1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

Similar documents
本文/目次(裏白)

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

6.1 (P (P (P (P (P (P (, P (, P.

tnbp59-21_Web:P2/ky132379509610002944

6.1 (P (P (P (P (P (P (, P (, P.101

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

パーキンソン病治療ガイドライン2002

研修コーナー

sec13.dvi

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

201711grade1ouyou.pdf


第86回日本感染症学会総会学術集会後抄録(I)

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

nsg02-13/ky045059301600033210

統計学のポイント整理

Erased_PDF.pdf

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

第90回日本感染症学会学術講演会抄録(I)

LLG-R8.Nisus.pdf

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

Ł\”ƒ-2005

プリント


A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

量子力学 問題

プログラム


4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

3/4/8:9 { } { } β β β α β α β β

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx

renshumondai-kaito.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Chap11.dvi

°ÌÁê¿ô³ØII

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

II 2 II

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Part () () Γ Part ,

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

ohpr.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

30

2000年度『数学展望 I』講義録

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

A

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

Mathematical Logic I 12 Contents I Zorn

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

gr09.dvi

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

Acrobat Distiller, Job 128

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

untitled

nsg04-28/ky208684356100043077

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =


: , 2.0, 3.0, 2.0, (%) ( 2.

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

分散分析・2次元正規分布

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

Microsoft Word - 表紙.docx

ohpmain.dvi

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4


+小澤悦夫.indd

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

untitled

pdf

TOP URL 1

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

TOP URL 1

solutionJIS.dvi

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

Gmech08.dvi

時系列解析

基礎数学I

Transcription:

1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

: l r δr θ πrδr δf (1) (5) δf = ϕ πrδr = rθ l πrδr = πθr δr l δl δl = rδf = πθr3 δr l a θ L L = = a 0 a 0 dl = πa4 θ l (8) πθr 3 dr l (6) (7) (8) κ = πa4 l (9) 3

T I T = π κ Il = π (10) πa 4 = 8πIl (11) a 4 T (11) I T 3 I 0 I 0 3: M b c d I 1 I I 0 + I 1 I 0 + I ( 4 ) T 1 T T 1 T = 4π I0 + I 1 κ = 4π I0 + I κ (1) (13) (1) (13) T 1 T = 4π I1 I κ = 8πl I1 I a 4 (14) 4

4: = 8πl a I 1 I 4 T (15) 1 T I 0 I 1, I I 1 = M b + c [ b + c I = M 4 ] + d 1 (16) (17) (15) (16) (17) = πl 3a 4 3b + 3c d T 1 T M (18) 4 1. b c d a l b c d a 5 l 5. 3. ( ) 5

4. ( 90 ) ( 1 )10 90 5. 6. (18) 7. M 3.10 kg M 0.01 kg 5 1. T 1 1: 50 50 ( ) ( ) ( ) 0 50 10 60 0 70 30 80 40 90. T : 50 50 ( ) ( ) ( ) 0 50 10 60 0 70 30 80 40 90 6

6 1. 10. 10 1/ 3. 4. 5. 7 1.. 3. 4. 5. I 1, I (16) (17) 8 9 (57) a a 1, a, a 3, a 4, a 5 ā a ā = 1 5 a i (19) 5 a = 1 1 5 (a i ā) 5 4 (0) 7

(1) = πl 3a 4 3b + 3c d T 1 T M (1) α = 3b + 3c d () β = T 1 T (3) = πl 3a 4 α β M (4) α, β, ᾱ = 3 b + 3 c d (5) β = T 1 T (6) = π l 3ā ᾱ 4 β M (7) (68) ( α) = (6 b) ( b) + (6 c) ( c) + ( d) ( d) (8) ( β) = ( T 1 ) ( T 1 ) + (T ) ( T ) (9) (7) ( ) = ( l l ) ( ) a + 4 + ā ( ) α + ᾱ ( ) ( β M + β M ) (30) M = 3.10 kg M = 0.01 kg 9 9.1 precise 8

accurate 9. X X x x + dx f(x)dx f(x) f(x)dx = 1 (31) µ µ = xf(x)dx (3) σ σ = (x µ) f(x)dx = x f(x)dx µ (33) X F (X) E[F (X)] F (X) E[F (X)] = F (x)f(x)dx (34) µ = E[X] (35) σ = E[(X E[X]) ] = E[X ] (E[X]) (36) F (X) V [F (X)] V [F (X)] = E[(F (X) E[F (X)]) ] (37) σ = V [X] (38) 9

9.3 x s x = 1 x i (39) s 1 = (x i x) (40) 1 i s X x x j (j =,..., ) X x j x j + x f(x j ) x x = 1 x i x j f(x j ) x xf(x)dx = µ j= (41) s = 1 (x i x) 1 (x j x) f(x j ) x 1 j= (x µ) f(x)dx = σ (4) i j E[ X] = E [ 1 ] X i = 1 E[X i ] = 1 µ = µ (43) S = = = 1 1 1 1 1 1 (X i X) (44) { (Xi µ) ( X µ) } (45) (X i µ) 1 ( X µ) (46) 10

E[(X i µ) ] = σ (47) ( ) E[( X µ) ] = E 1 X i µ (48) = E 1 (X i µ) (X j µ) (49) j=1 = 1 [ ] E (X i µ) + 1 E i j(x i µ)(x j µ) (50) 0 E[S ] = 1 1 E[( X µ) ] = 1 [ ] E (X i µ) E[(X i µ) ] 1 E[( X µ) ] = = σ 1 σ (51) σ 1 = σ (5) 1 s σ σ 9.4 F (X) Err[F (X)] = (51) Err[ X] = V [F (X)] (53) V [ X] (54) V [ X] = E[( X µ) ] = σ (55) 11

Err[ X] = σ (56) σ s Err[ X] = s (57) 9.5 Z X, Y Z µ z ẑ Z = ϕ(x, Y ) (58) ẑ = ϕ( x, ȳ) (59) E[Ẑ] = E[ϕ( X, Ȳ )] ϕ(e[ X], E[Ȳ ]) = ϕ(µ x, µ y ) = µ z (60) ẑ ϕ Z Ẑ Err[Ẑ] Err[Ẑ] = V [Ẑ] = E[(Ẑ µ z) ] (61) ϕ Ẑ = ϕ( X, Ȳ ) ϕ(µ x, µ y ) + ( ) ϕ (µ x, µ y )( X µ x ) + ( ) ϕ (µ x, µ y )(Ȳ y µ y) (6) Ẑ µ z ( ) ϕ (µ x, µ y )( X µ x ) + ( ) ϕ (µ x, µ y )(Ȳ y µ y) (63) 1

V [Ẑ] = E[(Ẑ µ z) ] (64) {( ) ( ) } E ϕ ( X ϕ µ x ) + (Ȳ y µ y) (65) ( ) ( ) ϕ = E[( X ϕ µ x ) ] + E[(Ȳ y µ x) ] ( ) ( ) ϕ ϕ + E[( y X µ x )(Ȳ µ y)] (66) X Y E[( X µ x )(Ȳ µ y)] = 0 ( ) ϕ V [Ẑ] V [ X] + (Err[Ẑ]) ( ) ϕ (Err[ X]) + ( ) ϕ V [Ȳ y ] (67) ( ) ϕ (Err[Ȳ y ]) (68) X Y X Y Ẑ µ z ErrMax[F (X)] = max X E[X] (69) ( ) ϕ (µ x, µ y )( X µ x ) + ( ) ϕ (µ x, µ y )(Ȳ y µ y) (70) ( ) ( ) Ẑ µ ϕ z X ϕ µ x + Ȳ y µ y (71) ( ) ϕ ErrMax[Ẑ] ErrMax[ X] + ( ) ϕ y ErrMax[Ȳ ] (7) (68) 13