Similar documents
N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

本文/目次(裏白)

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

第86回日本感染症学会総会学術集会後抄録(I)


Z: Q: R: C: sin 6 5 ζ a, b

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0



tnbp59-21_Web:P2/ky132379509610002944

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

2000年度『数学展望 I』講義録

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

抄録/抄録1    (1)V

四変数基本対称式の解放

研修コーナー

パーキンソン病治療ガイドライン2002

: ( ) : ( ) :! ( ) / 32


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

重力方向に基づくコントローラの向き決定方法

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

TOP URL 1

all.dvi

Gmech08.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

TOP URL 1

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

nsg02-13/ky045059301600033210

QMII_10.dvi

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

all.dvi

85 4

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

limit&derivative

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

基礎数学I

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

数学Ⅱ演習(足助・09夏)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

陦ィ邏・2

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

: , 2.0, 3.0, 2.0, (%) ( 2.

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)


CVMに基づくNi-Al合金の

B

GJG160842_O.QXD

°ÌÁê¿ô³ØII

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

量子力学 問題

日本内科学会雑誌第102巻第4号

prime number theorem

30

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

Chap9.dvi

untitled

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

第1章 微分方程式と近似解法

nsg04-28/ky208684356100043077

2011de.dvi

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

Mathematical Logic I 12 Contents I Zorn

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

プリント

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

meiji_resume_1.PDF

koji07-01.dvi

arxiv: v1(astro-ph.co)

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Xray.dvi

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

DVIOUT-HYOU

Dynkin Serre Weyl

エジプト、アブ・シール南丘陵頂部・石造建造物のロータス柱の建造方法

Transcription:

Banach-Tarski Hausdorff May 17, 2014

3 Contents 1 Hausdorff 5 1.1 ( Unlösbarkeit des Inhaltproblems) 5

5 1 Hausdorff Banach-Tarski Hausdorff [H1, H2] Hausdorff Grundzüge der Mangenlehre [H1] Inhalte von Punktmengen Lebesugue Jordan (pp.399-). [H1]pp.469 Hausdorff [H2] [H1, H2] Hausdorff 1. Hausdorff 2. Hasdorff 3. + 1.1 ( Unlösbarkeit des Inhaltproblems) 1.1.1 Hausdorff K (α) (β) f(k) = 1 (γ) f(a + B) = f(a) + f(b)

6 1 Hausdorff K (α),(β),(γ) f(k) K Q A, B, C A, B, C A B + C ( Q Q 0 f f(q) 1 nf(k) n = 1, 2, 3... F (A) > 0 K = Q + A + B + C F (A) = 1 2 f(k) = 1 3f(K) 1.1.2 φ π φ 2 3π ψ : (G) 1 φ, ψ, ψ 2 φψ, φψ 2, ψφ, ψ 2 φ φ 2 = ψ 3 = 1 [ ]φ ψ φ, ψ, ψ 2 α, β, γ, δ m 1, m 2,..., m n 1 2 α = φψ m 1 φψ m2 φψ m n β = ψ m 1 φψ m2 φψ m n φ γ = φψ m1 φψ m2 φψ mn φ δ = ψ m1 φψ m2 φψ mn α, β, γ, δ 1 φ, ψ α 1 β = 1 φβφ = α = 1 γ = 1 φγφ = δ = 1 δ = 1 ψ m1 δψ m1 = α = 1 [ ] α 1 1.1.3 α 0.ψ z

1.1. ( Unlösbarkeit des Inhaltproblems) 7 (ψ) (φ) (φψ) λ = cos 2 3 π = 1 2, µ = sin 2 3 π = 3 2, x = xλ yµ y = xµ + yλ z = z x = x cos ϑ + z sin ϑ y = y z = x sin ϑ + z cos ϑ x = xλ cos ϑ + yµ + xλ sin ϑ y = xµ cos ϑ yλ + zµ sin ϑ z = x sin ϑ + z cos ϑ (φψ 2 ) (φψ) µ, µ ϑ/2 α φψ φψ 2 n α = αφψ α = αφψ 2 φψ φψ 2 n + 1. 0, 0, 1 α x, y, z α (φψ) (φψ 2 ) x, y, z α = αφψ 2 α = αφψ µ µ x sin ϑ, y sin ϑ (n 1) cos ϑ z cos ϑ n x = sin ϑ(a cos ϑ n 1 +...) y = sin ϑ(b cos ϑ n 1 +...) z = c cos ϑ n +... n = 1 0, 0, 1 φψ φψ 2 λ sin ϑ, ±µ sin ϑ, cos ϑ n n + 1 x, y, z φψ φψ 2 x = sin ϑ(a cos ϑ n +...) y = sin ϑ(b cos ϑ n +...) z = c cos ϑ n+1 +... a = λ(c a), b = ±µ(c a), c = c a, c a = (1 λ)(c a) = 3 (c a), 2 c a = ( 3 2) n.

8 1 Hausdorff α 0, 0, 1 z ( ) n 1 3 z = cos ϑ n + 2 ϑ 1 1 = ( ) n 1 3 cos ϑ n + 2 cos ϑ (n 1) cos ϑ k cos ϑ 1 ( ) 3 n 1 cos ϑ n + 2 1.1.4 (G) A, B, C (G) A, B, C 1. A 1. 2. ρ A ρφ A + B 3. ρ A ρψ, ρψ 2 B, C 1 A φ, ψ B ψ 2 C ψ n ψ ψ 2 φ, ψ, ψ 2 n φ n φ φ, ψ, ψ 2 n φ n, ψ n n + 1 ψ n A, B, C ψ n φ B, A, A φ n A, B, C φ n ψ B, C, A φ n ψ 2 C, A, B (G) A 1 ψφ, ψ 2 φ, φψ 2 φψφ B φ, ψ φψ 2 φ, ψφψ, ψ 2 φψ C ψ 2 φψ ψφψ 2, ψ 2 φψ 2

1.1. ( Unlösbarkeit des Inhaltproblems) 9 1.1.5 ) ) Q 0 K = P + Q P x (G) x, xφ, xψ, xψ 2, P x P x,p y P x x M = {x, y,...} P = M + Mφ + Mψ + Mψ 2 +... P A, B, C P = A + B + C, A = M + Mψφ + Mψ 2 φ + Mφψ 2 + B = Mφ + Mψ + C = Mψ 2 + Mφψ + Aφ = B + C, Aψ = B, Aψ 2 = C. A, B, C, B + C

11 Bibliography [B1] S.Banach Sur Plobléme de measure,findamenta Mathematicae 4,pp.7-33(1923), Banach pp.66-89 http://matwbn.icm. edu.pl/ksiazki/fm/fm4/fm412.pdf [B2] S.Banach Un Théorème sur les translations biuniques,findamenta Mathematicae 6, pp.236-239(1924) Banach pp.115-117 http://matwbn.icm.edu.pl/ksiazki/fm/fm6/fm6125.pdf [BT] S.Banach et A.Tarski, Sur la décomposition des ensembles de points en parties respectivement congruentes,findamenta Mathematicae 6 pp.244-277(1924), Banach pp.118-148 http://matwbn. icm.edu.pl/ksiazki/fm/fm6/fm6127.pdf [H1] Felix Hausdorff Grundzüge der Mangenlehre Leipzig 1914 [H2] Felix Hausdorff Bemerkung über den Inhalt von Punktmengen. Mathematische Annalen 75 (1914), pp.428-434 http://gdz.sub.uni-goettingen.de/index.php?id=11&ppn= PPN235181684_0075&DMDID=DMDLOG_0033&L=1 [S1] 1988 [S2] 2009 [W] Stan Wagon, The Banach-Tarski Paradox,Cambridge Univ. Press 1985 Paper back 1993