体細胞の分化状態の記憶を消去し初期化する原理を発見

Similar documents
STAP現象の検証の実施について

STAP現象の検証結果

平成18年3月17日

長期/島本1

1. 背景生殖細胞は 哺乳類の体を構成する細胞の中で 次世代へと受け継がれ 新たな個体をつくり出すことが可能な唯一の細胞です 生殖細胞系列の分化過程や 生殖細胞に特徴的なDNAのメチル化を含むエピゲノム情報 8 の再構成注メカニズムを解明することは 不妊の原因究明や世代を経たエピゲノム情報の伝達メカ

を行った 2.iPS 細胞の由来の探索 3.MEF および TTF 以外の細胞からの ips 細胞誘導 4.Fbx15 以外の遺伝子発現を指標とした ips 細胞の樹立 ips 細胞はこれまでのところレトロウイルスを用いた場合しか樹立できていない また 4 因子を導入した線維芽細胞の中で ips 細

2017 年 12 月 15 日 報道機関各位 国立大学法人東北大学大学院医学系研究科国立大学法人九州大学生体防御医学研究所国立研究開発法人日本医療研究開発機構 ヒト胎盤幹細胞の樹立に世界で初めて成功 - 生殖医療 再生医療への貢献が期待 - 研究のポイント 注 胎盤幹細胞 (TS 細胞 ) 1 は

PowerPoint プレゼンテーション

( 平成 22 年 12 月 17 日ヒト ES 委員会説明資料 ) 幹細胞から臓器を作成する 動物性集合胚作成の必要性について 中内啓光 東京大学医科学研究所幹細胞治療研究センター JST 戦略的創造研究推進事業 ERATO 型研究研究プロジェクト名 : 中内幹細胞制御プロジェクト 1

PowerPoint プレゼンテーション

報道発表資料 2002 年 10 月 10 日 独立行政法人理化学研究所 頭にだけ脳ができるように制御している遺伝子を世界で初めて発見 - 再生医療につながる重要な基礎研究成果として期待 - 理化学研究所 ( 小林俊一理事長 ) は プラナリアを用いて 全能性幹細胞 ( 万能細胞 ) が頭部以外で脳

資料 3-1 CREST 人工多能性幹細胞 (ips 細胞 ) 作製 制御等の医療基盤技術 平成 20 年度平成 21 年度平成 22 年度 10 件 7 件 6 件 進捗状況報告 9.28,2010 総括須田年生

資料3-1_本多准教授提出資料

図 B 細胞受容体を介した NF-κB 活性化モデル

<4D F736F F D20322E CA48B8690AC89CA5B90B688E38CA E525D>

研究の詳細な説明 1. 背景細菌 ウイルス ワクチンなどの抗原が人の体内に入るとリンパ組織の中で胚中心が形成されます メモリー B 細胞は胚中心に存在する胚中心 B 細胞から誘導されてくること知られています しかし その誘導の仕組みについてはよくわかっておらず その仕組みの解明は重要な課題として残っ

PowerPoint プレゼンテーション

60 秒でわかるプレスリリース 2008 年 7 月 12 日 独立行政法人理化学研究所 生殖細胞の誕生に必須な遺伝子 Prdm14 の発見 - Prdm14 の欠損は 精子 卵子がまったく形成しない成体に - 種の保存 をつかさどる生殖細胞には 幾世代にもわたり遺伝情報を理想な状態で維持し 個体を

報道発表資料 2001 年 12 月 29 日 独立行政法人理化学研究所 生きた細胞を詳細に観察できる新しい蛍光タンパク質を開発 - とらえられなかった細胞内現象を可視化 - 理化学研究所 ( 小林俊一理事長 ) は 生きた細胞内における現象を詳細に観察することができる新しい蛍光タンパク質の開発に成

報道発表資料 2006 年 6 月 21 日 独立行政法人理化学研究所 アレルギー反応を制御する新たなメカニズムを発見 - 謎の免疫細胞 記憶型 T 細胞 がアレルギー反応に必須 - ポイント アレルギー発症の細胞を可視化する緑色蛍光マウスの開発により解明 分化 発生等で重要なノッチ分子への情報伝達

<1. 新手法のポイント > -2 -

Microsoft Word - まう博士の簡単にわかるSTAP細胞解説 最終(3)

( 図 ) IP3 と IRBIT( アービット ) が IP3 受容体に競合して結合する様子

今日の話題は昨日の続き、今日の続きはまた明日

れていない 遺伝子改変動物の作製が容易になるなどの面からキメラ形成できる多能性幹細胞 へのニーズは高く ヒトを含むげっ歯類以外の動物におけるナイーブ型多能性幹細胞の開発に 関して世界的に激しい競争が行われている 本共同研究チームは 着床後の多能性状態にある EpiSC を着床前胚に移植し 移植細胞が

報道発表資料 2006 年 4 月 13 日 独立行政法人理化学研究所 抗ウイルス免疫発動機構の解明 - 免疫 アレルギー制御のための新たな標的分子を発見 - ポイント 異物センサー TLR のシグナル伝達機構を解析 インターフェロン産生に必須な分子 IKK アルファ を発見 免疫 アレルギーの有効

の感染が阻止されるという いわゆる 二度なし現象 の原理であり 予防接種 ( ワクチン ) を行う根拠でもあります 特定の抗原を認識する記憶 B 細胞は体内を循環していますがその数は非常に少なく その中で抗原に遭遇した僅かな記憶 B 細胞が著しく増殖し 効率良く形質細胞に分化することが 大量の抗体産

報道発表資料 2006 年 8 月 7 日 独立行政法人理化学研究所 国立大学法人大阪大学 栄養素 亜鉛 は免疫のシグナル - 免疫系の活性化に細胞内亜鉛濃度が関与 - ポイント 亜鉛が免疫応答を制御 亜鉛がシグナル伝達分子として作用する 免疫の新領域を開拓独立行政法人理化学研究所 ( 野依良治理事

資料110-4-1 核置換(ヒト胚核移植胚)に関する規制の状況について

細胞老化による発がん抑制作用を個体レベルで解明 ~ 細胞老化の仕組みを利用した新たながん治療法開発に向けて ~ 1. ポイント : 明細胞肉腫 (Clear Cell Sarcoma : CCS 注 1) の細胞株から ips 細胞 (CCS-iPSCs) を作製し がん細胞である CCS と同じ遺

クローン ES 細胞を利用したクローンマウスの作出方法

1. 背景血小板上の受容体 CLEC-2 と ある種のがん細胞の表面に発現するタンパク質 ポドプラニン やマムシ毒 ロドサイチン が結合すると 血小板が活性化され 血液が凝固します ( 図 1) ポドプラニンは O- 結合型糖鎖が結合した糖タンパク質であり CLEC-2 受容体との結合にはその糖鎖が

サカナに逃げろ!と指令する神経細胞の分子メカニズムを解明 -個性的な神経細胞のでき方の理解につながり,難聴治療の創薬標的への応用に期待-

報道発表資料 2004 年 9 月 6 日 独立行政法人理化学研究所 記憶形成における神経回路の形態変化の観察に成功 - クラゲの蛍光蛋白で神経細胞のつなぎ目を色づけ - 独立行政法人理化学研究所 ( 野依良治理事長 ) マサチューセッツ工科大学 (Charles M. Vest 総長 ) は記憶形

報道発表資料 2007 年 8 月 1 日 独立行政法人理化学研究所 マイクロ RNA によるタンパク質合成阻害の仕組みを解明 - mrna の翻訳が抑制される過程を試験管内で再現することに成功 - ポイント マイクロ RNA が翻訳の開始段階を阻害 標的 mrna の尻尾 ポリ A テール を短縮

2. 手法まず Cre 組換え酵素 ( ファージ 2 由来の遺伝子組換え酵素 ) を Emx1 という大脳皮質特異的な遺伝子のプロモーター 3 の制御下に発現させることのできる遺伝子操作マウス (Cre マウス ) を作製しました 詳細な解析により このマウスは 大脳皮質の興奮性神経特異的に 2 個

平成 29 年 6 月 9 日 ニーマンピック病 C 型タンパク質の新しい機能の解明 リソソーム膜に特殊な領域を形成し 脂肪滴の取り込み 分解を促進する 名古屋大学大学院医学系研究科 ( 研究科長門松健治 ) 分子細胞学分野の辻琢磨 ( つじたくま ) 助教 藤本豊士 ( ふじもととよし ) 教授ら

かし この技術に必要となる遺伝子改変技術は ヒトの組織細胞ではこれまで実現できず ヒトがん組織の細胞系譜解析は困難でした 正常の大腸上皮の組織には幹細胞が存在し 自分自身と同じ幹細胞を永続的に産み出す ( 自己複製 ) とともに 寿命が短く自己複製できない分化した細胞を次々と産み出すことで組織構造を

<4D F736F F D C668DDA94C5817A8AEE90B68CA45F927D946791E58BA493AF838A838A815B83585F8AB28DD79645>

<4D F736F F D F D F095AA89F082CC82B582AD82DD202E646F63>


研究の背景 ヒトは他の動物に比べて脳が発達していることが特徴であり, 脳の発達のおかげでヒトは特有の能力の獲得が可能になったと考えられています この脳の発達に大きく関わりがあると考えられているのが, 本研究で扱っている大脳皮質の表面に存在するシワ = 脳回 です 大脳皮質は脳の中でも高次脳機能に関わ

今後の展開現在でも 自己免疫疾患の発症機構については不明な点が多くあります 今回の発見により 今後自己免疫疾患の発症機構の理解が大きく前進すると共に 今まで見過ごされてきたイントロン残存の重要性が 生体反応の様々な局面で明らかにされることが期待されます 図 1 Jmjd6 欠損型の胸腺をヌードマウス

資料 4 生命倫理専門調査会における主な議論 平成 25 年 12 月 20 日 1 海外における規制の状況 内閣府は平成 24 年度 ES 細胞 ips 細胞から作成した生殖細胞によるヒト胚作成に関する法規制の状況を確認するため 米国 英国 ドイツ フランス スペイン オーストラリア及び韓国を対象

論文題目  腸管分化に関わるmiRNAの探索とその発現制御解析

<4D F736F F F696E74202D2097D58FB08E8E8CB1838F815B834E F197D58FB E96D8816A66696E616C CF68A4A2E >

報道発表資料 2007 年 4 月 11 日 独立行政法人理化学研究所 傷害を受けた網膜細胞を薬で再生する手法を発見 - 移植治療と異なる薬物による新たな再生治療への第一歩 - ポイント マウス サルの網膜の再生を促進することに成功 網膜だけでなく 難治性神経変性疾患の再生治療にも期待できる 神経回

RN201402_cs5_0122b.indd

別紙 < 研究の背景と経緯 > 自閉症は 全人口の約 2% が罹患する非常に頻度の高い神経発達障害です 近年 クロマチンリモデ リング因子 ( 5) である CHD8 が自閉症の原因遺伝子として同定され 大変注目を集めています ( 図 1) 本研究グループは これまでに CHD8 遺伝子変異を持つ

背景 歯はエナメル質 象牙質 セメント質の3つの硬い組織から構成されます この中でエナメル質は 生体内で最も硬い組織であり 人が食生活を営む上できわめて重要な役割を持ちます これまでエナメル質は 一旦齲蝕 ( むし歯 ) などで破壊されると 再生させることは不可能であり 人工物による修復しかできませ

「ゲノムインプリント消去には能動的脱メチル化が必要である」【石野史敏教授】

スライド 1

Microsoft Word - tohokuuniv-press _02.docx

60 秒でわかるプレスリリース 2007 年 12 月 4 日 独立行政法人理化学研究所 DNA の量によって植物の大きさが決まる新たな仕組みを解明 - 植物の核内倍加は染色体のセット数を変えずに DNA 量を増やすメカニズムが働く - 生命の設計図である DNA が 細胞の中で増えたらどうなるので

報道発表資料 2005 年 8 月 2 日 独立行政法人理化学研究所 国立大学法人京都大学 ES 細胞からの神経網膜前駆細胞と視細胞の分化誘導に世界で初めて成功 - 網膜疾患治療法開発への応用に大きな期待 - ポイント ES 細胞の細胞塊を浮遊培養し 16% の高効率で神経網膜前駆細胞に分化させる系

8 章細胞の発生と分化

( 図 ) 顕微受精の様子

Microsoft PowerPoint - 4_河邊先生_改.ppt

のと期待されます 本研究成果は 2011 年 4 月 5 日 ( 英国時間 ) に英国オンライン科学雑誌 Nature Communications で公開されます また 本研究成果は JST 戦略的創造研究推進事業チーム型研究 (CREST) の研究領域 アレルギー疾患 自己免疫疾患などの発症機構

脳組織傷害時におけるミクログリア形態変化および機能 Title変化に関する培養脳組織切片を用いた研究 ( Abstract_ 要旨 ) Author(s) 岡村, 敏行 Citation Kyoto University ( 京都大学 ) Issue Date URL http

統合失調症発症に強い影響を及ぼす遺伝子変異を,神経発達関連遺伝子のNDE1内に同定した

60 秒でわかるプレスリリース 2006 年 4 月 21 日 独立行政法人理化学研究所 敗血症の本質にせまる 新規治療法開発 大きく前進 - 制御性樹状細胞を用い 敗血症の治療に世界で初めて成功 - 敗血症 は 細菌などの微生物による感染が全身に広がって 発熱や機能障害などの急激な炎症反応が引き起

本成果は 主に以下の事業 研究領域 研究課題によって得られました 日本医療研究開発機構 (AMED) 脳科学研究戦略推進プログラム ( 平成 27 年度より文部科学省より移管 ) 研究課題名 : 遺伝子改変マーモセットの汎用性拡大および作出技術の高度化とその脳科学への応用 研究代表者 : 佐々木えり

生物時計の安定性の秘密を解明


60 秒でわかるプレスリリース 2007 年 1 月 18 日 独立行政法人理化学研究所 植物の形を自由に小さくする新しい酵素を発見 - 植物生長ホルモンの作用を止め ミニ植物を作る - 種無しブドウ と聞いて植物成長ホルモンの ジベレリン を思い浮かべるあなたは知識人といって良いでしょう このジベ

報道発表資料 2007 年 10 月 22 日 独立行政法人理化学研究所 ヒト白血病の再発は ゆっくり分裂する白血病幹細胞が原因 - 抗がん剤に抵抗性を示す白血病の新しい治療戦略にむけた第一歩 - ポイント 患者の急性骨髄性白血病を再現する 白血病ヒト化マウス を開発 白血病幹細胞の抗がん剤抵抗性が

報道関係者各位 平成 26 年 1 月 20 日 国立大学法人筑波大学 動脈硬化の進行を促進するたんぱく質を発見 研究成果のポイント 1. 日本人の死因の第 2 位と第 4 位である心疾患 脳血管疾患のほとんどの原因は動脈硬化である 2. 酸化されたコレステロールを取り込んだマクロファージが大量に血

た さらに クローン胚からクローン ES 細胞 2の樹立にも成功しました 樹立成績は高く 尿細胞が 15 個あれば 1 株できる計算になります これらの成果から 本方法は絶滅危惧種など貴重な動物において 体をいっさい傷つけずにクローン個体を作出する重要な手段になり得ること 野生動物など尿を無菌状態で

Untitled

前立腺癌は男性特有の癌で 米国においては癌死亡者数の第 2 位 ( 約 20%) を占めてい ます 日本でも前立腺癌の罹患率 死亡者数は急激に上昇しており 現在は重篤な男性悪性腫瘍疾患の1つとなって図 1 います 図 1 初期段階の前立腺癌は男性ホルモン ( アンドロゲン ) に反応し増殖します そ

大学院博士課程共通科目ベーシックプログラム

く 細胞傷害活性の無い CD4 + ヘルパー T 細胞が必須と判明した 吉田らは 1988 年 C57BL/6 マウスが腹腔内に移植した BALB/c マウス由来の Meth A 腫瘍細胞 (CTL 耐性細胞株 ) を拒絶すること 1991 年 同種異系移植によって誘導されるマクロファージ (AIM

遺伝子の近傍に別の遺伝子の発現制御領域 ( エンハンサーなど ) が移動してくることによって その遺伝子の発現様式を変化させるものです ( 図 2) 融合タンパク質は比較的容易に検出できるので 前者のような二つの遺伝子組み換えの例はこれまで数多く発見されてきたのに対して 後者の場合は 広範囲のゲノム

Microsoft PowerPoint - 資料6-1_高橋委員(公開用修正).pptx

科学6月独立Q_河本.indd

細胞老化による発がん抑制作用を個体レベルで解明 ~ 細胞老化の仕組みを利用した新たながん治療法開発に向けて ~ 1. 発表者 : 山田泰広 ( 東京大学医科学研究所システム疾患モテ ル研究センター先進病態モテ ル研究分野教授 ) 河村真吾 ( 研究当時 : 京都大学 ips 細胞研究所 / 岐阜大学

Microsoft Word - 【広報課確認】 _プレス原稿(最終版)_東大医科研 河岡先生_miClear

2012 年 6 月 独立行政法人理化学研究所 住友化学株式会社 ヒト ES 細胞から立体網膜の形成に世界で初めて成功 - 網膜難病の治療や原因解明の研究を飛躍的に加速 - 本研究成果のポイント ヒト ES 細胞の自己組織化培養で胎児型の眼 眼杯 の形成に成功 視細胞や神経節細胞などを含むヒト立体網

60 秒でわかるプレスリリース 2008 年 10 月 22 日 独立行政法人理化学研究所 脳内のグリア細胞が分泌する S100B タンパク質が神経活動を調節 - グリア細胞からニューロンへの分泌タンパク質を介したシグナル経路が活躍 - 記憶や学習などわたしたち高等生物に必要不可欠な高次機能は脳によ

Microsoft Word - 熊本大学プレスリリース_final

Microsoft Word - seibutsu02

Untitled

胞運命が背側に運命変換することを見いだしました ( 図 1-1) この成果は IP3-Ca 2+ シグナルが腹側のシグナルとして働くことを示すもので 研究チームの粂昭苑研究員によって米国の科学雑誌 サイエンス に発表されました (Kume et al., 1997) この結果によって 初期胚には背腹

相続支払い対策ポイント

150423HC相続資産圧縮対策のポイント

ハピタス のコピー.pages

Copyright 2008 All Rights Reserved 2

医薬品タンパク質は 安全性の面からヒト型が常識です ではなぜ 肌につける化粧品用コラーゲンは ヒト型でなくても良いのでしょうか? アレルギーは皮膚から 最近の学説では 皮膚から侵入したアレルゲンが 食物アレルギー アトピー性皮膚炎 喘息 アレルギー性鼻炎などのアレルギー症状を引き起こすきっかけになる

Microsoft Word - プレス原稿_0528【最終版】

共同研究チーム 個人情報につき 削除しております 1

報道発表資料 2002 年 8 月 2 日 独立行政法人理化学研究所 局所刺激による細胞内シグナルの伝播メカニズムを解明 理化学研究所 ( 小林俊一理事長 ) は 細胞の局所刺激で生じたシグナルが 刺激部位に留まるのか 細胞全体に伝播するのか という生物学における基本問題に対して 明確な解答を与えま

ASC は 8 週齢 ICR メスマウスの皮下脂肪組織をコラゲナーゼ処理後 遠心分離で得たペレットとして単離し BMSC は同じマウスの大腿骨からフラッシュアウトにより獲得した 10%FBS 1% 抗生剤を含む DMEM にて それぞれ培養を行った FACS Passage 2 (P2) の ASC

60 秒でわかるプレスリリース 2008 年 2 月 4 日 独立行政法人理化学研究所 筋萎縮性側索硬化症 (ALS) の進行に二つのグリア細胞が関与することを発見 - 神経難病の一つである ALS の治療法の開発につながる新知見 - 原因不明の神経難病 筋萎縮性側索硬化症 (ALS) は 全身の筋

Untitled

<4D F736F F D F4390B388C4817A C A838A815B8358>

Microsoft Word - PR docx

植物が花粉管の誘引を停止するメカニズムを発見

論文の内容の要旨

報道発表資料 2006 年 6 月 5 日 独立行政法人理化学研究所 独立行政法人科学技術振興機構 カルシウム振動が生み出されるメカニズムを説明する新たな知見 - 細胞内の IP3 の緩やかな蓄積がカルシウム振動に大きく関与 - ポイント 細胞内のイノシトール三リン酸(IP3) を高効率で可視化可能

Transcription:

報道発表資料 前の記事 覧へ戻る 次の記事 2014 年 1 29 独 政法 理化学研究所 2014 年 7 2 付けで本論 は取り下げられました お問い合わせ受付体制の変更に伴い お問い合わせ先 欄の記載を2014 年 8 12 付けで 部修正しています 体細胞の分化状態の記憶を消去し初期化する原理を発 - 細胞外刺激による細胞ストレスが 効率に万能細胞を誘導 - この発表資料を分かりやすく解説した 60 秒でわかるプレスリリース もぜひご覧ください ポイント 細胞外刺激により体細胞を迅速に多能性細胞へ初期化する 法を開発 核移植も遺伝 導 も不要な多能性の獲得という新しいメカニズムを発 初期化された多能性細胞はすべての 体組織と胎盤組織に分化できる 要旨 [1] [2] [3] 理化学研究所 ( 理研 野依良治理事 ) は 動物の体細胞の分化の記憶を消去し 万能細胞 ( 多能性細胞 ) へと初期化する原理を新たに発 し それをもとに核移植や遺伝 導 などの従来の初期化法とは異なる 細胞外刺激による細胞ストレス によって 短期間に効率よく万能細胞を試験管内で作成する 法を開発しました これは 理研発 再 科学総合研究センター ( 市雅俊センター ) 細胞リプログラミング研究ユニットの 保 晴 研究ユニットリーダーを中 とする研究ユニットと同研究センターの若 照彦元チームリーダー ( 現 梨 学教授 ) および 国ハーバード 学のチャールズ バカンティ教授らの共同研究グループによる成果です 哺乳類の発 過程では 着床直前の受精胚の中にある未分化な細胞は 体のすべての細胞に分化する能 ( 多能性 ) を有しています ところが 後の体の細胞 ( 体細胞 ) は 細胞の個性付け ( 分化 ) が既に運命づけられており 液細胞は 液細胞 神経細胞は神経細胞などの 定の細胞種類の枠を保ち それを越えて変化することは [4] 原則的にはありません 即ち いったん分化すると 分の分化型以外の細胞を み出すことはできず 分化状態の記憶を強く保持することが知られています 今回 共同研究グループは マウスのリンパ球などの体細胞を いて こうした体細胞の分化型を保持している制御メカニズムが 強い細胞ストレス下では解除されることを いだしました さらに この解除により 体細胞は 初期化 され多能性細胞へと変化することを発 しました この多能性細胞は胎盤組織に分化する能 をも有 [5] し ごく初期の受精胚に られるような 全能性 に近い性質を持つ可能性が 唆されました この初期化現象は 遺伝 導 によるiPS 細胞 ( 多能性幹細胞 ) [6] の樹 とは全く異質のものです 共同研究グループは この初期化現象を刺激惹起性多能性獲得 (STAP) 初期化された細胞をSTAP 細胞と名付けました STAPの発 は 細胞の分化状態の記憶の消去や 在な書き換えを可能にする新技術の開発につながる画期的なブレイクスルーであり 今後 再 医学のみならず幅広い医学 物学に貢献する細胞操作技術を み出すと期待できます 本研究成果は英国の科学雑誌 Nature (1 30 号 : 本時間 1 30 ) に掲載されます 背景ヒトを含めた哺乳類動物の体は 液細胞 筋 細胞 神経細胞など多数の種類の細胞 ( 体細胞 ) で構成されています しかし 発 をさかのぼると 受精卵にたどり着きます 受精卵が分裂して多様な種類の細胞に変わり 体細胞の種類ごとにそれぞれ個性付けされることを 分化 と います 体細胞はいったん分化を完了すると その細胞の種類の記憶 ( 分化状態 ) は固定されます ( 図 1) 従って 分化した体細胞が 別の種類の細胞へ変化したり( 分化転換 ) 分化を逆転させて受精卵に近い状態 ( 未分化状態 ) に逆戻りしたりすること ( 初期化 ) は通常は起こらないとされています 動物の体細胞で初期化を引き起こすには 未受精卵への核移植 ( クローン技術 [7] ) や未分化性を促進する転写因 と呼ばれるタンパク質を作らせる遺伝 を細胞へ導 する (ips 細胞技術 ) など 細胞核の 為的な操作が必要になります ( 図 2) 植物では 分化状態の固定は必ずしも 可逆的ではないことが知られています 分化したニンジンの細胞をバラバラにして成 因 を加えると カルス [8] という未分化な細胞の塊を 然と作り それらは茎や根などを含めたニンジンのすべての構造を作る能 を獲得します しかし 細胞が置かれている環境 ( 細胞外環境 ) を変えるだけで未分化な細胞へ初期化することは 動物では起きないと 般に信じられてきました ( 図 2) 保 研究ユニットリーダーを中 とする共同研究グループは この通説に反して 特別な環境下では動物細胞でも 発的な初期化が起こりうる という仮説を て その検証に挑みました 研究 法と成果 保 研究ユニットリーダーは まずマウスのリンパ球を いて 細胞外環境を変えることによる細胞の初期化への影響を解析しました リンパ球にさまざまな化学物質の刺激や物理的な刺激を加えて 多能性細胞に特異的な遺伝 であるOct4 [9] の発現が誘導されるかを詳細に検討しました なお 解析の効率を上げるため Oct4 遺伝 の発現がオンになると緑 蛍光タンパク質 GFP が発現して蛍光を発するように遺伝 操作したマウス(Oct4::GFPマウス) のリンパ球を使 しました こうした検討過程で 保 研究ユニットリーダーは酸性の溶液で細胞を刺激することが有効なことを発 しました リンパ球を30 分間ほど酸性 (ph5.7) の溶液に れて培養してから 多能性細胞の維持 増殖に必要な増殖因 であるLIFを含む培養液で培養したところ 7 に多数のOct4 陽性の細胞が出現しました ( 図 3) 酸性溶液 [10] 処理で多くの細胞が死滅し 7 に き残っていた細胞は当初の約 5 分の1に減りましたが 存細胞のうち 3 分の1から2 分の1がOct4 陽性でした ES 細胞 ( 胚性幹細胞 ) [11] やiPS 細胞などはサイズの さい細胞ですが 酸性溶液処理により み出されたOct4 陽性細胞はこれらの細胞よりさらに さく 数 個が集合して凝集塊を作る性質を持っていました 次にOct4 陽性細胞が 分化したリンパ球が初期化されたことで じたのか それともサンプルに含まれていた極めて未分化な細胞が酸処理によっ

[12] て選択されたのかについて 詳細な検討を いました まず Oct4 陽性細胞の形成過程をライブイメージング法で解析したところ 酸性溶液処理を受けたリンパ球は2 後からOct4を発現し始め ( 図 3) 反対に当初発現していたリンパ球の分化マーカー(CD45) が発現しなくなりました また このときリンパ球は縮んで 直径 5ミクロン前後の特徴的な 型の細胞に変化しました (YouTube: リンパ球初期化 3 以内 ) 次に リンパ球の特性を かして 遺伝 解析によりOct4 陽性細胞を み出した 元の細胞 を検証しました リンパ球のうちT 細胞は いったん分化するとT 細胞受容体遺伝 に特徴的な組み替えが起こります これを検出することで 細胞がT 細胞に分化したことがあるかどうかが分かります この解析から Oct4 陽性細胞は 分化したT 細胞から酸性溶液処理により み出されたことが判明しました これらのことから 酸性溶液処理により出現したOct4 陽性細胞は 度 T 細胞に分化した細胞が 初期化 された結果 じたものであることが分かりました これらの Oct4 陽性細胞は Oct4 以外にも多能性細胞に特有の多くの遺伝 マーカー (Sox2 SSEA1 Nanogなど ) を発現していました ( 図 3) また DNAのメチル化状態もリンパ球型ではなく多能性細胞に特有の型に変化していることが確認されました 産 されたOct4 陽性細胞は 多様な体細胞へ分化する能 も持っていました 分化培養やマウス 体への 下移植により 外胚葉 ( 神経細胞など ) 中胚葉( 筋 細胞など ) 内胚葉( 腸管上 など ) の組織に分化することを確認しました ( 図 4) さらに マウス胚盤胞( 着床前胚 ) に注 してマウスの仮親の 宮に戻すと 全 に注 細胞が寄与したキメラマウス [13] (YouTube:100% キメラマウス _STAP 細胞 ) を作成でき そのマウスからはOct4 陽性細胞由来の遺伝 を持つ次世代の どもが まれました ( 図 5) これらの結果は 酸性溶液処理によってリンパ球から産 されたOct4 陽性細胞が 殖細胞を含む体のすべての細胞に分化する能 を持っていることを明確に しています 保 研究ユニットリーダーは このような細胞外刺激による体細胞からの多能性細胞への初期化現象を刺激惹起性多能性獲得 (Stimulus-Triggered Acquisition of Pluripotency; STAPと略する ) じた多能性細胞をSTAP 細胞と名付けました 続いて この現象がリンパ球という特別な細胞だけで起きるのか あるいは幅広い種類の細胞でも起きるのかについて検討しました 脳 膚 格筋 脂肪組織 髄 肺 肝臓 筋などの組織の細胞をリンパ球と同様に酸性溶液で処理したところ 程度の差はあれ いずれの組織の細胞からもOct4 陽性のSTAP 細胞が産 されることが分かりました また 酸性溶液処理以外の強い刺激でもSTAPによる初期化が起こるかについても検討しました その結果 細胞に強いせん断 を加える物理的な刺激 ( 細いガラス管の中に細胞を多数回通すなど ) や細胞膜に をあけるストレプトリシンOという細胞毒素で処理する化学的な刺激など 強くしすぎると細胞を死滅させてしまうような刺激を少しだけ弱めて細胞に加えることで STAPによる初期化を引き起こすことができることが分かりました STAP 細胞は胚盤胞に注 することで効率よくキメラマウスの体細胞へと分化します この研究の過程で STAP 細胞はマウスの胎児の組織になるだけではなく その胎児を保護し栄養を供給する胎盤や卵 膜などの胚外組織にも分化していることを発 しました ( 図 6) STAP 細胞をFGF4という増殖因 を加えて数 間培養することで 胎 [14] 盤への分化能がさらに強くなることも発 しました ES 細胞やiPS 細胞などの多能性幹細胞は 胚盤胞に注 してもキメラマウスの組織には分化しても 胎盤などの胚外組織にはほとんど分化しないことが知られています このことは STAP 細胞が体細胞から初期化される際に 単にES 細胞のような多能性細胞 ( 胎児組織の形成能だけを有する ) に脱分化するだけではなく 胎盤も形成できるさらに未分化な細胞になったことを 唆します STAP 細胞はこのように細胞外からの刺激だけで初期化された未分化細胞で 幅広い細胞への分化能を有しています で ES 細胞やiPS 細胞などの多能性幹細胞とは異なり 試験管の中では 細胞分裂をして増殖することがほとんど起きない細胞で 量に調製することが難しい があります 保 研究ユニットリーダーらは 理研が [15] 開発した副腎 質刺激ホルモンを含む多能性細胞 の特殊な培養液を いることでSTAP 細胞の増殖を促し STAP 細胞からES 細胞と同様の い増殖性 ( 複製能 [16] ) を有する細胞株を得る 法も確 しました ( 図 7) この細胞株は 増殖能以外の点でもES 細胞に近い性質を有しており キメラマウスの形成能などの多能性を す 胎盤組織への分化能は失っていることが分かりました 今後の期待今回の研究で 細胞外からの刺激だけで体細胞を未分化な細胞へと初期化させるSTAPを発 しました ( 図 8) これは これまでの細胞分化や動物発 に関する常識を覆すものです STAP 現象の発 は 細胞の分化制御に関する全く新しい原理の存在を明らかにするものであり 幅広い 物学 医学において 細胞分化の概念を きく変 させることが考えられます 分化した体細胞は これまで 運命付けされた分化状態が固定され 初期化することは 然には起き得ないと考えられてきました しかし STAPの発 は 体細胞の中に 分化した動物の体細胞にも 運命付けされた分化状態の記憶を消去して多能性や胎盤形成能を有する未分化状態に回帰させるメカニズムが存在すること また 外部刺激による強い細胞ストレス下でそのスイッチが ること を明らかにし 細胞の初期化に関する新しい概念を み出しました また 今回の研究成果は 多様な幹細胞技術の開発に繋がることが期待されます それは単に遺伝 導 なしに多能性幹細胞が作成できるということに留まりません STAPは全く新しい原理に基づくものであり 例えば ips 細胞の樹 とは違い STAPによる初期化は 常に迅速に起こります ips 細胞では多能性細胞のコロニーの形成に2 3 週間を要しますが STAPの場合 2 以内にOct4が発現し 3 には複数の多能性マーカーが発現していることが確認されています また 効率も 常に く 存細胞の3 分の1 2 分の1 程度がSTAP 細胞に変化しています で こうした効率の さは STAP 細胞技術の を表しているにすぎません 共同研究グループは STAPという新原理のさらなる解明を通して これまでに存在しなかった画期的な細胞の操作技術の開発を 指します それは 細胞の分化状態の記憶を 在に消去したり 書き換えたりする ことを可能にする次世代の細胞操作技術であり 再 医学以外にも 化やがん 免疫などの幅広い研究に画期的な 法論を提供します ( 図 8) さらに 今回の発 で明らかになった体細胞 の持つ内在的な初期化メカニズムの存在は 試験管内のみならず 体内でも細胞の若返りや分化の初期化などの転換ができる可能性をも 唆します 理研の研究グループでは STAP 細胞技術のヒト細胞への適 を検討するとともに STAPによる初期化メカニズムの原理解明を 指し 強 に研究を推進していきます 原論 情報 Haruko Obokata*, Teruhiko Wakayama, Yoshiki Sasai, Koji Kojima, Martin P. Vacanti, Hitoshi Niwa, Masayuki Yamato, Charles A. Vacanti* Stimulus-Triggered Fate Conversion of Somatic Cells into Pluripotency, Nature 2014, doi:10.1038/nature12968 (Article) Haruko Obokata*, Yoshiki Sasai*, Hitoshi Niwa, Mitsutaka Kadota, Munazah Andrabi, Nozomu Takata, Mikiko Tokoro, Yukari Terashita, Shigenobu Yonemura, Charles A. Vacanti and Teruhiko Wakayama* Bidirectional developmental potential in reprogrammed cells with acquired pluripotency Nature 2014, doi:10.1038/nature12969(letter)

* Corresponding authors 発表者独 政法 理化学研究所発 再 科学総合研究センターセンター 戦略プログラム細胞リプログラミング研究ユニット研究ユニットリーダー 保 晴 ( おぼかたはるこ ) お問い合わせ先発 再 科学総合研究センター国際広報室 Tel: 078-306-3310, 3092 / Fax: 078-306-3090 cdb-pr [at] cdb.riken.jp ( [at] は @ に置き換えてください ) 報道担当独 政法 理化学研究所広報室報道担当 Tel: 048-467-9272 / Fax: 048-462-4715 お問い合わせフォーム 産業利 に関するお問い合わせ 独 政法 理化学研究所社会知創成事業連携推進部お問い合わせフォーム このページのトップへ 補 説明 1. 体細胞動物個体の 体を構成する細胞で 殖細胞でないもの 液細胞や筋 細胞などの特定の機能 ( 個性 ) をもつ運命付けを受けている 着床前後の初期の受精胚には 体細胞とは違い 特定の細胞の種類への運命付けをされていない多能性細胞が存在し それらは体細胞とは呼ばれない 2. 多能性細胞 体を構成するすべての種類の細胞に分化する能 ( 多能性 ) を有する未分化な細胞 万能細胞とも呼ばれる 通常 外胚葉 ( 神経細胞など ) 中胚葉( 筋 細胞など ) 内胚葉( 腸管上 など ) の組織に分化できるかを検証して 多能性の有無を る より厳密な検証には キメラ胚の形成能を確認する 3. 初期化分化した体細胞の核には その分化状態に応じた記憶が書き込まれている それらは 核のDNAのメチル化などの化学修飾やDNAに結合するタンパク質の種類の変化などによって制御されることが知られ エピゲノム修飾やエピゲノム メモリーなどと表現される そのため 体細胞から多能性細胞などの未分化細胞に分化を逆戻りさせることを こうした核の記憶の初期化 ( コンピューターの記憶ディスクの初期化と似た意味で ) と呼ぶ 4. 分化状態の記憶体細胞は 旦分化を完了すると その細胞の種類の記憶 ( 分化状態 ) は固定され, 運命付けされた分化状態 ( 液細胞 筋細胞など ) を強く保持する たとえば 体の 臓から細胞を取り出してシャーレのなかで培養しても 筋細胞は 筋細胞ままで 分化状態は保持される 即ち 細胞は 分が何の細胞であるかという記憶を保持していることが判る これを分化状態の記憶 ( メモリー ) と う 5. 全能性ほ乳類の初期の受精胚の細胞に られる多能性 ( 胎児のすべての体細胞へ分化できる能 ) とともに胎盤組織にも分化できる能 をもっている未分化な状態 6. ips 細胞 ( 多能性幹細胞 ) 膚細胞などの体細胞に遺伝 Oct4, Sox2, Klf4, L-Myc( 中因 とも呼ばれる ) などを導 して初期化し 多能性を持たせた 的な多能性幹細胞 ES 細胞とほぼ同じ性質 能 を持つ 7. クローン技術体細胞の核を除核した卵細胞のなかに移植することにより 体細胞由来の遺伝情報を持った胚を作成する技術 アフリカツメガエルで最初にこれを成功させた英国のジョン ガードン卿は 2012 年にノーベル医学 理学賞を受賞した 哺乳類のクローン動物は 英国のイアン ウルムート博 らが で 理研発 再 科学総合研究センターの若 照彦元チームリーダー ( 現 梨 学教授 ) とハワイ 学の柳町隆造教授らがマウスで初めて成功した 8. カルスニンジンや 根をはじめとする 等植物の分化細胞を分散するなどしたものを オーキシンなどの植物ホルモンを含む培養液を いて培養した時に じる未分化な細胞塊 細胞が脱分化するため 未分化の状態になると考えられている 活発に増殖しながら 徐々に再分化して 茎 葉 根などの植物の構造を 組織化する 9. Oct4 遺伝 ES 細胞などの多能性細胞の未分化性を決定する転写因 であり 多能性のマーカータンパク質を作る遺伝 ips 細胞の樹 にも必須の因 である 10. 酸性溶液処理古くからの発 物学研究で 酸処理の細胞分化への影響は検討されたことがある アメリカの発 学者ホルツフレター博 は 1947 年に両 類胚の細胞を酸処理すると神経分化が強く引き起こされる現象を報告している しかし 酸処理により未分化細胞へ初期化したという報告はこれまでにない

11. ES 細胞 ( 胚性幹細胞 ) ほ乳類の着床前胚 ( 胚盤胞 ) に存在する内部細胞塊から作製した細胞株で 体を構成するすべての種類の細胞に分化する能 ( 多能性 ) を有するもの マウス サル ヒトなどから樹 されており マウスのES 細胞を初めて樹 したマーチン エバンス卿 ( 英国 ) らが2007 年にノーベル賞医学 理学賞を受賞した 12. ライブイメージング法細胞を きたまま 時間培養しながら顕微鏡で観察する技術 GFPなどの蛍光タンパク質をレポーターにして 細胞の状態をリアルタイムに観察することができる 13. キメラマウス 2 種類以上の異系統のマウスの胚を融合させて作るマウスをキメラマウスと呼ぶ 今回の研究では 胚盤胞などの着床前胚に Oct4 陽性細胞を細いガラス針で微量注 し 胚に取り込ませた そして その胚を仮親のマウスの 宮に戻して着床させ 発 させた 細胞が多能性を持つ場合のみ 注 された細胞はマウス胎児の全 に取り込まれるので 多能性の検証に いられる 14. 多能性幹細胞試験管内で培養して無限に増殖する能 ( 複製能 ) を持つ多能性細胞 増殖して増やせる上 体のさまざまな細胞に分化誘導できるため 再 医療の材料としての利 が期待されている 15. 副腎刺激ホルモンを含む多能性細胞 の培養液理研発 再 科学総合研究センターの丹 仁史プロジェクトリーダーが開発した 効率なマウスES/iPS 細胞の維持培養のための培地 既に市販されている 広く使われているES/iPS 細胞の維持培養培地に べて 維持培養の効率に優れ 低密度に細胞を蒔いた場合にも多くの細胞コロニーが えてくることが報告されている 16. 複製能細胞が分裂を繰り返して 分の複製を作り続ける能 細胞は分裂した場合でも 必ずしも 分 の複製ではなく 分裂した結果 他の細胞へと分化が進むことも多い 幹細胞は 細胞が分裂を繰り返しながら 分と同じ細胞を作り続ける必要があり 幹細胞の特徴の1つとされる STAP 細胞は 樹 された条件下には分裂能が低く そのままでは幹細胞とは呼べないが 副腎刺激ホルモンを含む多能性細胞 の培養液で培養することで 複製能を獲得して STAP 幹細胞という状態に変わることができる このページのトップへ 図 1 多能性細胞と体細胞 成体に られる体細胞は 特定の細胞種へ分化が進んだ細胞であり その分化状態については固定されている 初期胚に存在する内部細胞塊は未分化で 成体に存在する全ての細胞へ分化する能 ( 多能性 ) を有している ES 細胞 ips 細胞は多能性を持つ幹細胞である

図 2 細胞の分化状態の初期化に関する従来の考え 従来の考えでは 動物細胞の分化状態を未分化な多能性の状態へ初期化するのは 細胞核の未受精卵への移植 ( クローン技術 ) か多能性に関係する複数の転写因 の強制発現 (ips 細胞技術 ) のように 細胞核の 為的な操作 が必要と考えられていた しかし 植物では細胞外環境を変えることで 分化した細胞から未分化な細胞塊 ( カルス ) を作ることができることが知られている 図 3 体細胞刺激による体細胞から多能性細胞への初期化 分化したリンパ球のみを分離した上 酸性溶液で刺激することで 2 以内に初期化が開始し 多能性マーカー (Oct4::GFP) の発現が認められた 7 後にはそれらの細胞は 細胞塊を形成した

図 4 STAP 細胞は多能性 (3 胚葉組織への分化能 ) を持つ STAP 細胞は 試験管内の分化系 ( 上図 胚葉体形成法など ) でも マウスの 下移植による奇形腫形成法でも 外胚葉 中胚葉 内胚葉組織への分化が確認された 図 5 STAP 細胞はキメラ形成能を有する STAP 細胞は 胚盤胞 ( 着床前胚 ) に移植することで キメラマウスの多様な組織の細胞を み出し さらに 殖細胞形成にも寄与する 胎盤のみ形成し 胎仔を形成できない宿主の胚盤胞を いた場合 注 されたSTAP 細胞のみから胎仔全体を形成することも された

図 6 STAP 細胞は胎仔のみならず胎盤の形成能も有する 胚盤胞に注 された STAP 細胞は キメラマウスの胎仔部分のみならず 胎盤や卵 膜などにも分化していることが分かった 図 7 増殖性の い幹細胞 (STAP 幹細胞 ) の樹 試験管内の培養ではSTAP 細胞の増殖能が低いが ACTH( 副腎 質刺激ホルモン ) を含む培養液で数 間培養することで 増殖能の い幹細胞 (STAP 幹細胞 ) へ転換される

図 8 研究成果のまとめと今後の展望 今回発 されたSTAPによる初期化は 全く従来は想定していなかった現象である その原理の解明は 幹細胞や再 医学のみならず幅広い医学 物学研究に変 をもたらすことが期待される さらに ヒト細胞への技術展開も今後の課題 このページのトップへ 理化学研究所 351-0198 埼 県和光市広沢 2-1 Tel: 048-462-1111( 代表 ) / Fax: 048-462-1554 Copyright RIKEN, Japan. All rights reserved.