prime number theorem

Size: px
Start display at page:

Download "prime number theorem"

Transcription

1 For Tutor MeBio ζ Eite by kamei

2 MeBio : Bernoulli Bernoulli 4 Bernoulli Bernoulli Γ 8 Γ Γ Γ ζ 4 ζ ζ Laurent ζ ζ ζ Chebyhev von Mangolt ψ ϑ B A Re Wiener ζ 49 Jenen Haamar ζ Π Möbiu Π ζ

3 MeBio :

4 MeBio : 4 BernoulliBernoulli k k +, k k + + 6, k k k 9 k n n + B n+ + B n+, J.Bernoulli B n Bernoulli k B n Bernoulli ζ k Bernoulli n Bernoulli B n n B n n! u n ueu e u ue u e u + u + u + 3 u u u + u 6 + u3 4 + u4 + + u + u + 3 u u u + + u u u + u4 7 + u u B, B, B + 6, B B n n +, B n Bernoulli B n n B n n! u n u e u

5 MeBio : Bernoulli Bernoulli 5 B n B n B, B, B 6, B 3, B 3 3 Bernoulli Bernoulli Bernoulli Bernoulli 3 B n n B n n! n nc k B n k k k u n u e u eu l B l l! u l k k k! u k n n k B n k k n k!k! un Σ Bernoulli Bernoulli Bernoulli ζ 4 B Bernoulli B 6, B 4 3, B 6 4 Bernoulli n n B n n! B n n! u n u e u n u n { n } u ueu e u B n n! u n u 3 ζm m π m m! u e u ueu e u ueu e u B m ζm > 5 n, k n n B n + B n n! k u n ue+u e u n + B n+ + B n+ ueu e u ueu e u e u ue u n n u n+ n! u n+ B n+ + B n+ n +! n n! k n k k B n+ k + B n+ k n + B n+ + B n+ n + B n+ + B n+ n + k 3 B 4 B 4 4 k

6 MeBio : Bernoulli Bernoulli 6 Bernoulli n k 9 B Bernoulli k Bernoulli n B n+ n + B n B n n! u n ueu e u n B n n! u n u e u e u n B n n! u n+ u n+ B n+ n + B n + C n > B n B n k n k n + B n+ B n+ B n B n+ B n+, B n+ B n+ B n+ B n+, B n+ B n 3 a B B + B, B B + B 3 3 b B 3 B B B 6 B + 6 a B + 6 B B 33, B B 3 + B 4 4 b B 4 B B 3 B 3 B B n B B n B n+ B n+ b B n B n [, ] Euler Maclaurin B n a []f n

7 MeBio : Bernoulli Bernoulli 7 B B + 6 B B B B B k 9 k

8 MeBio : 8 Γ Γ Γ > Γ e > Γ + Γ Γ n Γn + n! Γ Re > Γ Γ + Γ Γ n n n! lim Γ Euler, Gau Im ± Γz 5! ! z z! lim n n zz + z + n nz lim n Γz n zz + z + n nz Euler, Gau Γz lim n n zz + z + n nz 3 Weiertra z Γz zeγz n + z n e z n

9 MeBio : Γ 9 Γz z,,, Γz 3 Γ Γ π B B, y t t y t B, y ΓΓy Γ + y y 3 3 Γ + y Γ3 B, 3 3 π 3 Γ Γ Γ π π! fz ΓzΓ z fz + Γz + Γ z π 8 fz in πz z,,,,,, zγz Γ z z f π f lim z fz z in πz z π co πz z π lim z zγzγ z fz lim z π Γ Γ + zγ z Γ ΓzΓ z in πz π { ΓzΓ z Γz zγ z ze γz z n z z n n + z n in πz π } { e z n ze γz n z n } e z n Γz z,,, 3, Γz z,,, Γ z + z, 3, Γz ΓzΓ z +

10 MeBio : Γ fz ΓzΓ z + f z + Γ z + Γz + Γ z + zγz zfz Γ z + Γz + zγz fz Γz z ΓzΓ z + k z Γz z π k k π 3 Gau, Legenre ΓzΓ z + lim n lim n lim n ΓzΓ z + Γz n! n z zz + z + n n!n! n! n!n! n! n n z n n z π z Γz z + z + 3 n! n z n! n z zz + z + z + n n z n z n n z n z + n Stirling n! n πn e ΓzΓ z + Γz lim n n!n! n! n n! n!n! n πn n z n π z 3 Γ Γz z z ΓzΓ z + n Γ z + n n n π n n nz Γnz

11 MeBio : Γ {z C ΓZ } {z C ΓZ } lim Γz +, lim Γz + Γz R + z + z + Γ Riemann z.4663 ± + σ lim Γσ + τi Γz τ ± i i, + i +i R +,,

12 MeBio : Γ Γz Γz Tailor z Γz fz Γz ze γz n + z n z + γz + γ z n e z n + γ3 z γ4 z γ5 z z z n + z3 3n 3 z4 8n 4 + z5 3n 5 z6 44n 6 + z + γz + γ z ζ γ z + γz + γ γ ζ 4 + γ3 z 3 6 z + ζ3 3 ζ + γζ3 3 + γ4 z γ5 z 5 + z 3 + ζ ζ4 z 4 6ζ5 5ζζ3 + z γ z γζ + ζ3 z 4 3 z 5 + ζ ζ4 8 γ 5 + γ3 ζ + γ ζ3 + γζ ζ γ z + γ z π z 3 γ 3 π γ + 4 ζ 3 z γ 5 π γ ζ 3 γ + π 4 γ 4 ζ 3 π + 88 ζ 5 z ζ5 5ζζ3 + z γ 4 6 π γ + 48 ζ 3 γ + π 4 z z z z 3.463z z z 6 + fbi bi.57756b b 3 i.463b b 5 i b b.463b b b b b 5 + i b fbi b b 6 ± lim fz c c a + ai z

13 MeBio : Γ 3

14 MeBio : 4 3 ζ ζ Euler in πz in πz πz z Taylor z n n ζn ζ π 6 n, ζ4 π4 9, ζ6 π6 945 m ζm m π m m! B m ζ in πz πz z n n π cot πz z + n z n z n { z + z n n z n m m } z ζm + z m+ m z πz cot πz ζm + z m+ ζmz m m m πz cot πz πz co πz in πz πz e πiz + e πiz e πiz e πiz i πiz + e πiz πiz + πiz e πiz Bernoulli u e u k B k k! u k πz cot πz πiz + πiz e πiz πiz + k B k k! πiz k ζmz m πiz+ m ζm k B k k! πiz k B, B, B 3 B 5 B 7 B m m! πim ζm m π m m! B m

15 MeBio : 3 ζ 5 ζ 3 partial ζ ζ an n a mo N n Hurwitz ζ ζ, n n + a ζ a ζ, ζ, ζ L, χ 3 ζ, a N N χaζ an a N ζ an 3 Re σ > Γζ, e t t t e t n n t + n + n t t e +nu u u u u n t + n e u e u u u u,,,, σ > Bernoulli ue u e u n B n n! u n ue u e u n B n n! u n σ >

16 MeBio : 3 ζ 6 e u e u u u u ue u e u u u ue u e u u u n B n n! u n u u n n B n n! B n n! n u n+ u n [ u n+ n + ] n B n n! n n + ue u e u π lim up n n Bn n! π B n n! n O π + ε Γζ, Γ ζ, e u u e u u u n B n n! n n +,,, n B n n n! Γ n n n! 3 3 ζ n, n B n ζ, ζ, B n B n 3 4 ζ ζ m ζ Bernoulli ζ m m B m ζ, ζ, ζ 3, ζ 5 5, ζ 7 4, ζ 9 3, ζ , ζ 3 ζ m n m.. lim m {B m B m }.. m B m

17 MeBio : 3 ζ Riemann Γζ u e u u u + + i +δ + i +δ i + i C C u u + i e log u u i e log u+πi e πi u Im nπi 4πi O πi C C n Re πi 4πi nπi u σ > C u e u u e πi u e u u + u e u u e πi u e u u σ > ζ e πi Γζ C u e u u e πi e πi e πi e πi ie πi in π ΓΓ ζ πi e πi Γ C u e u u in π π

18 MeBio : 3 ζ z Riemann z fz e z z R 3 7 C u e u u u log fu u e u u, 3, Γ C,, 3, > ζ > πi Γ ζ 3 8 ζ ζ Γ + n z n n ζ n πi e z z n log C z n C πi Γ + n ζ n πi C n! πi C n n! πi n C k z n e z B k k! z z e z z n z z k n z k n k n + n n! πi n B n+ n + πi B n+ n +! 3 9 ζ ζ m ζ Bernoulli ζ m m B m 3 ζ πi e πi Γ C u e u u

19 MeBio : 3 ζ 9 C u e u ζ, 4, 6, 8, Γ,, 3, 4, 5, u e u u, 6, 4,,, 3, 4, 5, C u C u e u u C u e u u u C k B k u k k! u u C k B k k! u k+ u log u B, 6, 4,,, 3, 4, Bernoulli B k k ζ n + n + + n + + n n n n n n + n k + ζ + k + ζ ζ + + k k k n k k k k n ζ + k k lim ζ ζ ζ n + + n n + n n n n k + + n + + n k k n k n k k n + + ζ + k + + ζ ζ + + ζ + k k k k k ζ k k ζ + k k k ζ + k k Re > σ > ζ Re > Γ k

20 MeBio : 3 ζ 3 ζ ζ 3 ζ 4 ζ 3 Laurent γ lim N N n n log N Euler lim ζ Euler Maclaurin γ 3 3 a<n< b f C fn b a f + b a [] f + a [a] fa b [b] fb f ρ B [] [] Riemann Stieltje fn a<n< b b a b a b a b a f[] f ρ f b a fρ... f [ fρ ] b b + f ρ a a ζ σ Re > ζ n n [] + + [] [ [] ] [ ] [] [] +

21 MeBio : 3 ζ [] Re > ζ Re > lim ζ lim N lim N lim N lim N lim N lim N { { { { { + [] N N log N + N log N + log N log N log N + + [] + k+ k k k+ k N k N k N k k [ k ] k+ k [] } [ ] N } k N + N k k + k k k + N lim + N + + N log N N γ } N } } ζ + γ + O lim ζ γ 3 3 Euler Maclaurin a<n< b fn b a + f fa + fb + K k +! b a k B k k! B k+ [] f K+ f k b f k a ζ Re > K K 4 ζ ζ ζ Laurent ζ + γ + γ m m γ m Euler m

22 MeBio : 3 ζ { C ζ } { C ζ } Re Re > lim ζσ + iτ σ Riemann

23 MeBio : 3 ζ 3 ζ , ζ σ

24 MeBio : 4 4 ζ ζ ζ π Γ co π ζ 4 Riemann ζ πi e πi Γ C u e u u Im nπi 4πi O πi C C n Re πi 4πi nπi + +i n+π +i n+π n+π i + i C n u πki k ±kπi k,,, n kπi πi Cn u e u u πi C u n e u u + { kπi + kπi } k Re σ < n Σ ζ

25 MeBio : 4 ζ 5 Cn u e u u eu n u + n + πi e u.. e +n+πi e +.. n e u O u n + σ u πn + u Cn e u u On + σ Σ C { kπi + kπi } k k k } {kπ e πi + kπ e 3πi {kπ } e πi e πi + e πi π e πi e πi + e πi π e πi π co ζ π e πi in π ζ k k ζ πi e πi Γ C πi e πi Γ πi π in π u e u u { π e πi in π } ζ Γ ζ ζ π Γ co π ζ ζ 3, 5, 7, 9, Γ,,, 3, 4, 5, co π, 5, 3,,, 3, 5, ζ, 4, 6,

26 MeBio : 4 ζ 6 4 ζ ˆζ ˆζ π Γ ζ ˆζ ˆζ ˆζ ˆζ ˆζ ˆζ ζ, 4, 6,,, 4, Γ, ζ Γ π Γ co π ζ ζ π ΓΓ Γ co π Γ ζ Γ + Γ Γ ζ Gau, Legenre π Γ Γ ζ π Γ Γ Γ π Γ π + co π Γ co π Γ ζ ζ + Γ Γ in π π π co π Γ π Γ ζ π Γ ζ π Γ ζ π ζ π Γ ζ ˆζ ζ < Re < Re ˆζ ρ ρ, ρ, ρ ζ ρ ˆζ ρ ρ ρ

27 MeBio : 4 ζ 7 4 Jacobi > ϕ e πn ϕ ϕ n Z e πn e πn n Z n Z e πt t ft n Z e πn+t Fourier ft n Z e πn+t m Z a m e mπit a m a m fte mπit t mi πt+ e πm n Z t e πm e πn+t e mπit t e πt t e πm e πt e mπit t ft n Z e πn+t m Z e πm e mπit t Poion Whittaker, Waton p.4 fz + N + e πz e πiz z n + i N + πi e πn fz C : N + + i N i N i + N + i ϕ + i i e πz + +i e πiz z e πz +i e πiz z Imz e πiz e π > + i i + i i + i n e πz + i e πiz z i e πz e πiz e πiz z e πz e πiz + e πiz + e 4πiz + e 6πiz + z i n e πz πniz z e πn n + i ni πz πn i e z n e πn + i ni πz i e z

28 MeBio : 4 ζ 8 Imz e πiz e π < + +i +i + +i +i + i n e πz + +i e πiz z +i e πz z eπiz e πz + e πiz + e 4πiz + e 6πiz + z i n e πz +πniz z e πn n + i ni πz+ πn i e z n e πn + +i ni πz+ +i e z θz θz e πinz ϕ n z i ϕ ϕ ϕ , ϕ , ϕ ϕ 4 ϕ ϕ ϕ y ϕ

29 MeBio : 4 ζ ζ ˆζ π Γ ζ ˆζ ˆζ ψ e πn Chebyhev ϕ ψ + n Jacobi ψ + ψ ˆζ π Γ π π π + ψ ζ e t t n t t e t t n n e πn π n ψ ψ + n t t ψ ψ + t πn

30 MeBio : 4 ζ 3, ψ ψ ψ + ψ + ψ ψ ψ + + [ ] [ + ] ˆζ ψ + ψ ˆζ ˆζ < < 4 ζ ζ Bernoulli m ζm m π m m! B m ζ m m B m ζ m πm Γm co π m ζm π m m! m ζm ζm πm m! m ζ m m π m m! B m

31 MeBio : 3 5 π π log Gau Haamar, e la Valée Pouin 896 {S n } n S n n S n a k a k >, lim S n S n n k { n a n δ[π]n n 5 {a n} Dirichlet f A g f S n< a n A a n n A a n n a n > Re > n Re > a n n ζ ζ n Re > S [] n a k Dirichlet k a n n δ[π]n π p + Re n δ[π]nn p n p p log ζ Re > n πn δ[π]k δ[π] π k

32 MeBio : p p log ζ log π log p log p log { log p n a n δ[π]n log n n λn log p Chebyhev ϑ λn p< λn Dirichlet Φ n log p p p n Re > ϑ Chebyhev ψ von Mangolt Λn ψ ϑ ψ 5 a n S S n< a n f a n n Sn Sn n Snn Snn + n n n Snn n + Sn S n n n+ n n n n+ n S S O S f A g f A S Re > Re > S A a n S a n f a n Dirichlet a n f n S n a n A B A f S f + + A S A + < < S [, f S Mellin

33 MeBio : 5 33 Re > A 5 3 A 3 g g g + lim + Re > g S O S Re > lim + A g S A + S A S A + Re > S A A Laplace e t g + ge t e t t e t t ge t e t t ge t It It fe t e t A 5 5 A It It LI Ite t t Re > Re > LI lim lim T T Ite t t lim T T It t lim lim T T Ite t t It t, lim LI It t 5 6 B S A S S A Chebyhev ϑ, λn, Chebyhev ψ, von Mangolt Λn ψ ψ log p mi i p i < ϑ.. π log 3 A B

34 MeBio : ψ 4 ψ L [ψe t e t ] 5 L [ψe t ] ψ B ψe t e t t ψe t e t e t t Re > A ψe t e t t ζ ζ 3 ζ Re Re ζ Re lim + L[ψe t e t ] ψe t e t e t t ζ ζ + ψe t e t e t t + ψe t e t t ψ ζ ζ + ψe t e t t Laplace Tauber lim L[It] Newman ψe t e t e t t Re > It t A Wiener 3 Chebyhev von Mangolt 5 3 > n Chebyhev ϑ ϑ log p p< ϑ ϑ log ϑ Chebyhev ψψ log{l.c.m,,, [], []} ψ log ψ 94.4 ψ ϑ ψ ψ ϑ k ϑ + ϑ + ϑ 3 + k ϑ ψ

35 MeBio : von Mangolt ΛnΛn { log p n p m p : Λn Chebyhev Λn ψn ψn Λn Dirichlet ζ ζ ζ ζ n Λn n p, m log p p m 4 λnλn { log p n p p : λn Chebyhev λn ϑn ϑn λn Dirichlet Φ Φ n λn n p log p p ζ ζ Re > n 5 Möbiu µnµn n p p p r n 6 Euler φnφn #{k k >, k, n } 5 3 Möbiu fn, gn fn n g gn n n µ f fn, gn { n µ n \ n { n n \ fn n, gn φn n n n g φ φn n n µ 3 fn log n, gn Λn n Λ log n, n n µ log Λn ζ n Möbiu µn Euler µn n µn Dirichlet ζ ζ p p p µ + µpp + µp p + n µn n

36 MeBio : 5 36 fn, gn, hn Dirichlet F H n hn n H F G hn n n n fg fn n, G n gn n, fn n gn n g F ζg, n µ f G ζ F ζ ζ n Λn n log n n Λ Dirichlet ζ ζ ζ log n n log ζ p Λ Λn n log p n µ m, p n Λn n n log mp m log n n n ζ n Λn n ζ Λn n n log n n ζ ζ p p log p p p + p + log p log p p p p Λp p + Λp p + Λp3 p 3 + p n + log p p Λn n + log p p ψ ϑ ψ ϑ 5 4 ϑ O Zagier n < p < n n C n + n n nc k > nc n > k n<p< n p e ϑn ϑn

37 MeBio : 5 37 ϑn ϑn < n log 4 ϑ ϑ < ϑ [] + log ϑ [] < [] log 4 + log < log 4 + ϑ ϑ < log 4 + ϑ ϑ < 4 log 4 + ϑ < log 4 + ϑ O 5 4 ψ π log [, ] [, w] w, ] w ψ log m 3 m p π m π < π log... m i, p i i < < log p πw log + log w log < < w<p< πw log + log log w w<p< πw log + log log w ψ log p ψ π log πw log < < + log log w ψ πw log w log log w w log ϑ π log ϑ p< log p < log π log p< ϵ ϑ > ϵ <p< log p > ϵ <p< ϵ log ϵ π π ϵ log ϑ ϵ > π π ϵ log π log < ϵ ϑ + π ϵ log π ϵ < ϵ π log < ϵ ϑ + log ϵ

38 MeBio : 5 38 ϑ < π log < ϵ ϑ + log ϵ ϑ, log ϵ < lim π log < ϵ ϑ ψ ϑ ϑ < M M n > log /n < ϑ /n log < N < + log N ψ ϑ + ϑ / + ϑ /3 + + ϑ /N < ϑ + M / + M /3 + + M /N < ϑ + M / log N N N < log ϑ < ψ < ϑ + M log / ψ ψ < M M ϑ < ψ ϑ < M ψ M log / < ϑ < ψ 5 B 5 5 B S S ϑ ψ S lim up S k S k k > λ lim up S > S k > λ k λ λ u u u S S > λ > < < > λ S [ k, λ k ] λk k S > λk k λ log λ lim up k S λ k < λk k S λ λ k k u k u k u k 4 ψ > ϑ 3 ψ

39 MeBio : 5 39 λ k y S y λ y k λ k lim inf k S k k S < λ lim inf S < λ < < < < λ S [λ k, k ] S < S k < λ k k λ k S k λ < k λ k k u λ k λ k u k u k λ + + log λ lim inf S < k λ k λ S λ u u u k lim S 5 5 A ζ ζ ζ ζ n Λn n n n Λn n ψ ψn ψn n ψn n n + ψn n n n+ n n + ψn n n ψn n ψ + n ψn n ψe t e t t n ψn n + ψe t ζ ζ ζ ζ Re > ψe t It ψe t e t Laplace It LI Ite t t ψe t e +t t e t t + ζ ζ + + ζ ζ LI Re > ψ O It It t LI It t ψe t e t t ψe t e t e t t ψ

40 MeBio : 5 4 Stieltje ζ ζ n Λn n [ ] ψ ψ ψ + ψ + ψ Heaviie H ψ ΛnH n n ζ ζ n [ n Λn n n [ ψ Λn ΛnH n ] δ n + ψ + ] + n ψ + ΛnH n + ζ ζ ψe t e t t ψe t Laplace ψet t ψ Λn H p m ψe t He t p m ψet t n< m, p m, p [ ψe t L t ] { } δe t p m e t e t t m, p ζ ζ Laplace ζ ζ p, m δ p m p, m m, p δe t p m e t p m ζ ζ 6 A 5 6 Wienner A LI It It Laplace Ite t t Re > Re > lim lim T T lim T T Ite t t lim It t It t LI lim T T Ite t t It t, lim LI Newman g Ite t t Re > g Ite t t

41 MeBio : 5 4 Re < g T g T T It t lim T g T g T Ite t t g T R R δr g { C < R, Re > δr} C Cauchy g g T πi C g g T e T + R R T F T lim F T T 4 F T, R, F T, R, F 3 T, R, δ, F 4 T, R, δ F T, R < B R 3 F T, R < B R B T, R 4 F 3 T, R, δ < CRδ CR R T 5 4 R, δ lim T F 4T, R, δ ε> B R < ε 4 R T F T, R < ε 4 F T, R < ε 4 3 R F 3 T, R, δ < ϵ 4 δ T 4, 3 R, δ T > T F 4 T, R, δ < ϵ 4 T T > T F T < F T, R + F T, R + F 3 T, R, δ + F 4 T, R, δ < ϵ F T Im Ri C C C δr O Re Ri δ

42 MeBio : 5 4 C C { C Re > } F T, R g g T e T + πi C R g g g T T Ite t t ma It B Ite t t < B e t t B T T e Ret t B [ e Ret Re ] T Be ReT Re Re C Re iθ π < θ < π + z R + e iθ e iθ e iθ + e iθ co θ Re R F T, R < πi π g g T e T + C R Be ReT Re e ReT Re R πr R B R C C { C Re < } g g T F T, R g T e T + πi C R g T C C { C R, Re < } C Re < g T T Ite t t < B T e t t B T e Ret t B [ e Ret Re ] T < Be ReT Re F T, R πi g T e T + C R < B R ge T + πi C R < δ < δr δ C 3 C { C δ < Re < }, C 4 C { C Re < δ } C 3 R F 3 T, R, δ ge T + πi C 3 R, F 4 T, R, δ ge T + πi C 4 R F 3 T, R, δ C g + R MR et <, < R arcin δ C 3 R R, arcin δ R F 3 T, R, δ < π MR R arcin δ R < CRδ

43 MeBio : 5 43 CR R T T R δ F 3 T, R, δ F 4 T, R, δ g + R < MR, et < e δt, < πr C 4 F 4 T, R, δ < π MR e δt πr < DRe δt DR R T δ e δ T T R, δ lim T F 4T, R, δ ψ ϑ Zagier 5 6 ζ ζ n ϑ Λn n p, m Ψ ζ ζ log p p m Ψ Ψ p, m> n λn n p log p p ζ ζ log p p m Re > Ψ Re > Re > Ψ Abel λn ϑn ϑn ϑn Ψ n n n n n n ϑn n n + ϑn n n n+ n + ϑn n n ϑ + n ϑn n n ϑn n + ϑe t e t t ϑe t Laplace Ψ Jt ϑe t e t Laplace LJ Jte t t ϑe t e +t t e t t + Ψ + + Ψ + LJ > Jt t LJ Jt t ϑe t e t t ϑe t e t e t t ϑ

44 MeBio : Re n Λn n ζ ζ Re ψ ζ Re 5 7 ζ + it n σ+it n σ e it log n n σ {cot log n i int log n} Re n σ+it n σ cot log n σ > ζ ζ n Λn n Re ζ ζ σ + it n Λn cot log n n σ > 3Re ζ ζ n n n σ 4Re ζ ζ σ + it Re ζ ζ Λn cot log n + cot log n n σ Λn + 4 cot log n + co t log n n σ Λn + cot log n n σ σ + it + it a a > + it b b > lim σ + σ ζ ζ lim σ { 3 ζ σ + ζ ζ lim z it z +it ζ z lim ζ σ σ + ζ ζ lim σ σ + ζ σ σ 4 ζ ζ σ + it ζ ζ σ + it a σ + it b } σ + it 3 4a b < σ + ζ ζσ σ ζ ± it ζσ ± it Oσ ζ ± it ζσ ± it O

45 MeBio : 5 45 ζσ + itζσ + it 4 ζσ 6 ζσ it 4 ζσ it O σ σ + Re > ζ p log ζ p p log { ζσ + itζσ + it 4 ζσ 6 ζσ it 4 ζσ it } m> m> > p p m p mσ m log p m> p mσ+it + 4p mσ+it + 6p mσ + 4p mσ it p mσ it 4 p imt + p imt p p m m 8 Wiener n a n n< X a n Dirichlet n a n n Tauber Wiener 5 8 n > a n > Dirichlet L n a n n L N> L Π { C Re > N} Π Π L a, b a L Π L N > L Π N N A L A N + b m L m Π L m N A m A > L m L m Π N A N + a α, b α m a n n< X A NΓα XN log X α

46 MeBio : Wiener f > f O g f Re > g Re > ρ f ρ It fe t e t ρ t > It Laplace LI fe t e t ρ e t t f ρ Re > g + + ρ lim LI f ρ + f ρ f f ρ f ρ + g + + ρ G Re > G G T lim T G T G T Re > Re > f ρ + f ρ + Re < G T R R δr G { C < R, Re > δr} C Cauchy G G T πi C G G T T + R R T F T lim F T T

47 MeBio : 5 47 Im Ri C C C δr O Re Ri δ C C { C Re > } F T, R πi G G G T B f ρ + T T f ρ + G G T T + C R ma f ρ B Re t B t < B T [ Re Re ] T BT Re Re Re C Re iθ π < θ < π + z R + e iθ e iθ e iθ + e iθ co θ Re R F T, R πi G G T T + C R < π BT Re Re T Re Re R πr R B R C C { C Re < } G G T F T, R G T T + πi C R G T C C { C R, Re < } C Re < T f ρ T G T + < B T ] T t B Re t B [ Re Re BT < Re Re F T, R πi G T T + C R < B R

48 MeBio : 5 48 GT + πi C R < δ < δr δ C 3 C { C δ < Re < }, C 4 C { C Re < δ } C 3 R F 3 T, R, δ GT + πi C 3 R, F 4 T, R, δ GT + πi C 4 R F 3 T, R, δ C G + R MR T <, < R arcin δ C 3 R R, arcin δ R F 3 T, R, δ < π MR R arcin δ R < CRδ CR R T T R δ F 3 T, R, δ F 4 T, R, δ G + R < MR, T < T δ, < πr C 4 F 4 T, R, δ < π MR T δ πr < DRT δ DR R T δ T δ T R, δ lim T F 4T, R, δ

49 MeBio : 49 6 ζ π ζ ζ Weiertra orer genu Haamar Jenen ζ ˆζ ˆζ, ξ ˆζ ξ ξ ξ < Re < ζ 6 3 ξ ξ ρ ρ ρ ζ Imρ ρ Jenen 6 fz z < R log f π π log fre iθ θ Cauchy log f πi z R logz z z πi π logre iθ Re iθ ire iθ θ π π logre iθ θ Laplacian + y + i y log fz i y Cauchy Riemann log fz + log fz + i y fz, Riemann

50 MeBio : 6 ζ 5 i y fz log fz log fz fz 6 Jenen ρ, ρ,, ρ n fz z < R log f n log ρ j R j π π log fre iθ θ R ρz z R ρ ρ < R Rz ρ ρ R ρz z R Rz ρ zz ρ Rz ρ gz fz n k R ρ k z Rz ρ k R ρ > R gz z < R z R gz fz π π log fre iθ θ π π log gre iθ θ log g log f n log ρ j R j Haamar

51 MeBio : 6 ζ 5 3 ζ ξ ξ ρ ρ ζ ξ ˆζ π Γ ζ π Γ ζ π Γ + ζ ξ Γζ Γ, ζ ξ ζ π ξ Γ { π e γ + n π e γ { n n + n e n } e n } ρ ρ ρ ρ Re log ζ log π + γ log log + n log + n n + ρ log ρ ρ Imρ ζ ζ log π + γ + n + n n + ρ ρ + [ log ζ Imρ> [ log ] ] log ρ [ log ] + n + log ρ log + n n

52 MeBio : 5 7 Riemann π Π Li Imρ> { Li ρ + Li ρ} + Π π Li u uu log u log log π ρ ζ Riemann Riemann Π Möbiu 7 Π n n π n Π π + π + 3 π n π n + π + π + 3 π π π π. + 7 π Π π 7 k n µn Möbiu µk { g f n< n n \ n f µng n n< n n > n n p r pr pr m µk µ + {µp + + µp m } + {µp p + + µp m p m } + + µp p p m k n m + m C + m m

53 MeBio : 7 53 µng µn f n n< n< m< n n mn µnf f k k< n k mn k Σ k f µmg µmg g n n< n< mn k m< n k< m k 7 3 π µn n Π n n µn n Π n n µn n m m π nm µn k π k π k n k Π ζ p n p n log ζ log p n n p p p p n Π log n n p p p p n n np n n n π n log ζ Mellin Laplace e t log ζ Π Πe t e t t L[Πe t ] Laplace Πe t πi c+i log ζ e t c e t Π πi c+i log ζ

54 MeBio : 7 54 ζ Π πi πi c+i c+i log ζ { log π + γ log log + n log + n n + ρ log ρ } πi c+i log π + γ Γ Σ Π πi πi πi πi + πi πi πi c+i [ log ζ log log log log log log ζ log c+i c+i c+i c+i c+i ] c+i πi [ log ζ [ ] log [ log n Imρ> c+i ] ] log + n log ρ [ log ζ n ] + log log ρ Li 7 Li log ε lim ε + log + +ε log C + O ε + ε Re O π log ε + ε C Re

55 MeBio : 7 55 log ε C + > Im > C + log Li πi C > Im < C log Li + πi log log + log, n ρ, log α 7 fα πi Reα < α \, c c+i log α log log α i Imα > {α + it t > } log ii Imα < {α it t > } log α α Im Im α O c Re O c Re α Reα > fα C+ u α C u α log u u Imα > log u u Imα < C +, C 7 4

56 MeBio : 7 56 Reα < fα u α log u u fα α α log α α logα log α α α αα f α α πi πi πi log c+i log c+i [ [ αα log ] c+i αα log α πi ] c+i αα c ir, c + ir α f α α α log α [ ] α + α 3 3α 3 + α 3α α 4 lim α fα Re c > Reα i Reα > [ f α α u α α α ] C u α u fα u lim Imα C+ α log u u lim Imα C+ α log u ii Reα < [ f α α u α α α ] u α log u u + C lim fα 7 3 α u, lim u πi, lim u α u fα u Imα C α log u u πi, u Imα C α log u u u α log u u + C C lim fα 7 4 C α log log α nπi + α 3α lim fα nπi 4α4 α

57 MeBio : Reα > lim Imα C+ u α log u u lim Imα C+ α log u u lim Imα C+ α log u u, lim u πi, lim u Imα C α log u u πi, u Imα C α log u u α a + bi a >, b > b + z α log u I u C+ α log u C e z z C C3 z e z z z Im Im Im u z α log a log + b log i z α log C + C C 3 O Re O Re O a log Re α log C C a + bi a + bi +a + bi ez log a + bi z C C 3 z C a + bi log a + bi C 3 α log 3 [ e z z ]C C3 I eα log α log C C3 e z b C e z z z < e z C z [ ] e z z z z z < a log e α log b C3 e z z e + C C 3 C C3 z z e α log α log z R R e a log α log e a log a + b log z < e z C 3 z z e < a log a + b log π a + b log b lim b I 3 a a + b log a log e a + b log πe a log a + b log

58 MeBio : 7 58 u lim Imα C α log u u u lim Imα C+ α log u u πi, lim u Imα C α log u u πi 7 4 Reα < lim Reα u α log u u α a + bi a < a z α log u Im Im u C 4 z O α log a log + b log i Re O Re I a u α log u C4 e z [ e z z z z e α log α log a ] e + C 4 C4 z z z eα log α log + e a log a + b log C 4 C4 e z e z z z z z < e a log a + b log 7 5 πi log c+i [ log ] log πi log c+i [ log ] πi log [ log ] c+i πi c+i log log 7 6 πi log c+i 7 f πi log [ log c+i ] Li [ log ] C + log u u

59 MeBio : 7 59 log log log + πi f πi πi πi πi πi log log log log log c+i c+i c+i c+i c+i [ log ] [ log + πi [ log [ log [ log ] ] + ] + ] πi log log c+i ] c+i [ [ ] c+i Li C + log u u Li πi 7 7 πi log c+i 7 πi u ρ z C+ log ρ log c+i u ρ ρ log u u + log ρ log ρ z Liz ρ a + bi < a <, b > Li ρ + Li ρ C+ u ρ log u u log z z Liρ πi u ρ ep {ρ log u} ep {a log u + b log ui} u a {cob log u + i inb log u} 4, ρ + 4i u z z ρ ρ O O u u : ε z z : ρε z : ρε

60 MeBio : 7 6 πi u : + ε z z : + ρε ρ [ b log π ] b πi Li ρ u ρ u + πi log u C+ lim b Liρ πi Liz z Li [ ] b log n nπi π Li ρ b lim b Liρ nπi ρ log z ρ log z z z nπi nπi log log ρ ρ log ρ ρ ρ ρ ρ πi m log c+i 7 πi πi m m log log log + m c+i c+i m log + m log + m m uu log u u m u m log u u u 3 u log u u uu log u u 4 Riemann ρ ρ

61 MeBio : Π 7 9 Π Li Imρ> { Li ρ + Li ρ} + u uu log u log Li { Li ρ + Li ρ} Imρ> Riemann Riemann

62 MeBio : 6 8 Γ Gau, Legenre 8 n k ζ ep n k in k n π πi n in k n n π k ζ nn πi ep n n n n ζ k ζ k i nn n k ζ k i n ζ k ζ nn i n k i n ζ k n k n ζ k n k n + n n ζ k n k n in n n n f n X 4 n X n + + nx in n f n in i n f, n 3 f 4X 3 + 3X ii n k, k k 3 ink + + ink in k co ink + f k in in f k in n n π, n 3 n π,, n π,, n f n X X in n n 3 π, in n n 4 4 k in k+ + + {k k } in 4 k+ in k+ + + k + in n π, 4 n π, n n π,, in n π,, in n n n X n in n n π in n 3 n π in n π in n n π in 4 n π π n in n in n n π, in 4 n π, in n n π π n n 4 n

63 MeBio : 8 63 n in k n π k n n n n m n n k in k m n π m k k in in k m π m k m m π in k m k k m m π in k m π m k in k m m π co k m m m m n n k m π a n Dirichlet n σ c n σ c lim up n lim up n log n log n log a n + a n+ + log n n n n a k k n a k k Zagier 8 in in π [ lim ] ϵ + in + lim ϵ + ϵ ϵ in t t t π R π fz + R ϵ lim ϵ C π 8 3 e iz z ϵ R e iz z in co in C ϵ π D R in z z i ϵ z πi [ θ R e π θ π R e R θ] π π D eiz z z e iz z z < D e iz z π R e R lim R R ϵ > n T log[]! nn #{ >, n} 3 k σ k nσ k n n k eiz C ϵ R D in t t t z z π R in θ π z e R in θ e Rθ Rθ < R R D

64 MeBio : n φ Dirichlet n n n n n ζ ζ n ζ ζ ζ + n φn n + n n φn n φn n n n n n ζ n φn n Re > Re 6 π n< φn n 6 π

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de Riemann Riemann 07 7 3 8 4 ). π) : #{p : p } log ) Hadamard de la Vallée Poussin 896 )., f) g) ) lim f) g).. π) Chebychev. 4 3 Riemann. 6 4 Chebychev Riemann. 9 5 Riemann Res). A :. 5 B : Poisson Riemann-Lebesgue

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9 4 4 No. pdf pdf II Fourier No. No. 4 No. 4 4 38 f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9 4 9 i = imaginary unit z = x + iy x, y R x real

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

I II

I II I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log

More information

, ( ) 2 (312), 3 (402) Cardano

, ( ) 2 (312), 3 (402) Cardano 214 9 21, 215 4 21 ( ) 2 (312), 3 (42) 5.1.......... 5.2......................................... 6.2.1 Cardano................................... 6.2.2 Bombelli................................... 6.2.3

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

77

77 O r r r, F F r,r r = r r F = F (. ) r = r r 76 77 d r = F d r = F (. ) F + F = 0 d ( ) r + r = 0 (. 3) M = + MR = r + r (. 4) P G P MX = + MY = + MZ = z + z PG / PG = / M d R = 0 (. 5) 78 79 d r = F d

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1 . ( + + 5 d ( + + 5 ( + + + 5 + + + 5 + + 5 y + + 5 dy ( + + dy + + 5 y log y + C log( + + 5 + C. ++5 (+ +4 y (+/ + + 5 (y + 4 4(y + dy + + 5 dy Arctany+C Arctan + y ( + +C. + + 5 ( + log( + + 5 Arctan

More information