{d}_{6}\dotplus \mathrm{t}^{2}\oplus \mathrm{z}_{2}$ $z=1/2$ Jacobi Table Boussinesq $\rho_{0}\frac{d\overline{v}^{*}}{dt^{*}}=-\nabla^{*}p^{*}-pg\mathrm{e}_{z}+\mu\triangle*\overline{v}^{*}$ $\frac{dt^{*}}{dt^{*}}=\kappa\triangle*t^{*}$ $\nabla^{*\prec}$ $v^{*}=0$

7 $\mathrm{r}$ 0 $\mathrm{h}$ 0 $\mathrm{r}\mathrm{a}\mathrm{r}\mathrm{t}$ $\mathrm{t}$ g_{1}^{r}}{\partial x_{1}}(6)$ g_{1}^{r}}{\partial x_{1}}(1)$ g_{2}^{r}}{\partial x_{2}}(4)$ g_{3}^{r}}{\partial x_{3}}(1)$ g_{1}^{r}}{\partial x_{2}}(2)$ $3 \frac{\partial g_{1}^{i}}{\partial y_{1}}(1)$ $\frac{2\frac{\partial g_{1}^{i}}{\partial\mu_{2}g_{1}}\partial}{\partial x_{1}}+\frac{1)\partial g_{2}^{r}}{\partial x_{2}}\frac{\partial g_{3}^{r}-}{\partial x_{2}}(1\frac{\partial g_{1}^{i}}{r\partial y_{1}(1}+(\frac{\partial g_{1}^{i}}{\partial y_{1}+}\frac{\partial g_{1}^{f}}{\partial y_{2}(1)}(2)$ $0(2)0(2) \frac{\frac{\partial g_{1}^{r}}{\partial g_{2}^{r}\partial x_{1}}}{\partial x_{2}}-\frac{\partial g_{3})}{\partial x_{2}})$ g_{1}^{r}}{\partial x_{1}}-\frac{\partial g_{1}^{r}}{\partial x_{2}}+\frac{\partial g_{1}^{i}}{\partial y_{1}}-\frac{\partial g_{1}^{i}}{\partial y_{2}}(2)$ $\lambda_{1}+\lambda_{2}=\frac{\partial g_{1}^{r}}{\partial x_{1}}+2\frac{\partial g_{1}^{r}}{\partial x_{2}}+\frac{\partial g_{1}^{i}}{\partial y_{1}}+2\frac{\partial g_{1}^{\dot{\mathrm{z}}}}{\partial y_{2}})$ g_{3}^{i}}{\partial y_{3}}(1)$ $\lambda_{1}\lambda_{2}=(\frac{\partial g_{1}^{r}}{\partial x_{1}}+2\frac{\partial g_{1}^{r}}{\partial x_{2}})(\frac{\partial g_{1}^{i}}{\partial y_{1}}+2\frac{\partial g_{1}^{i}}{\partial y_{2}})-(\frac{\partial g_{1}^{r}}{\partial y_{1}}+2\frac{\partial g_{1}^{f}}{\partial y_{2}})(\frac{\partial g_{1}^{i}}{\partial x_{1}}+2\frac{\partial g_{1}^{i}}{\partial x_{2}})$ $\mathcal{l}$ g_{1}^{i}}{\partial y_{1}}+2\frac{\partial g_{2}^{i}}{\partial y_{2}}(1)$ 117 Table 3 Label I Jacobi ( ) Eigenvalue (multiplicity) (1) PQ 0(2) g_{1}^{r}}{\partial x_{1}}+\frac{\partial g_{2}^{r}}{\partial x_{1}}(1)$ g_{1}^{2}}{\partial x_{1}}-\frac{\partial g_{2}^{r}}{\partial x_{1}}(1)$ (2) $)$ g_{1}^{r}}{\partial x_{1}}+2\frac{\partial g_{1}^{r}}{\partial x_{2}}(1)$ g_{1}^{r}}{\partial x_{1}}$ $( \frac{\partial g_{1}^{r}}{\partial x_{1}}(\frac{\partial g_{2}^{r}}{\partial x_{2}}+\frac{\partial g_{3}^{r}}{\partial x_{3}})-2\frac{\partial g_{1}^{r}}{\partial x_{2}}\frac{\partial g_{2}^{r}}{\partial x_{1}})/(\frac{\partial g_{1}^{r}}{\partial x_{1}}+\frac{\partial g_{2}^{r}}{\partial x_{2}}+\frac{\partial g_{3}^{r}}{\partial x_{2}})(1)$ 0 (2) $\lambda_{1} \lambda_{2}$ $\rho=\rho_{0}[1-\alpha(t^{*}-t_{t})]$ 1 $R= \frac{\rho_{0}g\alpha^{(1)}(t_{b}-t_{t})d^{3}}{\mu\kappa}$ $P= \frac{\nu}{\kappa}$ Rayleigh Prandtl $(u v w p \theta)^{t}=\psi$ PDE }{\partial t}\mathrm{s}\psi-\mathcal{l}(r)\psi=n(\psi \psi)$ $\mathcal{b}\psi=0$ at $z=01$ $\mathrm{s}$ $B$ $N$ 2 $z=01$ $z=0$ $z=1$ $z=01$ 3 $B\psi=0$ Prandtl $P$ Rayleigh Busse balioon thermal imprinting $R$ [6]

8 $\overline{z}_{1}$ $\cdot$ 118 $\psi$ $2\pi/3$ 2 2 Fourier 3 $\psi(\mathrm{x} t)=\sum_{m=-\infty}^{\infty}\sum_{n=-\infty}^{\infty}\sum_{j=1}^{\infty}a_{mn}^{(j)}(t)\phi_{mn}^{\langle j)}(z)\mathrm{e}^{\mathrm{i}mk_{\mathrm{c}}x}\mathrm{e}^{ink_{\mathrm{c}}(\frac{-x}{2}+-_{2}\mathrm{k}\rangle}\sqrt{3}$ $\dot{a}_{mn}^{(j)}=\sigma_{mn}^{(j)}(\mu)a_{mn}^{\{j\}}+\sum_{kl}\lambda_{klm-kn-l}^{(jpq)}a_{kl}^{\langle p)}a_{m-kn-l}^{(q)}$ $A_{mn}^{(j)}$ $\mathrm{f}\phi_{\mathrm{f}\mathrm{l}}^{\overline{\mathrm{o}}}\xi\ovalbox{\tt\small $A_{01}^{(1)}$ $A_{10}^{(1)}$ REJECT}$ $A_{-11}^{(1)}$ $A_{-10}^{(1\rangle}$ $A_{0-1}^{(1)}$ $A_{11}^{(1)}$ 6 $A_{mn}^{(j)}=h_{mn}^{(j)}(A_{10}^{(1)} A_{01}^{(1\rangle} A_{-1-1}^{(1)} A_{-10}^{(1)} A_{0-1}^{(1)} A_{1_{\mathrm{J}}1}^{(1)})$ $h_{mn}^{(j)}(\mathrm{o})=dh_{mn}^{(j)}(0)=0$ $A_{10}^{(1)}arrow z_{1}$ $A_{01}^{(1)}arrow z_{2}$ $A_{-1-1}^{(1\}}arrow z_{3}$ $A_{-10}^{(1)}arrow$ $\mathrm{f}\mathrm{f}\mathrm{i}\text{ }$ [5] g $\text{ }\phi_{ib}^{\overline{o}}\text{ }r_{\mathrm{f}}$ $A_{0-1}^{(1)}arrow\overline{z}_{2}$ $A_{11}^{(1)}arrow\overline{z}_{3}$ $O(5)$ $\dot{z}_{1}=z_{1}[h_{1\lambda}(0)\lambda+h_{1\sigma_{1}}(0)\sigma_{1}+h_{3}(0)u_{1}+h_{1q}(0)q$ $+ \frac{1}{2}h_{1\sigma_{1}\sigma_{1}}(0\rangle\sigma_{1}^{2}+h_{1\sigma_{2}}(0)\sigma_{2}+h_{3\sigma_{1}}(0)u_{1}\sigma_{1}+h_{5}(0)u_{1}^{2}]$ $+\overline{z}_{2}\overline{z}_{3}[p_{2}(\mathrm{o})+$ $p_{2\sigma_{1}}(0)\sigma_{1}+p_{4}(0)u_{1}+p_{2q}(0)q]$ F Taylor 5 [9] [16] [17] $z=01$ 3 6 Boussinesq 1 $\mathrm{s}$ $\mathcal{l}$ $\mathcal{b}\psi=0$ 61 $\mathrm{z}_{2}$ \S Figure 3 $(P=7)$ 3

9 $\mathrm{h}$ $\mathrm{t}$ $\delta=0036$ 119 Figure 3 3 $P=7$ Table 2 0 $\delta>0$ \S \S 62 3 \S Fig 4 Figure 3 $\mathrm{h}_{+}$ Fig 4 $\mathrm{h}_{-}$ $\mathrm{h}_{+}$ 2 Figure 3 $\mathrm{r}\mathrm{a}$ 1 Fig 4 ( ) $\mathrm{h}_{+}$ 2 5 $\delta\simeq 02$ $\mathrm{h}_{-}$ $\mathrm{h}_{+}$ reentrant hexagons \S 7 $\mathrm{h}_{-}$ $\delta\simeq 04$ 62 Figure 5 Figure [12] Figure 3

10 120 Figure 4 5 $P=7$ Rayleigh-Benard Figure 5 5 Nishida Iida and Yoshihara $\mathrm{r}\mathrm{t}$ [15] PQ $\mathrm{r}\mathrm{a}$ ( ) 1 Fig 5 Figure 6 Fig 5 5 $\mathrm{r}\mathrm{t}$ $\mathrm{h}$ 1 $\mathrm{r}\mathrm{a}$ PQ 2 RA reentrant hexagons 7 Boussinesq [19] Boussinesq ltable 3 Nishida et al

11 $ $ 121 Figure 5 5 $P=7$ ( [2]) Assenheimer and Steinberg reentrant hexagons [1] $\delta=24$ Boussinesq $\mathrm{h}_{+}$ H- Dewel et al 1) 6 $\dot{z}_{1}=z_{1}[\sigma_{1}+\mu_{1} z_{1} ^{2}+\mu_{2}( z_{2} ^{2}+ z_{3} ^{2})+\mu_{3}z_{0}^{2}]+\delta_{1}z_{0}\overline{z}_{2}\overline{z}_{3}$ $\{$ $\dot{z}_{0}=z_{0}[\sigma_{0}+\mu_{3}( z_{1} ^{2}+ z_{2} ^{2}+ z_{3} ^{3})+\mu_{4}z_{0}^{2}]+\delta_{2}(\overline{z}_{1}\overline{z}_{2}\overline{z}_{3}+z_{1}z_{2}z_{3})$ 7 3 [S] 3 reentrant hexagons Marangoni Rayleigh-B\ enard $l\mathrm{h}$ Clever and Busse Boussiensq $P=7$ 2 Floquet Assenheimer and Steinberg reentrant hexagons Busse balloon [7] $\text{ }$ $[$ $\mathrm{s}\mathrm{f}_{6}$ by and Steinberg Boussinesq 4 $Q$ Boussinesq reentrant hexagons $Q$ $\text{ }f\ovalbox{\tt\small REJECT} \text{ }7R$ $[1\mathrm{S}]$ Madruga Riecke and Pesch Floquet [14] $\partial_{t}z_{1}=\xi^{2}(\mathrm{n}_{i}\cdot\nabla)^{2}z_{i}+\delta z_{i}-(\kappa+\delta\mu)\overline{z}_{2}\overline{z}_{3}-g_{1} z_{1} ^{2}z_{1}-g_{2}( z_{2} ^{2}+ z_{3} ^{2})z_{1}$ $Q\neq 0$ $\kappa$ 2 0 [19] $(\delta=0)$

12 $\ovalbox{\tt\small REJECT}$ $\delta$ $\delta$ Figure 6 \pi \nearrow \nearrow \acute ff 5 $P=7$ $\text{ }$ ffi $\mathrm{h}\ovalbox{\tt\small REJECT}_{\mathrm{f}}^{\zeta 3}$ t 2 $\vdash^{*}\mathrm{f}\mathrm{g}5$ $\doteqdot\phi$ $\delta$ $\delta$ $\delta\mu$ $Q$ 2 1 $R$ $\alpha$ $Q=0$ 5 Boussinesq reentrant hexagons Clever and Busse $\delta\simeq 02$ \S 2 Stuart-Landau $\delta\simeq 02$ $P=7$ Nishida et al 2 reentrant hexagons 7 Busse and Clever t $Q=0$ $P=7$ 2 [3] reentrant $\text{ squares }$ Busse balloon Effl $\pi/2$ $\Gamma_{s}=\mathrm{D}_{6}\dotplus \mathrm{t}^{2}$ $\alpha$ reentrant hexagons $\alpha\simeq 23$ $\delta=0$ $\alpha\simeq 23$

13 $\mathrm{r}$ 0 $\mathrm{s}\mathrm{q}$ 0 g_{1}^{r}}{\partial x_{1}}(4)$ g_{1}^{r}}{\partial x_{1}}$ (1) g_{1}^{r}}{\partial x_{1}}+\frac{\partial g_{1}^{f}}{\partial x_{2}}$ g_{2}}{\partial x_{2}}(2)$ $\lambda_{1}+\lambda_{2}=\frac{\partial g_{1}^{r}}{\partial x_{1}}+\frac{\partial g_{1}^{r}}{\partial x_{2}}$ $\mathrm{t}^{2}$ $\sigma_{v}$ g_{1}^{r}}{\partial x_{1}}-\frac{\partial g_{1}^{r}}{\partial x_{2}}$ $\lambda_{1}\lambda_{2}=\frac{\partial g_{1}^{r}}{\partial x_{1}}\frac{\partial g_{2}^{r}}{\partial x_{2}}-\frac{\partial g_{1}^{f}}{\partial x_{2}}\frac{\partial g_{2}^{r}}{\partial x_{1}}$ 123 Table 4 Jacobi Label I Eigenvalue (multiplicity) (1) (2) RH 0(2) $\lambda_{1}$ $\lambda_{2}$ $z_{2}\overline{z}_{1}\overline{z}_{2}$ $z_{1}$ $z_{1}$ $z_{2}\in \mathrm{c}$ $\Gamma_{s}$ $\mathrm{r}_{\pi/2}$ $(z_{1} z_{2})arrow(z_{2}\overline{z}_{1})$ $\mathrm{d}_{4}\{$ $(z_{1} z_{2})arrow(z_{1}\overline{z}_{2})$ $(s t)\cdot z=(\mathrm{e}^{is}z_{1} \mathrm{e}^{it}z_{2})$ $\dot{z}_{1}=z_{1}[f_{1}(\lambda \tau_{1} \tau_{2})+ z_{1} ^{2}f_{3}(\lambda \tau_{1} \tau_{2})]$ $\tau_{1}= z_{1} ^{2}+ z_{2} ^{2}$ $\tau_{2}= z_{1} ^{2} z_{2} ^{2}$ $x\in \mathrm{r}$ (R) $( z_{1} z_{2} )=(x 0)$ (SQ) $( z_{1} z_{2} )=(x x)$ IW (RH) $( z_{1} z_{2} )=(x y)$ $x\in \mathrm{r}$ $y\in \mathrm{r}$ $x$ 2 $O(5)$ Table 4 5 $\delta$ reentrant squares $\delta\simeq 13$ Busse and Clever reentrant squares $\mathrm{t}$ ) 5 reentrant squares References [1] M Assenheimer and V Steinberg Observation of coexisting upfiow and downflow hexagons in Boussinesq Rayleigh-Benard convection Phys Rev Lett 76 (1996) 756 [2] $\mathrm{f}\mathrm{h}$ Busse The stability of finite amplitude cellular convection and its relation to an extremum principle JFluid Mech 30 (1967) 625

14 Reentrant $453$ {}^{t}\mathrm{o}\mathrm{n}$ the 124 [3] $\mathrm{f}\mathrm{h}$ $\mathrm{r}\mathrm{m}$ Busse and Clever Asymmetric squares as an attracting set in Rayleigh- B\ enard convection PhysRev Lett 81 (1998) 341 [4] E Buzano and M Golubitsky Bifurcation on the hexagonal lattice and the planar B\ enard problem Phil Trans RSoc Lond A 308 (1983) 617 [5] J Carr Applications of Centre Manifold Theory (Springer-Verlag1980) [6] $\mathrm{m}\mathrm{m}$ [7] $\mathrm{r}\mathrm{m}$ $\mathrm{j}\mathrm{a}$ Chen and Whitehead $\zeta$ Evolution of two-dimensional periodic Rayleigh convection cells of arbitrary wave-number JFluid Mech 31 (1968) 1 $\mathrm{f}\mathrm{h}$ Clever and Busse Hexagonal convection cells under conditions of vertical symmetry Phys Rev (1996) R2037 $\mathrm{e}53$ [8] G Dewel S M\ etens $\mathrm{m}\mathrm{f}$ Hilali and P Borckmans FhysRev Lett 74 (1995) 4647 [9] K Fujimura Centre manifold reduction and the Stuart-Landau equation for fluid $\mathrm{a}$ motion Proc R SocLond (1997) 181 [10] T Herbert Nonlinear stability of parallel flows by high-order amplitude expansions AIAA J 18 (1980) 243 [11] $\mathrm{e}\mathrm{l}$ Koschmieder B\ enard Cells and Tayfor Vortices (Cambridge 1993) $\mathrm{j}\mathrm{w}$ [12] M Golubitsky and Swift and E Knobloch Symmetries and pattern selection $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}_{7}$ in Rayleigh-B\ enard Physica IOD (1984) 249 [13] E Knobloch ( $ \mathrm{p}\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{n}$ selection in long-wavelength convection Physica $D41$ (1990) 450 [14] S Madruga H Riecke and W Pesch Reentrant Hexagons in non-boussinesq Convection (preprint) (2004) [15] T Nishida T Ikeda and H Yoshihara Pattern formation of heat convection problens in Mathematical Modeling and Nermerical Simulation in Continerum Mechanics I Babuska P G Ciarlet and T Miyoshi) Lecture Notes in Computational ($\mathrm{e}\mathrm{d}\mathrm{s}$ Sciences and Engineering 19 (Springer 2002) 209 [16] 1368(2004) [17] (2004) $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{i}\mathrm{n}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{g}_{7}$ [18] A Roy and V hexagons in non-boussinesq Rayleigh-Benard convection effect of compressibility Phys Rev Lett 88 (2002) $ [19] A Schliiter D Lortz and F Busse convection J Fluid Mech 23 (1965) 129 stability of steady finite amplitude

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math $\mathrm{r}\mathrm{m}\mathrm{s}$ 1226 2001 76-85 76 1 (Mamoru Tanahashi) (Shiki Iwase) (Toru Ymagawa) (Toshio Miyauchi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology

More information

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m} 1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$

More information

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2]. 1483 2006 112-121 112 (Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science Osaka University 1 [1] 30 (Rott) [2] $-1/2$ [3] [4] -\mbox{\boldmath $\pi$}/4 - \mbox{\boldmath $\pi$}/2

More information

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:- 1413 2005 60-69 60 (Namiko Mitarai) Frontier Research System, RIKEN (Hiizu Nakanishi) Department of Physics, Faculty of Science, Kyushu University 1 : [1] $[2, 3]$ 1 $[3, 4]$.$\text{ }$ [5] 2 (collisional

More information

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 ro 980 1997 44-55 44 $\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{i}$ $-$ (Ko Ma $\iota_{\mathrm{s}\mathrm{u}\mathrm{n}}0$ ) $-$. $-$ $-$ $-$ $-$ $-$ $-$ 40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 46 $-$. $\backslash

More information

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{ 26 [\copyright 0 $\perp$ $\perp$ 1064 1998 41-62 41 REJECT}$ $=\underline{\not\equiv!}\xi*$ $\iota_{arrow}^{-}\approx 1,$ $\ovalbox{\tt\small ffl $\mathrm{y}

More information

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\ 1081 1999 84-99 84 \mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ) - $\text{ }$ 2 2 ( ) $\mathrm{c}$ 85 $\text{ }$ 3 ( 4 )

More information

(Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1,.,,,,.,,.,.,,,.. $-$,,. -i.,,..,, Fearn, Mullin&Cliffe (1990),,.,,.,, $E

(Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1,.,,,,.,,.,.,,,.. $-$,,. -i.,,..,, Fearn, Mullin&Cliffe (1990),,.,,.,, $E 949 1996 128-138 128 (Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1 $-$ -i Fearn Mullin&Cliffe (1990) $E=3$ $Re_{C}=4045\pm 015\%$ ( $Re=U_{\max}h/2\nu$ $U_{\max}$ $h$ ) $-t$ Ghaddar Korczak&Mikic

More information

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$ 1075 1999 127-142 127 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle (

More information

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t 1601 2008 19-27 19 (Kentaro Kanatani) (Takeshi Ogasawara) (Sadayoshi Toh) Graduate School of Science, Kyoto University 1 ( ) $2 $ [1, ( ) 2 2 [3, 4] 1 $dt$ $dp$ $dp= \frac{dt}{\tau(r)}=(\frac{r_{0}}{r})^{\beta}\frac{dt}{\tau_{0}}$

More information

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 ( 1195 2001 105-115 105 Kinki Wasan Seminar Tatsuo Shimano, Yasukuni Shimoura, Saburo Tamura, Fumitada Hayama A 2 (1574 ( 8 7 17 8 (1622 ( 1 $(1648\text{ }$ - 77 ( 1572? (1 ( ( (1 ( (1680 1746 (6 $-$.. $\square

More information

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,,

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,, 892 1995 105-116 105 $arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ - 1 7?,,?,, (1),, (, ),, $\langle$2),, (3),, (4),,,, CFD ( ),,, CFD,,,,,,,,, (3), $\overline{uv}$ 106 (a) (b) $=$ 1 - (5), 2,,,,,

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$ 1051 1998 59-69 59 Reynolds (SUSUMU GOTO) (SHIGEO KIDA) Navier-Stokes $\langle$ Reynolds 2 1 (direct-interaction approximation DIA) Kraichnan [1] (\S 31 ) Navier-Stokes Navier-Stokes [2] 2 Navier-Stokes

More information

\mathrm{m}_{\text{ }}$ ( ) 1. :? $\dagger_{\vee}\mathrm{a}$ (Escherichia $(E.)$ co $l\mathrm{i}$) (Bacillus $(B.)$ subtilis) $0\mu

\mathrm{m}_{\text{ }}$ ( ) 1. :? $\dagger_{\vee}\mathrm{a}$ (Escherichia $(E.)$ co $l\mathrm{i}$) (Bacillus $(B.)$ subtilis) $0\mu \mathrm{m}_{\text{ }}$ 1453 2005 85-100 85 ( ) 1. :? $\dagger_{\vee}\mathrm{a}$ (Escherichia $(E.)$ co $l\mathrm{i}$) (Bacillus $(B.)$ subtilis) $0\mu 05\sim 1 $2\sim 4\mu \mathrm{m}$ \nearrow $\mathrm{a}$

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

$/\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{y}\mathrm{a}$ MIYANO E mail: hirosaki-u.ac.jp 1 ( ) ( ) 1980

$/\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{y}\mathrm{a}$ MIYANO E mail: hirosaki-u.ac.jp 1 ( ) ( ) 1980 Title 非線形時系列解析によるカオス性検定 ( 非線形解析学と凸解析学の研究 ) Author(s) 宮野, 尚哉 Citation 数理解析研究所講究録 (2000), 1136: 28-36 Issue Date 2000-04 URL http://hdl.handle.net/2433/63786 Right Type Departmental Bulletin Paper Textversion

More information

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S Title 初期和算にみる Archimedean Spiral について ( 数学究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2000), 1130: 220-228 Issue Date 2000-02 URL http://hdl.handle.net/2433/63667 Right Type Departmental Bulletin Paper Textversion

More information

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539 43-50 Issue Date 2007-02 URL http//hdlhandlenet/2433/59070 Right Type Departmental

More information

カルマン渦列の消滅と再生成のメカニズム

カルマン渦列の消滅と再生成のメカニズム 1822 2013 97-108 97 (Jiro Mizushima) (Hiroshi Akamine) Department of Mechanical Engineering, Doshisha University 1. [1,2]. Taneda[3] Taneda 100 ( d) $50d\sim 100d$ $100d$ Taneda Durgin and Karlsson[4]

More information

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年) 1776 2012 28-42 28 (Yukio Takemoto) (Syunsuke Ohashi) (Hiroshi Akamine) (Jiro Mizushima) Department of Mechanical Engineering, Doshisha University 1 (Theodore von Ka rma n, l881-1963) 1911 100 [1]. 3 (B\

More information

Title 傾斜スロットにおける多重分岐 ( 乱流の発生と統計法則 ) Author(s) 藤村, 薫 ; ケリー, R.E. Citation 数理解析研究所講究録 (1992), 800: Issue Date URL

Title 傾斜スロットにおける多重分岐 ( 乱流の発生と統計法則 ) Author(s) 藤村, 薫 ; ケリー, R.E. Citation 数理解析研究所講究録 (1992), 800: Issue Date URL Title 傾斜スロットにおける多重分岐 ( 乱流の発生と統計法則 ) Author(s) 藤村 薫 ; ケリー R.E. Citation 数理解析研究所講究録 (1992) 800: 26-35 Issue Date 1992-08 URL http://hdl.handle.net/2433/82850 Right Type Departmental Bulletin Paper Textversion

More information

1 1 Emmons (1) 2 (2) 102

1 1 Emmons (1) 2 (2) 102 1075 1999 101-116 101 (Yutaka Miyake) 1. ( ) 1 1 Emmons (1) 2 (2) 102 103 1 2 ( ) : $w/r\omega$ $\text{ }$ 104 (3) $ $ $=-$ 2- - $\mathrm{n}$ 2. $\xi_{1}(=\xi),$ $\xi 2(=\eta),$ $\xi 3(=()$ $x,$ $y,$ $z$

More information

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 : Title 角術への三角法の応用について ( 数学史の研究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2001), 1195: 165-175 Issue Date 2001-04 URL http://hdl.handle.net/2433/64832 Right Type Departmental Bulletin Paper Textversion publisher

More information

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation) 4 2. 1

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation) 4 2. 1 CAE ( 6 ) 1 1. (heat transfer) 4 1.1 (heat conduction) 1.2 (convective heat transfer) (convection) (natural convection) (free convection) (forced convection) 1 1.3 (heat transfer with phase change) (phase

More information

Title ゾウリムシの生物対流実験 ( 複雑流体の数理とその応用 ) Author(s) 狐崎, 創 ; 小森, 理絵 ; 春本, 晃江 Citation 数理解析研究所講究録 (2006), 1472: Issue Date URL

Title ゾウリムシの生物対流実験 ( 複雑流体の数理とその応用 ) Author(s) 狐崎, 創 ; 小森, 理絵 ; 春本, 晃江 Citation 数理解析研究所講究録 (2006), 1472: Issue Date URL Title ゾウリムシの生物対流実験 ( 複雑流体の数理とその応用 ) Author(s) 狐崎, 創 ; 小森, 理絵 ; 春本, 晃江 Citation 数理解析研究所講究録 (2006), 1472: 129-138 Issue Date 2006-02 URL http://hdl.handle.net/2433/48126 Right Type Departmental Bulletin

More information

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia REJECT} \mathrm{b}$ 1209 2001 89-98 89 (Teruaki ONO) 1 $LR$ $LR$ $\mathrm{f}\ovalbox{\tt\small $L$ $L$ $L$ R $LR$ (Sp) (Map) (Acr) $(105\cross 105\cross 2\mathrm{m}\mathrm{m})$ (A1) $1$) ) $2$ 90 2 3)

More information

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar 1413 2005 36-44 36 MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennard-Jones [2] % 1 ( ) *yukawa@ap.t.u-tokyo.ac.jp ( )

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み 非凸性の魅惑 ) Author(s) 中林 健 ; 刀根 薫 Citation 数理解析研究所講究録 (2004) 1349: 204-220 Issue Date 2004-01 URL http://hdl.handle.net/2433/24871 Right Type Departmental Bulletin Paper

More information

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2 1539 2007 109-119 109 DDS (Drug Deltvery System) (Osamu Sano) $\mathrm{r}^{\mathrm{a}_{w^{1}}}$ $\mathrm{i}\mathrm{h}$ 1* ] $\dot{n}$ $\mathrm{a}g\mathrm{i}$ Td (Yisaku Nag$) JST CREST 1 ( ) DDS ($\mathrm{m}_{\mathrm{u}\mathrm{g}}\propto

More information

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川 正行 Citation 数理解析研究所講究録 (1993) 830: 244-253 Issue Date 1993-04 URL http://hdlhandlenet/2433/83338 Right Type Departmental Bulletin Paper

More information

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty $6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p 1233 2001 111-121 111 (Kazuhiro Sakuma) Dept of Math and Phys Kinki Univ ( ) \S 0 $M^{n}$ $N^{p}$ $n$ $p$ $f$ $M^{n}arrow N^{p}$ $n

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

圧縮性LESを用いたエアリード楽器の発音機構の数値解析 (数値解析と数値計算アルゴリズムの最近の展開)

圧縮性LESを用いたエアリード楽器の発音機構の数値解析 (数値解析と数値計算アルゴリズムの最近の展開) 1719 2010 26-36 26 LES Numerical study on sounding mechanism of air-reed instruments (Kin ya Takahashi) * (Masataka Miyamoto) * (Yasunori Ito) * (Toshiya Takami), (Taizo Kobayashi), (Akira Nishida), (Mutsumi

More information

REJECT}$ 11^{\cdot}\mathrm{v}\mathrm{e}$ virtual turning point II - - new Stokes curve - (Shunsuke SASAKI) RIMS Kyoto University 1

REJECT}$ 11^{\cdot}\mathrm{v}\mathrm{e}$ virtual turning point II - - new Stokes curve - (Shunsuke SASAKI) RIMS Kyoto University 1 高階線型常微分方程式の変形におけるvirtual turning Titlepointの役割について (II) : 野海 - 山田方程式系のnew S curveについて ( 線型微分方程式の変形と仮想的変わり点 ) Author(s) 佐々木 俊介 Citation 数理解析研究所講究録 (2005) 1433: 65-109 Issue Date 2005-05 URL http://hdlhandlenet/2433/47420

More information

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applied Heat Technology Division, Japan Atomic Energy Agency,

More information

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c} Title 狩野本 綴術算経 について ( 数学史の研究 ) Author(s) 小川 束 Citation 数理解析研究所講究録 (2004) 1392: 60-68 Issue Date 2004-09 URL http://hdlhandlenet/2433/25859 Right Type Departmental Bulletin Paper Textversion publisher Kyoto

More information

(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,,

(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,, 1601 2008 69-79 69 (Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology 1 100 1950 1960 $\sim$ 1990 1) 2) 3) (DNS) 1 290 DNS DNS 8 8 $(\eta)$ 8 (ud 12 Fig

More information

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: 33-40 Issue Date 2004-01 URL http://hdlhandlenet/2433/64973 Right Type Departmental Bulletin Paper Textversion

More information

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3 1084 1999 124-134 124 3 1 (SUGIHARA Kokichi),,,,, 1, [5, 11, 12, 13], (2, 3 ), -,,,, 2 [5], 3,, 3, 2 2, -, 3,, 1,, 3 2,,, 3 $R$ ( ), $R$ $R$ $V$, $V$ $R$,,,, 3 2 125 1 3,,, 2 ( ), $[2, 4]$, $[21, 25]$,

More information

( $?^{-\mathrm{b}}$ 17 ( C 152) km ( ) 14 ( ) 5 ( ) $(?^{-}219)$ $\mathrm{m}$ 247 ( ) 6 1 5km

( $?^{-\mathrm{b}}$ 17 ( C 152) km ( ) 14 ( ) 5 ( ) $(?^{-}219)$ $\mathrm{m}$ 247 ( ) 6 1 5km 1257 2002 150-162 150 Abstract When was the Suanshushu edited? * JOCHI Shigeru The oldest mathematical book in China whose name is the Suanshushu was unearthed in the Zhangjiashan ruins, Jiangsha City,

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL Title Compactification theorems in dimens Topology and Related Problems Authors 木村 孝 Citation 数理解析研究所講究録 1996 953 73-92 Issue Date 1996-06 URL http//hdlhandlenet/2433/60394 Right Type Departmental Bulletin

More information

([15], [19]) *1 ( ) 2, 3 ([2, 14, 1]) ẋ = v + m 0 (h a (cl + x) h a (cl x)), v = v [ δ m 1 (v 2 + w 2 ) ] + m 2 (h a (cl + x) h a (cl x)), ẏ

([15], [19]) *1 ( ) 2, 3 ([2, 14, 1]) ẋ = v + m 0 (h a (cl + x) h a (cl x)), v = v [ δ m 1 (v 2 + w 2 ) ] + m 2 (h a (cl + x) h a (cl x)), ẏ ([5], [9]). 2. 3. * ( ) 2, 3 ([2, 4, ]) ẋ = v + m (h a (cl + x) h a (cl x)), v = v [ δ m (v 2 + w 2 ) ] + m 2 (h a (cl + x) h a (cl x)), ẏ = w + m (h a (L + y) h a (L y)), ẇ = w [ δ m (v 2 + w 2 ) ] +

More information

流体とブラックホールの間に見られる類似性・双対性

流体とブラックホールの間に見られる類似性・双対性 1822 2013 56-68 56 (MIYAMOTO, Umpei) Department of Physics, Rikkyo University 1 : ( $)$ 1 [ 1: ( $BH$ ) 57 2 2.1 3 $(r, \theta, \phi)$ $t$ 4 $(x^{a})_{a=0,1,2,3}:=$ $c$ $(ct, r, \theta, \phi)$ $x^{a}$

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,, 836 1993 132-146 132 Navier-Stokes Numerical Simulations for the Navier-Stokes Equations in Incompressible Viscous Fluid Flows (Nobuyoshi Tosaka) (Kazuhiko Kakuda) SUMMARY A coupling approach of the boundary

More information

$\Downarrow$ $\Downarrow$ Cahn-Hilliard (Daisuke Furihata) (Tomohiko Onda) 1 (Masatake Mori) Cahn-Hilliard Cahn-Hilliard ( ) $[1]^{1

$\Downarrow$ $\Downarrow$ Cahn-Hilliard (Daisuke Furihata) (Tomohiko Onda) 1 (Masatake Mori) Cahn-Hilliard Cahn-Hilliard ( ) $[1]^{1 $\Downarrow$ $\Downarrow$ 812 1992 67-93 67 Cahn-Hilliard (Daisuke Furihata (Tomohiko Onda 1 (Masatake Mori Cahn-Hilliard Cahn-Hilliard ( $[1]^{1}$ reduce ( Cahn-Hilliard ( Cahn- Hilliard Cahn-Hilliard

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録 Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木 達夫 Citation 数理解析研究所講究録 (2004) 1408: 97-109 Issue Date 2004-12 URL http://hdlhandlenet/2433/26142

More information

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N $\mathbb{q}$ 1097 1999 69-81 69 $\mathrm{m}$ 2 $\mathrm{o}\mathrm{d}\mathfrak{p}$ ray class field 2 (Fuminori Kawamoto) 1 INTRODUCTION $F$ $F$ $K/F$ Galois $G:=Ga\iota(K/F)$ Galois $\alpha\in \mathit{0}_{k}$

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて)

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて) 1771 2011 34-42 34 Annihilation and reincamation of Karan s vortex street (Hiroshi Al anine) (Jiro Mizushima) (Shunsuke Ohashi) (Kakeru Sugita) 1 1 1 2 2 $h$ 100 B\ enard[1] $a$ $a/h>0.366$ Kirm$4n[2]$

More information

FA - : (FA) FA [3] [4] [5] 1.1 () 25 1:

FA - : (FA) FA [3] [4] [5] 1.1 () 25 1: 得点圏打率 盗塁 併殺を考慮した最適打順決定モデル Titleについて : FA 打者トレード戦略の検討 ( 不確実性の下での数理モデルとその周辺 ) Author(s) 穴太, 克則 ; 高野, 健大 Citation 数理解析研究所講究録 (2015), 1939: 133-142 Issue Date 2015-04 URL http://hdl.handle.net/2433/223766

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 1398 2004 137-148 137 cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 W. Kohnen } $SL_{2}(\mathbb{Z})$ 1 1 2 1 1 1 \sigma

More information

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292 1130 2000 13-28 13 USJC (Yasukuni Shimoura I. [ ]. ( 56 1. 78 $0753$ [ ( 1 352[ 2. 78 $0754$ [ ( 1 348 3. 88 $0880$ F ( 3 422 4. 93 $0942$ 1 ( ( 1 5. $P121$ 1281 F ( 1 278 [ 14 6. $P179$ 1984 r ( 2 $arrow$

More information

カレツキアン2階級モデルにおける所得分配と経済変動 (マクロ経済動学の非線形数理)

カレツキアン2階級モデルにおける所得分配と経済変動 (マクロ経済動学の非線形数理) $\dagger$ 1768 2011 125-142 125 2 * \dagger \ddagger 2 2 $JEL$ : E12; E32 : 1 2 2 $*$ ; E-mail address: tsuzukie5@gmail.com \ddagger 126 Keynes (1936) $F\iota$ Chang and Smyth (1971) ( ) Kaldor (1940)

More information

流体としてのブラックホール : 重力物理と流体力学の接点

流体としてのブラックホール : 重力物理と流体力学の接点 1890 2014 136-148 136 : Umpei Miyamoto Research and Education Center for Comprehensive Science, Akita Prefectural University E mail: umpei@akita-pu.ac.jp 1970 ( ) 1 $(E=mc^{2})$, ( ) ( etc) ( ) 137 ( (duality)

More information

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原 A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原, 辰次 Citation 数理解析研究所講究録 (2004), 1395: 231-237 Issue

More information

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm 995 1997 11-27 11 3 3 Euclid (Reiko Aiyama) (Kazuo Akutagawa) (CMC) $H$ ( ) $H=0$ ( ) Weierstrass $g$ 1 $H\neq 0$ Kenmotsu $([\mathrm{k}])$ $\mathrm{s}^{2}$ 2 $g$ CMC $P$ $([\mathrm{b}])$ $g$ Gauss Bryant

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2 1155 2000 104-119 104 (Masatake Mori) 1 $=\mathrm{l}$ 1970 [2, 4, 7], $=-$, $=-$,,,, $\mathrm{a}^{\mathrm{a}}$,,, $a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (11), $z=\alpha$ $c_{0}+c_{1}(z-\alpha)+c2(z-\alpha)^{2}+\cdots$

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

点集合置換法による正二十面体対称準周期タイリングの作成 (準周期秩序の数理)

点集合置換法による正二十面体対称準周期タイリングの作成 (準周期秩序の数理) 1725 2011 1-14 1 (Nobuhisa Fujita) Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 1. (Dirac peak) (Z-module) $d$ (rank) $r$ r $\backslash$ (Bravais lattice) $d$ $d$ $r$

More information

$\ovalbox{\tt\small REJECT}$ SDE 1 1 SDE ;1) SDE 2) Burgers Model SDE $([4],[5],[7], [8])$ 1.1 SDE SDE (cf.[4],[5]) SDE $\{$ : $dx_

$\ovalbox{\tt\small REJECT}$ SDE 1 1 SDE ;1) SDE 2) Burgers Model SDE $([4],[5],[7], [8])$ 1.1 SDE SDE (cf.[4],[5]) SDE $\{$ : $dx_ $\ovalbox{\tt\small REJECT}$ 1032 1998 46-61 46 SDE 1 1 SDE ;1) SDE 2) Burgers Model SDE $([4],[5],[7], [8])$ 1.1 SDE SDE (cf.[4],[5]) SDE $dx_{t}=a(t, X_{t}, u)dt+b(t, x_{t}, u)dwt$, $X_{0}=\xi(\omega)$

More information

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析) 1748 2011 48-57 48 (Hiroshi Iwasaki) Faculty of Mathematics and Physics Kanazawa University quasi-static Biot 1 : ( ) (coup iniury) (contrecoup injury) 49 [9]. 2 2.1 Navier-Stokes $\rho(\frac{\partial

More information

$\overline{\circ\lambda_{\vec{a},q}^{\lambda}}f$ $\mathrm{o}$ (Gauge Tetsuo Tsuchida 1. $\text{ }..\cdot$ $\Omega\subset \mathrm{r}^

$\overline{\circ\lambda_{\vec{a},q}^{\lambda}}f$ $\mathrm{o}$ (Gauge Tetsuo Tsuchida 1. $\text{ }..\cdot$ $\Omega\subset \mathrm{r}^ $\overle{\circ\lambda_{\vec{a}q}^{\lambda}}f$ $\mathrm{o}$ (Gauge 994 1997 15-31 15 Tetsuo Tsuchida 1 $\text{ }\cdot$ $\Omega\subset \mathrm{r}^{3}$ \Omega Dirac $L_{\vec{a}q}=L_{0}+(-\alpha\vec{a}(X)+q(_{X}))=\alpha

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

(Tamiki Umeda) (Hisao Nakajima) (Hirokazu Hotani) Liposomes, vesicles oflipid bilayer, have a variety of shapes: a circular biconcav

(Tamiki Umeda) (Hisao Nakajima) (Hirokazu Hotani) Liposomes, vesicles oflipid bilayer, have a variety of shapes: a circular biconcav 762 1991 78-88 78 (Tamiki Umeda) (Hisao Nakajima) (Hirokazu Hotani) Liposomes, vesicles oflipid bilayer, have a variety of shapes: a circular biconcave form, a thin tubular filament and other regular shape

More information

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理) 1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$

More information

(SHOGO NISHIZAWA) Department of Mathematical Science, Graduate School of Science and Technology, Niigata University (TAMAKI TANAKA)

(SHOGO NISHIZAWA) Department of Mathematical Science, Graduate School of Science and Technology, Niigata University (TAMAKI TANAKA) Title 集合値写像の凸性の遺伝性について ( 不確実なモデルによる動的計画理論の課題とその展望 ) Author(s) 西澤, 正悟 ; 田中, 環 Citation 数理解析研究所講究録 (2001), 1207: 67-78 Issue Date 2001-05 URL http://hdlhandlenet/2433/41044 Right Type Departmental Bulletin

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

日本糖尿病学会誌第58巻第1号

日本糖尿病学会誌第58巻第1号 α β β β β β β α α β α β α l l α l μ l β l α β β Wfs1 β β l l l l μ l l μ μ l μ l Δ l μ μ l μ l l ll l l l l l l l l μ l l l l μ μ l l l l μ l l l l l l l l l l μ l l l μ l μ l l l l l l l l l μ l l l l

More information

2017

2017 2017 1 2 2 3 3 4 3.1?......................... 4 3.2 [5, 6]........... 5 3.2.1......... 5 3.2.2................... 6 3.2.3....... 9 3.2.4.......... 10 3.2.5....... 11 3.2.6 : phase slip [5, 8]..........

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: Issue Date URL R

Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: Issue Date URL   R Title 渦度場の特異性 ( 流体力学におけるトポロジーの問題 ) Author(s) 福湯, 章夫 Citation 数理解析研究所講究録 (1992), 817: 114-125 Issue Date 1992-12 URL http://hdl.handle.net/2433/83117 Right Type Departmental Bulletin Paper Textversion publisher

More information

Title 素数判定の決定的多項式時間アルゴリズム ( 代数的整数論とその周辺 ) Author(s) 木田, 雅成 Citation 数理解析研究所講究録 (2003), 1324: Issue Date URL

Title 素数判定の決定的多項式時間アルゴリズム ( 代数的整数論とその周辺 ) Author(s) 木田, 雅成 Citation 数理解析研究所講究録 (2003), 1324: Issue Date URL Title 素数判定の決定的多項式時間アルゴリズム ( 代数的整数論とその周辺 ) Author(s) 木田 雅成 Citation 数理解析研究所講究録 (2003) 1324: 22-32 Issue Date 2003-05 URL http://hdlhandlenet/2433/43143 Right Type Departmental Bulletin Paper Textversion

More information

: ( ) (Takeo Suzuki) Kakegawa City Education Center Sizuoka Prif ] [ 18 (1943 ) $A $ ( : ),, 1 18, , 3 $A$,, $C$

: ( ) (Takeo Suzuki) Kakegawa City Education Center Sizuoka Prif ] [ 18 (1943 ) $A $ ( : ),, 1 18, , 3 $A$,, $C$ Title 九州大学所蔵 : 中国暦算書について ( 数学史の研究 ) Author(s) 鈴木, 武雄 Citation 数理解析研究所講究録 (2009), 1625: 244-253 Issue Date 2009-01 URL http://hdlhandlenet/2433/140284 Right Type Departmental Bulletin Paper Textversion

More information

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M 1445 2005 88-98 88 Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of Mathematics Shimane University 1 2 $(\mathit{4}_{p}(\dot{x}))^{\circ}+\alpha\phi_{p}(\dot{x})+\beta\phi_{p}(x)=0$

More information

高密度荷電粒子ビームの自己組織化と安定性

高密度荷電粒子ビームの自己組織化と安定性 1885 2014 1-11 1 1 Hiromi Okamoto Graduate School of Advanced Sciences ofmatter, Hiroshima University ( ( ) $)$ ( ) ( ) [1],, $*1$ 2 ( $m,$ q) $*1$ ; $\kappa_{x}$ $\kappa_{y}$ 2 $H_{t}=c\sqrt{(p-qA)^{2}+m^{2}c^{2}}+q\Phi$

More information

Note5.dvi

Note5.dvi 12 2011 7 4 2.2.2 Feynman ( ) S M N S M + N S Ai Ao t ij (i Ai, j Ao) N M G = 2e2 t ij 2 (8.28) h i μ 1 μ 2 J 12 J 12 / μ 2 μ 1 (8.28) S S (8.28) (8.28) 2 ( ) (collapse) j 12-1 2.3 2.3.1 Onsager S B S(B)

More information

EndoPaper.pdf

EndoPaper.pdf Research on Nonlinear Oscillation in the Field of Electrical, Electronics, and Communication Engineering Tetsuro ENDO.,.,, (NLP), 1. 3. (1973 ),. (, ),..., 191, 1970,. 191 1967,,, 196 1967,,. 1967 1. 1988

More information

工学的な設計のための流れと熱の数値シミュレーション

工学的な設計のための流れと熱の数値シミュレーション 247 Introduction of Computational Simulation Methods of Flow and Heat Transfer for Engineering Design Minoru SHIRAZAKI Masako IWATA Ryutaro HIMENO PC CAD CAD 248 Voxel CAD Navier-Stokes v 1 + ( v ) v =

More information

Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野, 勝利 Citation 数理解析研究所講究録 (2001), 1238: 1-11 Issue Date URL

Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野, 勝利 Citation 数理解析研究所講究録 (2001), 1238: 1-11 Issue Date URL Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野 勝利 Citation 数理解析研究所講究録 (2001) 1238: 1-11 Issue Date 2001-11 URL http://hdlhandlenet/2433/41569 Right Type Departmental Bulletin

More information

untitled

untitled Amazon.co.jp 2008.09.02 START Amazon.co.jp Amazon.co.jp Amazon.co.jp Amazon Internet retailers are extremely hesitant about releasing specific sales data 1( ) ranking 500,000 100,000 Jan.1 Mar.1 Jun.1

More information