populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2
|
|
|
- れいな とどろき
- 9 years ago
- Views:
Transcription
1 (2015 ) 1 NHK !? New York Times For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias SF H.G. Wells Statistical thikig will oe day be as ecessary for efficiet citizeship as the ability to read ad write. Advaced Theory of Statistics M. 2 a) b) c) d) 17 e) f ) g) h) i) j ) χ 2 1
2 populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2
3 2 variable descriptive statistics A, B, C A, B, C * =1: 0: class frequecy 2 4 relative frequecy 5 6 cumulative frequecy cumulative relative frequecy 3
4 histogram 1 Frequecy Test score averages mea 4
5 arithmetic mea *1 x 1, x 2,, x x = x 1 + x x = 1 i=1 x i x = = (1, 1, 1, 1, 2, 3, 4, 5, 16, 20) media x (1), x (2),, x () = 2m + 1 m + 1 x (m+1) = 2m m m + 1 (x (m) + x (m+1) )/2 = 10 5 x (5) = 2 6 x (6) = mode rage *1 x G x H x G = x 1 x 2 x, ( ) 1 = x H x 1 x 5
6 Iter Quartile Rage (IQR) 50% 100p%(0 p 1) 100p quartile Q 1 25% 2 Q 2 50% 3 Q 3 75% Q 3 Q 1 50 Q 1 = 47.25, Q 3 = 69.5 IQR= variace stadard deviatio x 1, x 2,, x x i x (i = 1, 2,, ) 2 S 2 S 2 = 1 { (x1 x) 2 + (x 2 x) (x x) 2} = 1 S 2 = 1 * 2 (x i x) 2 = 1 i=1 x 2 i x 2 i=1 (x i x) 2 2 S S = S 2 = 1 (x i x) i=1 i=1 2.4 box-ad-whisker plot Q 1 Q x i (i = 1, 2,, ) x S z i = x i x S *2 1/ 1/( 1) 6
7 z i (i = 1,, 2,, ) 0 1 z z z i = cotigecy table cross table i(= 1,, ) 1 (x i, y i ) x y x y scatter plot
8 3 50 correlatio coefficiet (x 1, y 1 ), (x 2, y 2 ),, (x, y ) x y covariace S xy = 1 (x i x)(y i ȳ) i=1 x y ( x, ȳ) (x i x)(y i ȳ) x i, y i 1 3 x i, y i 2 4 (x i, y i ) x S x y S y r r = S xy S x S y = 1 1 i=1 (x i x)(y i ȳ) i=1 (x i x) 2 1 i=1 (y i ȳ) x y z i = (x i x)/s x, w i = (y i ȳ)/s y r xy = 1 z i w i 1 r xy 1 1 i=1 8
9 x y 3 z (1, 1) (1, 2) (1, 3) (6, 5) (6, 6) Ω ω Ω = {(1, 1), (1, 2), (1, 3),, (6, 5), (6, 6)} evet A, B, 2 2 A A = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} 1 φ {1} {1, 3, 5} 5 2 A, B A B A B A, B A B A B A B A B = φ. 1 A B 3 A B = {1, 2, 3, 5} A B = {1, 3} C A C = φ A C 9
10 3 A, B, C (A B) C = (A C) (B C) (A B) C = (A C) (B C). 2 A 2 B 2 C 2 5 A = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} B = {(1, 1), (1, 3), (1, 5), (3, 1), (3, 3), (3, 5), (5, 1), (5, 3), (5, 5)} C = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)} A B = {(1, 1), (1, 3), (1, 5), (2, 2), (3, 1), (3, 3), (3, 5), (4, 4), (5, 1), (5, 3), (5, 5), (6, 6)} (A B) C = {(1, 1), (1, 3), (2, 2), (3, 1)} A C = {(1, 1), (2, 2)}, B C = {(1, 1), (1, 3), (3, 1)} (A C) (B C) = {(1, 1), (1, 3), (2, 2), (3, 1)} 1 2 A A A c φ c = Ω, Ω c = φ A A c = Ω, A A c = φ Ω A = A, φ A = A (A c ) c = A A, B (A B) c = A c B c, (A B) c = A c B c. 1 A B 3 A B = {1, 2, 3, 5} (A B) c = {4, 6} A c = {2, 4, 6}, B c = {4, 5, 6} A c B c = {4, 6} (a), (b), (c) (a) A 0 P (A) 1 (b) P (Ω) = 1 (c) A 1, A 2, A 3, P (A 1 A 2 A 3 ) = P (A 1 ) + P (A 2 ) + P (A 3 ) + 10
11 N A R A P (A) P (A) = R N A A A α P (A) = α 100 (a), (b), (c) A B 3 A B c, A B, A c B A B = (A B c ) (A B) (A c B) (c) P (A B) = P (A B c ) + P (A B) + P (A c B) A A B c, A B A = (A B c ) (A B) (c) P (A) = P (A B c ) + P (A B) P (B) = P (A c B) + P (A B) P (A B) = [P (A) P (A B)] + P (A B) + [P (B) P (A B)] = P (A) + P (B) P (A B) P (A B) = P (A) + P (B) P (A B) A B A B = φ P (A B) = P (A) + P (B) 11
12 A A c = φ, Ω = A A c (a), (c) 1 = P (Ω) = P (A) + P (A c ) A = Ω A c = φ P (φ) = A B 3 A = {1, 3, 5}, B = {1, 2, 3} P (A) = 3/6 = 1/2, P (B) = 3/6 = 1/2 A B = {1, 3} P (A B) = 2/6 = 1/3 P (A B) = P (A) + P (B) P (A B) = = 2 3 A B = {1, 2, 3, 5} P (A B) = 4/6 = 2/ A B 5 A = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}, B = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)} P (A) = 6/36 = 1/6, P (B) = 10/36 = 5/18 A B = {(1, 1), (2, 2)} P (A B) = 2/36 = 1/18 P (A B) = P (A) + P (B) P (A B) = = = 7 18 A B = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 1), (4, 4), (5, 5), (6, 6)} P (A B) = 14/36 = 7/ A B A B P (A) = 1/5 3 1/3 B A P (A B) B B A 1, 3,
13 P (A B) B A P (A B) = P (A B) P (B) P (B) = 3/5, P (A B) = 1/5 P (A B) = 1/5 3/5 = 1 3 P (A B) = P (B)P (A B) A B A 2 B 2 A B 1 P (A) = 3/ P (B A) = 2/9 2 P (A B) = P (A)P (B A) = = 1 15 A B P (A B) = P (A)P (B) A B P (A) = P (A B) P (B) = P (B A) A B A 2 1 B 1 A B P (A B) = 1/36 P (A)P (B) = (1/6) (1/6) = 1/36 A B 3.2. (i), (ii) (i) B 1 B 2 = φ P (B 1 B 2 A) = P (B 1 A) + P (B 2 A) (ii) P (B A) + P (B c A) = (i) A 6 B 4 A B (ii) C 7 B C P (A B) P (B A) 3.5 A = A Ω = A (B B c ) = (A B) (A B c ) A B A B c (c) P (A) = P (A B) + P (A B c ) 13
14 P (A) = P (A B)P (B) + P (A B c )P (B c ) P (B A) = P (A B) P (A) = P (A B)P (B) P (A B)P (B) + P (A B c )P (B c ) A B 1 B c 2 P (B) = P (B c ) = 1/2 P (A B) = 3/4, P (A B c ) = 1/3 P (B A) = (3/4)(1/2) (3/4)(1/2) + (1/3)(1/2) = 9 13, P (1/3)(1/2) (Bc A) = (1/3)(1/2) + (3/4)(1/2) = 4 13 P (B c A) P (B A) + P (B c A) = 1 2. A B P (A B) = 0.95, P (A c B c ) = 0.90 P (B) = P (B A) P (B A) = (1 0.90) ( ) = (1) (2) 99% 99% 99% 99% 99.1% 99.9% ) sesitivity specificity (1) 3 1% (2) 2%
15 /6 radom variable X, Y, X P (X = 1) = 1/6, P (X = 2) = 1/6,, P (X = 6) = 1/6 X x X X. 2 X X 2, 3,, 12 P (X = 2) = 1/36, P (X = 3) = 2/36, P (X = 4) = 3/36, P (X = 5) = 4/36, P (X = 6) = 5/36, P (X = 7) = 6/36, P (X = 8) = 5/36, P (X = 9) = 4/36, P (X = 10) = 3/36, P (X = 11) = 2/36, P (X = 12) = 1/36 X 6 X x 1, x 2,, x K f(x 1 ), f(x 2 ),, f(x K ) X f(x k ) = P (X = x k ) (k = 1,, K) X f f(x k ) 0 K f(x k ) = 1 k=1 X 1 X a b P (a X b) = X f b a f(x)dx f(x) 0 15 f(x)dx = 1
16 X P (X = a) = 0 0 X x F (x) = P (X x) X cumulative distributio fuctio F (x) = x f(u)du F (x) = f(x) F (X) = u x f(u) 4.2 expectatio E(X) E(X) = xf(x), E(X) = x xf(x)dx x x X g(x) E(g(X)) = g(x)f(x), x E(g(X)) = a, b g(x)f(x)dx E(aX + b) = ae(x) + b a = 0 E(b) = b b = 0 E(aX) = ae(x) X x 1,, x K K K K K E(aX + b) = (ax i + b)f(x i ) = a x i f(x i ) + b f(x i ) = ae(x) + b i= X i=1 E(X) = = 21 6 = /2 X 2 E(X 2 ) = = X k 3C k (1/2) k (1/2) 3 k = 3 C k (1/2) 3 (k = 0, 1, 2, 3) ( ) 3 ( 1 1 E(X) = 0 3 C C ) C 2 ( 1 2 i=1 ) 3 ( ) C 3 = / X X 16
17 /2 X µ = E(X) variace V (X) = E[(X µ) 2 ] V (X) 0 V (X) X V (X) stadard deviatio σ 2 σ V (X) = x (x µ) 2 f(x), V (X) = (x µ) 2 f(x)dx V (X) = E(X 2 ) 2µE(X) + µ 2 = E(X 2 ) µ 2 = E(X 2 ) (E(X)) 2 a, b V (ax + b) = a 2 V (X) a = 0 V (b) = 0 X x 1,, x K K V (ax + b) = K {(ax i + b) (aµ + b)} 2 f(x i ) = a 2 i= E(X) = 7/2, E(X 2 ) = 91/ E(X 2 ) = C 0 ( 1 2 ) C 1 ( 1 2 V (X) = 91 6 K i=1 ( ) 2 7 = ) C 2 ( 1 2 (x i µ) 2 f(x i ) = a 2 V (X) ) 3 ( ) C 3 = = V (X) = 3 ( ) 2 3 = X 4.3. X { 1 (0 x 1) f(x) = 0 (x < 0, 1 < x) 17
18 X 1 Y X, Y 0, 1 X = x, Y = y f(x, y) = P (X = x, Y = y) f(0, 0) = , f(1, 0) =, f(0, 1) =, f(1, 1) = 2 X, Y X Y f(x, y) X, Y f(x, y) 0 f(x, y) = 1 x y f(0, 0), f(1, 0), f(0, 1), f(1, 1) 0 f(x, y) = f(0, 0) + f(1, 0) + f(0, 1) + f(1, 1) = 1 x=0,1 y=0,1 X, Y f(x, y) f(x, y) 0 f(x, y)dxdy = 1 X = 0 P (X = 0) = P (X = 0, Y = 0) + P (X = 0, Y = 1) = f(0, 0) + f(0, 1) X = 1 Y = 0 Y = 1 g(x) = P (X = x), h(y) = P (Y = y) g(x) = f(x, 0) + f(x, 1), h(y) = f(0, y) + f(1, y) X, Y X, Y g(x) = y f(x, y), h(y) = x f(x, y) X, Y g(x) = X, Y P (X = x Y = y) = f, g, h f(x, y)dy, h(y) = f(x, y)dx P (X = x, Y = y) P (X = x, Y = y), P (Y = y X = x) = P (Y = y) P (X = x) g(x y) = f(x, y) f(x, y), h(y x) = h(y) g(x) h(y) 0, g(x) 0 g(x y) y x h(y x) x y 18
19 x, y f(x, y) = g(x)h(y) X Y X, Y X, Y g(x y) = g(x)h(y) h(y) = g(x), h(y x) = g(x)h(y) g(x) = h(y) X Y Y X 2 X, Y X, Y X, Y X h(y) 1 1/36 1/36 1/36 1/36 1/36 1/36 1/6 2 1/36 1/36 1/36 1/36 1/36 1/36 1/6 Y 3 1/36 1/36 1/36 1/36 1/36 1/36 1/6 4 1/36 1/36 1/36 1/36 1/36 1/36 1/6 5 1/36 1/36 1/36 1/36 1/36 1/36 1/6 6 1/36 1/36 1/36 1/36 1/36 1/36 1/6 g(x) 1/6 1/6 1/6 1/6 1/6 1/ (a), (b), (c) (a) 2 (b) p (c) X x F x f(x) = P (X = x) = C x p x (1 p) x (x = 0, 1,, ) biomial distributio B(, p) C x p x (1 p) x = (p + (1 p)) = 1 x= X X B(10, 0.5) f(x) 7 f(x) = 10 C x 0.5 x x (x = 0, 1,, 10) 19
20 X /6 1 1 X B(10, 1/6) f(x) 8 f(x) = 10 C x ( 1 6 ) x ( ) 10 x 5 (x = 0, 1,, 10) 6 7 B(10, 0.5) 8 B(10, 1/6) X B(, p) E(X) = p, V (X) = p(1 p) 5.1. B(, p) X E(X) = p, V (X) p(1 p) 5.2 p p x f(x) = C x p x (1 p) x p = λ, p 0 f(x) = e λ λ x x! (x = 0, 1, 2, ) Poisso distributio P o(λ) e x e x = 1 + x + x2 2! + x3 3! + = e λ λ x = e λ x! x=0 X P o(λ) x=0 r=0 x r r! λ x x! = e λ e λ = 1 E(X) = λ, V (X) = λ P o(λ) λ B(, p) E(X) = p, V (X) = p(1 p) X λ = 2 P o(2) 20
21 5.3 ormal distributio { } 1 f(x) = exp (x µ)2 2πσ 2 2σ 2 ( < x < ) σ > 0 E(X) = µ, V (X) = σ 2 µ σ 2 N(µ, σ 2 ) N(µ, σ 2 ) x = µ x = µ x ± f(x) 0 µ x σ N(20, 2 2 ), N(20, 4 2 ), N(20, 6 2 ) X N(µ, σ 2 ) X Z = X µ N(0, 1) 0 1 σ stadard ormal distributio f(z) Φ(z) f(z) = 1 2π exp ) z ( z2, Φ(z) = 2 Φ( z) = 1 Φ(z) 1 2π exp ) ( x2 dx 2 Φ(z) Excel Φ(1.645) 0.95, Φ(1.96) Z = X µ N(0, 1) Z k k (k > 0) σ P ( k Z k) = P (Z k) P (Z < k) = Φ(k) Φ( k) k = 2 P ( 2 Z 2) = Φ(2) Φ( 2) ( ) = 0.95 Z 95% 2 2 X X 95% µ 2σ µ + 2σ 1. X N(9, 25) P (3 X 21) Z = X 9 5 N(0, 1) ( 3 9 P (3 X 21) = P X ) = P ( 1.2 Z 2.4) = Φ(2.4) Φ( 1.2) z = 2.4 Φ(2.4) = Φ( 1.2) = 1 Φ(1.2) Φ(1.2) = Φ( 1.2) = P (3 X 21) = =
22 2. 17 N(172, 4 2 ) cm 17 % X X N(172, 4 4 ) P (X 180) ( ) X 172 P (X 180) = P 2 = 1 Φ(2) = cm 2.5% 5.3. T T N(50, 10 2 ) 40 T 60, T 70, T 75, T 55, 50 T BMI (Body Mass Idex, kg/ m 2 ) 22.65(kg/m 2 ) 4.01(kg/m 2 ) 20 BMI N(22.65, ) 20 BMI 25(kg/m 2 ) % B(, p) X N(p, p(1 p)) B(, p) N(p, p(1 p)) 1 X B(, 1/6) /6, 5/36 10, 20, 30, 50, 100 B(, 1/6) 10 B(, 1/6) X B(, p) ( ) a p P (X a) Φ p(1 p) p > 5 (1 p) > 5 p = 1/2 10 p X X 100 X B(720, 1/6) Z = X ( ) X 120 P (X 100) = P 2 = P (Z 2) < > [1] 22
23 6 6.1 populatio sample X 1, X 2,, X X 1, X 2,, X X 1 X 1 X 2 *3 X 1, X 2,, X f(x) sample size (i) (ii) 2 (i) X 1 X 2,, X µ σ (ii) % *3 23
24 6.3 µ σ 2 µ = xf(x), σ 2 = (x µ) 2 f(x) x x µ = xf(x)dx, σ 2 = (x µ) 2 f(x)dx µ σ 2 X 1, X 2, X sample mea sample variace X 1, X 2,, X f(x) X = X 1 + X X X, Y E(X + Y ) = E(X) + E(Y ) E( X) = E(X 1) + E(X 2 ) + + E(X ) = 1 i=1 X i = µ + µ + + µ = µ = µ X, Y V (X +Y ) = V (X)+V (Y ) V ( X) = 1 2 V (X 1 + X X ) = σ2 + σ σ 2 X 0 N X µ = N µ s 2 = 1 1 {(X 1 X) 2 + (X 2 X) (X X) } = S 2 = 1 {(X 1 X) 2 + (X 2 X) (X X) } 2 = σ2 (X i X) 2 s 2 1 E(s 2 ) = σ 2 s 2 σ 2 S 2 E(S 2 ) = 1 σ2 s 2 S 2 = 10 1 i=1 6.4 X X/ X/ X/
25 X X µ, σ 2 X i (i = 1,, ) X X N(µ, σ 2 ) X = (X X )/ N(µ, σ 2 /) B(, p) i (i = 1,, ) 1 0 X i X i B(1, p) S S = X X E(X i ) = p, V (X i ) = p(1 p) S N(p, p(1 p)) µ σ 2 µ σ 2 θ ˆθ µ ˆµ = X X X 1 = x 1, X 2 = x 2,, X = x θ ˆθ X µ s 2 σ 2 25
26 p x X X B(, p) p P (X = x) = C x p x (1 p) x p L(p) = C x p x (1 p) x p p L(p) dl(p)/dp = 0 p ˆp = x/ L(p) log L(p) d log L(p) = 1 dl(p) dl(p) = 0 dp L(p) dp dp d log L(p) = 0 dp 1 N(µ, σ 2 ) µ 1. ˆθ θ ˆθ θ E(ˆθ) = θ X = (X X )/ µ s 2 σ 2 1/ S 2 2. θ 7.2 θ 1 α P (L θ U) 1 α L, U L, U 1 α [L, U] 100(1 α)% cofidece iterval α 0.01, 0.05, % 95% 90% % 95% % 95 θ 90% % 90 θ µ p 95% 26
27 7.2.1 µ N(µ, σ 2 ) X 1, X 2,, X µ i) X N(µ, σ 2 ) ax + b N(aµ + b, a 2 σ 2 ) ii) X, Y N(µ 1, σ 2 1), N(µ 2, σ 2 2) X +Y N(µ 1 +µ 2, σ 2 1 +σ 2 2) X Y N(µ 1 µ 2, σ σ 2 2) X 1, X 2,, X N(µ, σ 2 ) ii) X 1 + X X N(µ, σ 2 ) X = (X 1 + X X )/ i) N(µ, σ 2 /) X σ/ (a) X µ (b) 1/ X µ 2 σ/ 1/ σ/ 1/ X N(µ, σ 2 /) X Z Z = X µ σ/ Z N(0, 1) σ 2 X N(0, 1) N(0, 1) Φ(z) = 1 α z Z α Φ(z) = z Z Φ(z) = 0.95 z Z P ( Z α/2 X ) µ σ/ Z α/2 = 1 α µ ( ) σ P X Z α/2 µ X σ + Z α/2 = 1 α σ 2 µ 1 α 100(1 α)% [ ] σ σ X Z α/2, X + Zα/2 95% [ X 1.96 σ, X σ ] * σ 2 s 2 = 1 i=1 1 (X i X) 2 ( X µ)/s 1 t t σ
28 5 X = ( )/5 = 68 95% [ X 1.96 σ ] [ σ 240.7, X = , ] = [54.4, 81.6] = % [ X 1.96 σ ] [ σ 245.6, X = , ( ) t 49 t [53.9, 62.8] ] = [54.0, 62.7] BMI ( kg/ m 2 ) 22.65(kg/m 2 ) 4.01(kg/m 2 ) 20 BMI 95% 7.2. σ 2 = 9 µ 95% p B(1, p) X 1, X 2,, X p p ˆp = X = i X i/ i X i B(, p) p i X i N(p, p(1 p)) ( i X i p)/ p(1 p) P ( Z α/2 i X i p p(1 p) Z α/2 ) 1 α ˆp = i X i/ p ( p(1 p) P ˆp Z α/2 ) p(1 p) p ˆp + Z α/2 1 α p ˆp p P ( ˆp Z α/2 ˆp(1 ˆp) ) ˆp(1 ˆp) p ˆp + Z α/2 1 α p 100(1 α)% [ ] ˆp(1 ˆp) ˆp(1 ˆp) ˆp Z α/2, ˆp + Z α/ B(1, p) = p 95% A 100 A p 95% 95% 40% ±5% 28
29 X B(10, 0.5) 1 P (X = 1) = 10 C = P (X 1) = P (X = 0) + P (X = 1) = % 1.07% 0.5 hypothesis testig 8.2 1) H 0 H 1 α 2) p 3) p < α H 0 H 1 sigificat p α 10 p 0.5 H 0 : p = 0.5 ( p 0.5) H 1 : p < 0.5 H % α 5% 10% p 10 p P (X 1 H 0 ) =
30 p α p α 10 α = < α = > µ µ 0 α σ 2 H 0 : µ = µ 0 H 1 : µ µ 0 H 1 : µ > µ 0 H 1 : µ < µ 0 (X 1, X 2,, X ) X N(µ 0, σ 2 /) Z = X µ 0 σ/ N(0, 1) Z Z 0 0 α Z > Z α/2 Z Z α/2 Z z p P ( Z z H 0 ) α X * σ 2 s 2 µ 0 s/ 1 t t t σ µ = µ 50 5% H 0 : µ = 50 H 1 : µ X = ( )/5 = 68 z = / % Z α/2 = Z 0.05/2 = 1.96 z = > 1.96 p P ( Z 2.594) = P (Z 2.594, Z 2.594) = P (Z 2.594) + P (Z 2.594) = Φ( 2.594) + 1 Φ(2.594) = 2[1 Φ(2.594)] 2( ) = µ BMI (Body Mass Idex, kg/ m 2 ) 22.65(kg/m 2 ) 4.01(kg/m 2 ) 20 BMI 23kg/m 2 5% = 257 z = /
31 z = < 1.96 p P ( Z 1.399) = P (Z 1.399, Z 1.399) = P (Z 1.399) + P (Z 1.399) = Φ( 1.399) + 1 Φ(1.399) = 2[1 Φ(1.399)] 2( ) = % BMI 23kg/m 2 * 2 2 BMI 23kg/m 2 23kg/m = % p p p 0 α H 0 : p = p 0 H 1 : p p 0 (X 1, X 2,, X ) X i (i = 1,, ) 0 1 B(1, p 0 ) S = X X B(, p 0 ) N(p 0, p 0 (1 p 0 )) Z = S p 0 p0 (1 p 0 ) = ˆp p 0 p0 (1 p 0 )/ ( ˆp = S ) N(0, 1). 50% 100 5% H 0 : p = 0.5 H 1 : p p Z = /100 = 2.0 P ( Z 2.0) = 2[1 Φ(2.0)] 2( ) = /100 = = % 31
32 8.3 2 α 2 i) 1 (α ): ii) 2 (β ): 2 2 α 1 α 5% 1 5% p α 1 α β power 32
..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A
.. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.
2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2
1 1 Lambert Adolphe Jacques Quetelet (1796 1874) 1.1 1 1 (1 ) x 1, x 2,..., x ( ) x a 1 a i a m f f 1 f i f m 1.1 ( ( )) 155 160 160 165 165 170 170 175 175 180 180 185 x 157.5 162.5 167.5 172.5 177.5
ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.
24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)
(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47
4 Typeset by Akio Namba usig Powerdot. / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 (radom variable):
統計学のポイント整理
.. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!
Microsoft Word - 表紙.docx
黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i
1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l
1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr
( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1
( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S
ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.
23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%
renshumondai-kaito.dvi
3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10
2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)
3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)
0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()
³ÎΨÏÀ
2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
N cos s s cos ψ e e e e 3 3 e e 3 e 3 e
3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp
( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics
() Statistik19 Statistik () 19 ( ) (18 ) ()
010 4 5 1 8.1.............................................. 8............................................. 11.3............................................. 11.4............................................
tokei01.dvi
2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN
6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P
6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P
.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(
06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,
(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi
I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,
( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................
α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P +
Armitage 1 1.1 2 t *1 α β 1.2 µ x µ 2 2 2 α β 2.1 1 α β α ( ) β *1 t t 1 α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β 1 0 0 1 1 5 2.5 *3 2.3 *4 3 3.1 1 1 1 *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx
(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law
I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................
(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi
II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................
LLG-R8.Nisus.pdf
d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =
ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,
(1 C205) 4 8 27(2015) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7.... 1., 2014... 2. P. G., 1995.,. 3.,. 4.. 5., 1996... 1., 2007,. ii 2. F. ( ),.. 3... 4.,,. 5. G., L., D. ( )
t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1
t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.
1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +
( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n
II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K
II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F
(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t
6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]
ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d
A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9
(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y
[ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)
x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2
1 1 1.1 1.1.1 1 168 75 2 170 65 3 156 50... x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2 1 1 0 1 0 0 2 1 0 0 1 0 3 0 1 0 0 1...... 1.1.2 x = 1 n x (average, mean) x i s 2 x = 1 n (x i x) 2 3 x (variance)
II 2 II
II 2 II 2005 [email protected] 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.
A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0
(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP
untitled
[email protected] http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/
( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,
[ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
waseda2010a-jukaiki1-main.dvi
November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.
9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2
No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j
64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k
63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5
s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0
7 DW 7.1 DW u 1, u,, u (DW ) u u 1 = u 1, u,, u + + + - - - - + + - - - + + u 1, u,, u + - + - + - + - + u 1, u,, u u 1, u,, u u +1 = u 1, u,, u Y = α + βx + u, u = ρu 1 + ɛ, H 0 : ρ = 0, H 1 : ρ 0 ɛ 1,
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (
B 4 4 4 52 4/ 9/ 3/3 6 9.. y = x 2 x x = (, ) (, ) S = 2 = 2 4 4 [, ] 4 4 4 ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, 4 4 4 4 4 k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) 2 2 + ( ) 3 2 + ( 4 4 4 4 4 4 4 4 4 ( (
( ) ( )
20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))
24 6 I., X, x X. Radom Samplig with Replacemet ( ) 1,.,, 1 X 1, 2 X 2,..., X., X 1, X 2,..., X ( ).,.,,. Estimate of Populatio Parameters ( ),..,,.. 6
23 第 6 章 母数の推定 I 二項母集団の母比率 6.1 Audiece Ratig Survey (視聴率調査) テレビ局では視聴率の獲得にしのぎを削っているようである. 果たして, コンマ以下の数字に 意味はあるのだろうか? 2016 年 4 月 25 日 (月) 5 月 1 日 (日) ドラマ (関東地区) 視聴率ベスト 10 番組名 放送局 連続テレビ小説 とと姉ちゃん 真田丸 日曜劇場
1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C
0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,
20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................
I 1
I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg
20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33
9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x
2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin
L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P
005 5 6 y β + ɛ {x, x,, x p } y, {x, x,, x p }, β, ɛ E ɛ 0 V ɛ σ I 3 rak p 4 ɛ i N 0, σ ɛ ɛ y β y β y y β y + β β, ɛ β y + β 0, β y β y ɛ ɛ β ɛ y β mi L y y ŷ β y β y β β L P y P y + ɛ, ɛ y P y I P y,,
i
i 1 1 1.1..................................... 1 1.2........................................ 3 1.3.................................. 4 1.4..................................... 4 1.5......................................
meiji_resume_1.PDF
β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E
2000年度『数学展望 I』講義録
2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53
No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y
No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ
I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x
11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,
研修コーナー
l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l
1
1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................
