untitled

Similar documents
Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

有明海・八代海総合調査評価委員会-中間取りまとめ-

Analysis of Hypoxia Dynamics Using Pelagic and Benthic Biogeochemical Model: Focus on the Formation and Release of Hydrogen Sulfide Masayasu IRIE, Shu

9 1, , , 2002, 1998, 1988,

倉田.indd

bosai-2002.dvi

System to Diagnosis Concrete Deterioration with Spectroscopic Analysis IHI IHI IHI The most popular method for inspecting concrete structures for dete

2013SuikoMain.dvi

2.1 4,000 5, , 1999, 1995, km 1.3km 0.5km 7m 13m 10km 2 2.2

2 1 ( ) 2 ( ) i

LAGUNA LAGUNA 10 p Water quality of Lake Kamo, Sado Island, northeast Japan, Katsuaki Kanzo 1, Ni


Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2

29 Short-time prediction of time series data for binary option trade

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

I

揃 Lag [hour] Lag [day] 35

untitled

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

<95DB8C9288E397C389C88A E696E6462>

<362D985F95B62D97E996D88F E690B62D936390A391A E690B62E706466>

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

weak ferromagnetism observed on Shimotokuyama and Ayumikotan natural crystals behaves as pre dicted by Dzyaloshinsky and Moriya, while Wagasennin and

LAGUNA LAGUNA 8 p Saline wedge at River Gonokawa, Shimane Pref., Japan Saline water intrusion at estuary r

Isitobi et al m m Notomastus sp. 4m Seike et al a 1977


Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch


XFEL/SPring-8

Corrections of the Results of Airborne Monitoring Surveys by MEXT and Ibaraki Prefecture

10生活環境研究報告.indd


untitled

日立金属技報 Vol.34

”R„`‚å−w‰IŠv†^›¡‚g‡¾‡¯.ren

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

CHEMOTHERAPY Fig. 1 Body weight changes of pregnant mice treated orally with AM- 715 Day of sestation

*...X Z-.....F.{..

<31322D899C8CA982D982A95F985F95B65F2E696E6464>

* * 2

千葉県における温泉地の地域的展開

11_渡辺_紀要_2007

A comparative study of the team strengths calculated by mathematical and statistical methods and points and winning rate of the Tokyo Big6 Baseball Le

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

Numerical Analysis of Transpiration Influence with Reforested Trees on Fluctuation of Groundwater Level in Mu Us Desert, China OHTE, Nobuhito*, KoBASH

渡辺(2309)_渡辺(2309)

untitled


JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

CHEMOTHERAPY APR. 1984

筑波大学第一学群自然学類 水文学野外実験B実施計画

paper.dvi

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

Jpn. J. Health & Med. Soc., 26(2) (2016)

RTM RTM Risk terrain terrain RTM RTM 48

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

ÿþ

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

320 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /., No.1, -,* -,/ (,**1) 8 * ** *** * ** *** E#ect of Superheated Steam Treatment on the Preservation an

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

27 VR Effects of the position of viewpoint on self body in VR environment

202

九州大学学術情報リポジトリ Kyushu University Institutional Repository 看護師の勤務体制による睡眠実態についての調査 岩下, 智香九州大学医学部保健学科看護学専攻 出版情報 : 九州大学医学部保健学

国土技術政策総合研究所 研究資料

4.1 % 7.5 %

H10Masuki

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Fig. 1 Photography of exercise test by Arm Crank Ergometer. Fig. 2 Photography of exercise test by chair with caster. Arm Crank Ergometer Wheelchair T

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

HydroQual Inc. POM ECOMSED RCA 41km 20 Smagorinsky Mellor-Yamada 3 24 C N P 2

Journal of Fisheries Technology, 3 2, , , , 2011 The Development of Artificial Spawning Grounds for Ayu, Plecoglossus altivelis

1 UD Fig. 1 Concept of UD tourist information system. 1 ()KDDI UD 7) ) UD c 2010 Information Processing S


* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

デフレの定義(最新版).PDF


J. Jpn. Soc. Soil Phys. No. 126, p (2014) ECH 2 O 1 2 Calibration of the capacitance type of ECH 2 O soil moisture sensors Shoichi MITSUISHI 1 a

_念3)医療2009_夏.indd

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

2 33,**. + : +/* /++** +/* /++** +/* /++** /** /** F+ +*** F+ +*** / 1*42.,43 /14+,*42 /, , 134,.,43 / 0-41,*42.4, -/41,*43,34,,+4. +

perature was about 2.5 Ž higher than that of the control irrespective of wind speed. With increasing wind speeds of more than 1m/s, the leaf temperatu

IR0036_62-3.indb

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

Development and Field Test of a Portable Camera System for Long Term Observation of Natural Dam Ken AKIYAMA (Tohoku Univ.), Genki YAMAUCHI (Tohoku Uni

(1) 2

untitled

_’£”R‡Ù‡©


Transcription:

5 31 07 H2S ) 1

Map of Ishikari River 2

COD 1997 3

4

5

Rice field along the Ishikari River 6

7

Snow melting in Ishikari river L-Q, 8

H. Tachibana, K. Yamamoto, K. Yoshizawa, and Y. Magara, Non Point Pollution of Ishikari River, Hokkaido, Japan Water Science & Tech. Vol.44 No.7,1-8 () 9

Flooding period Naie(St.6) Snow-melting Period Naie St.6) 10

11

12

Runoff characteristics of chemical water components Water quality is affected by the characteristics of the water's area of origin. We tried to clarify the runoff characteristics of chemical components from the relationship between specific water flux (Q/A) and specific runoff load of chemical components (L/A). L/A= C (Q/A) n L runoff load of chemical components in g/s, Q: flux in m 3 /s, A: watershed area in km 2, C, n: constant coefficient L = c Q, c: concentration of chemical component in mg/l When n>1 (increasing concentration of chemical component), the water component is of washout type. When n=1, the concentration is stable. When n<1, the concentration is decreasing and is of dilution type. Smith et al. (1977) Wat. Res. Stevens et al. (1978) Wat. Res. -6C-Q L-QL=kQ n -DN PP n>1 -DP n<1 (1978) BOD, COD, TN, TP, SS L=aQ+b -SS - - k, n 2007/3/15 13

(1980) (1983) (1986) (1973-93) (1991) L-Q, C-Q k,n L=f(Q) n>1 L = f (Q, S) n<1 2007/3/15 14

n: C n L=c.Q L/A=CQ/A n c = C (Q/A) n-1 C R R Osamunai (St. 3) Naie (St. 6) N R n C N R n C Snow melting 15 0.92 1.86 313 15 0.95 1.97 1016 SS Flooding 7 0.98 2.32 1830 7 0.90 2.07 3020 Annual 23 0.89 1.85 1220 21 0.97 1.68 810 Snow melting 15 0.82 0.65 0.978 15 0.91 0.86 1.50 BOD Flooding 7 0.97 1.02 3.85 7 0.96 1.31 6.94 Annual 23 0.79 0.57 0.83 21 0.94 0.87 1.96 Snow melting 15 0.87 1.10 3.85 15 0.92 1.41 12.6 TOCT Flooding 7 0.99 1.82 37.4 7 0.87 1.45 32.1 Annual 23 0.80 0.66 2.19 21 0.90 1.04 10.4 Snow melting 15 0.40 0.65 0.299 15 0.84 0.91 1.43 TOCF Flooding 7 0.98 1.02 2.27 7 0.97 1.02 2.60 Annual 22 0.62 0.38 0.411 21 0.93 0.72 1.36 Snow melting 15 0.83 1.48 6.91 15 0.76 1.92 18.2 TOCss Flooding 7 0.99 2.22 45.2 7 0.85 1.53 27.9 Annual 22 0.83 1.16 5.74 21 0.85 1.29 12.0 Snow melting 15 0.96 0.54 2.18 15 0.96 0.75 4.14 Cl- Flooding 7 1.00 0.67 3.17 7 0.98 0.80 3.74 Annual 23 0.91 0.49 1.13 21 0.96 0.76 4.03 Snow melting 15 0.63 0.59 1.51 15 0.70 0.36 0.420 SO4 2- Flooding 7 0.91 0.85 7.71 7 0.98 0.72 6.42 Annual 23 0.89 0.48 2.24 21 0.95 0.62 4.91 Snow melting 15 0.95 0.64 0.130 15 0.97 0.80 0.250 4.3Bx Flooding 7 1.00 0.70 0.169 7 0.98 0.81 0.264 Annual 23 0.96 0.72 0.122 21 0.98 0.78 0.239 Snow melting 15 0.98 0.77 5.58 15 0.99 0.82 5.13 SiO2 Flooding 7 1.00 0.78 10.2 7 0.96 0.83 9.50 Annual 23 0.82 0.67 4.60 21 0.89 0.65 4.35 Snow melting 15 0.49 0.43 0.041 15 0.72 0.87 0.099 NH4 + -N Flooding 7 0.86 0.56 0.040 7 0.86 2.10 0.770 Annual 23 0.50 0.64 0.050 21 0.55 0.66 0.088 Snow melting 0.15 0.59 0.72 0.176 15 0.93 1.00 0.332 NO3- -N Flooding 7 0.99 1.10 0.62 7 0.98 0.95 0.450 Annual 23 0.90 1.11 0.538 21 0.95 1.23 0.800 Snow melting 15 0.64 0.60 0.204 15 0.82 0.91 0.404 TIN Flooding 7 0.99 1.01 0.650 7 0.99 1.03 0.660 Annual 23 0.83 0.89 0.389 21 0.90 1.01 0.761 15

Osamunai (St. 3) Naie (St. 6) N R n C N R n C Snow melting 15 0.92 1.86 313 15 0.95 1.97 1016 SS Flooding 7 0.98 2.32 1830 7 0.90 2.07 3020 Annual 23 0.89 1.85 1220 21 0.97 1.68 810 Snow melting 15 0.82 0.65 0.978 15 0.91 0.86 1.50 BOD Flooding 7 0.97 1.02 3.85 7 0.96 1.31 6.94 Annual 23 0.79 0.57 0.83 21 0.94 0.87 1.96 Snow melting 15 0.87 1.10 3.85 15 0.92 1.41 12.6 TOC T Flooding 7 0.99 1.82 37.4 7 0.87 1.45 32.1 Annual 23 0.80 0.66 2.19 21 0.90 1.04 10.4 Snow melting 15 0.40 0.65 0.299 15 0.84 0.91 1.43 TOC F Flooding 7 0.98 1.02 2.27 7 0.97 1.02 2.60 Annual 22 0.62 0.38 0.411 21 0.93 0.72 1.36 Snow melting 15 0.83 1.48 6.91 15 0.76 1.92 18.2 TOCss Flooding 7 0.99 2.22 45.2 7 0.85 1.53 27.9 Annual 22 0.83 1.16 5.74 21 0.85 1.29 12.0 Snow melting 15 0.96 0.54 2.18 15 0.96 0.75 4.14 Cl- Flooding 7 1.00 0.67 3.17 7 0.98 0.80 3.74 Annual 23 0.91 0.49 1.13 21 0.96 0.76 4.03 SO 4 2- Snow melting 15 0.63 0.59 1.51 15 0.70 0.36 0.420 Flooding 7 0.91 0.85 7.71 7 0.98 0.72 6.42 Annual 23 0.89 0.48 2.24 21 0.95 0.62 4.91 Snow melting 15 0.95 0.64 0.130 15 0.97 0.80 0.250 g TOC F Flooding 7 0.98 1.02 2.27 7 0.97 1.02 2.60 Annual 22 0.62 0.38 0.411 21 0.93 0.72 1.36 Snow melting 15 0.83 1.48 6.91 15 0.76 1.92 18.2 TOCss Flooding 7 0.99 2.22 45.2 7 0.85 1.53 27.9 Annual 22 0.83 1.16 5.74 21 0.85 1.29 12.0 Snow melting 15 0.96 0.54 2.18 15 0.96 0.75 4.14 Cl- Flooding 7 1.00 0.67 3.17 7 0.98 0.80 3.74 Annual 23 0.91 0.49 1.13 21 0.96 0.76 4.03 SO 4 2- Snow melting 15 0.63 0.59 1.51 15 0.70 0.36 0.420 Flooding 7 0.91 0.85 7.71 7 0.98 0.72 6.42 Annual 23 0.89 0.48 2.24 21 0.95 0.62 4.91 Snow melting 15 0.95 0.64 0.130 15 0.97 0.80 0.250 4.3Bx Flooding 7 1.00 0.70 0.169 7 0.98 0.81 0.264 Annual 23 0.96 0.72 0.122 21 0.98 0.78 0.239 Snow melting 15 0.98 0.77 5.58 15 0.99 0.82 5.13 SiO2 Flooding 7 1.00 0.78 10.2 7 0.96 0.83 9.50 Annual 23 0.82 0.67 4.60 21 0.89 0.65 4.35 Snow melting 15 0.49 0.43 0.041 15 0.72 0.87 0.099 NH + 4 -N Flooding 7 0.86 0.56 0.040 7 0.86 2.10 0.770 Annual 23 0.50 0.64 0.050 21 0.55 0.66 0.088 Snow melting 0.15 0.59 0.72 0.176 15 0.93 1.00 0.332 NO - 3 -N Flooding 7 0.99 1.10 0.62 7 0.98 0.95 0.450 Annual 23 0.90 1.11 0.538 21 0.95 1.23 0.800 Snow melting 15 0.64 0.60 0.204 15 0.82 0.91 0.404 TIN Flooding 7 0.99 1.01 0.650 7 0.99 1.03 0.660 Annual 23 0.83 0.89 0.389 21 0.90 1.01 0.761 16

Table 3. Daily runoff loads of chemical components during three periods (snow melting period, flooding period and annual period). Snow melting Period kg/km 2 /day Osamunai (St. 3) Naie (St. 6) Flooding period kg/km 2 /day Annual period kg/km 2 /day Snow melting Period kg/km 2 /day Flooding period kg/km 2 /day Annual period kg/km 2 /day Q (x10 3 m 3 /km 2 /day) 6.9 19.5 3.9 6.7 13.6 3.2 SS 276.8 20100 467 695 10125 386 BOD 16.3 73.6 11.5 14.2 60.6 9.2 TOCT * 20.8 463.9 23.1 31.5 232.9 29.7 TOCF* 4.90 44.30 10.4 12.1 34.9 10.4 TOCSS* 15.2 509.6 14.3 13.9 181.5 16.7 NH4 + -N 1.19 1.29 0.562 0.93 2.47 0.801 NO3- -N 2.40 11.0 1.50 2.25 6.65 1.31 TIN 3.83 11.9 2.09 3.38 8.63 2.36 DN 4.36 4.27 TN 0.58 0.81 PN 5.00 5.23 DRP 0.030 0.024 DP 0.078 0.054 PRP 0.203 0.456 TP 0.385 0.687 PP 0.475 0.752 Cl - 47.6 89.2 20.1 51.1 70.4 26.3 SO4 2-29.0 175 40.5 13.9 137 50.4 4.3Bx** 2.21 4.56 1.08 2.71 4.83 1.47 SiO2 78.0 47.0 53.5 169 41.3 *TOC = 0.375 COD(Cr); Flooding period and period. **10 3 eq/km 2 /day 17

Table 4. Average concentration of loads of chemical components during three periods (snow melting period, flooding period and annual period) The values in that table are calculated by flow weighted method. Snow Flooding melting period Period Osamunai (St. 3) Naie (St. 6) Snow Annual Flooding melting period period Period Annual period mg/l mg/l mg/l mg/l mg/l mg/l Q (m 3 /s) 274 771 152 684 1394 325 SS 39.9 1030 121 103.9 743 122 BOD 2.4 3.8 3 2.1 4.4 2.9 TOC T * 3.0 23.8 6 4.7 17.1 5.3 TOC F * 0.7 2.30 2.7 1.8 2.6 3.3 TOC SS * 2.20 26.1 3.7 2.1 13.4 5.3 NH + 4 -N 0.17 0.07 0.15 0.14 0.18 0.25 NO - 3 -N 0.35 0.31 0.39 0.34 0.49 0.41 TIN 0.55 0.34 0.54 0.51 0.63 0.73 Cl - 6.9 4.6 5.2 7.6 5.2 8.3 2- SO 4 4.2 9 10.5 2.1 10 15.9 4.3Bx** 0.319 0.234 0.281 0.404 0.335 0.463 SiO 2 10.0 4.0 12.2 8.0 12.4 13.0 *TOC = 0.375 COD(Cr); Flooding period and Yearly **meq/l CONCLUSIONS We studied how non-point pollution relates to the characteristics of runoff loads of chemical components of the Ishikari River. Non-point pollution greatly influences the water quality of the Ishikari River. In other words, chemical components are present in great quantities as non-point pollutants on the ground surface and in soil. Because of the land area used by people expands, pollutant loads rise when the river rises. For the Ishikari river basin, preservation measures are necessary to control non-point pollutants, so as to maintain the environment of the basin in its natural state, and improved agricultural production methods are necessary to decrease non-point pollution. We must rethink our approach to water if we are to preserve it successfully. 18

1993 n n n 1 n 19

1998. L/A= C (Q/A) n C 20

21

22

2001 23

e 0.23 K NO3 =e0.12 24

L= Q/Q 0 k 0 e Q/Q 0 L Q 9 5444-456 1996 25

Methods-Data processing Quantification of the magnitude of the hysteresis Clockwise rotation type Anticlockwise rotation type L S 1 L S 1 S 2 S 2 Q Q S 1 /(S 1 +S 2 )represents magnitude of the hysteresis. S 1 /(S 1 +S 2 )=Nutrient Load Hysteresis Coefficient (NLHC) 9 Methods-Data processing Classification of the characteristics of nutrients load L by modeling with power number n in the L = CQ n and H n <0.9 0.9 n 1. 1 1.1< n 0.25<H D ++ C ++ I ++ 0.1 <H 0.25 D + C + I + 0.1 H 0.1 D C I 0.25< H 0.1 D - C - I - H < 0.25 D -- C -- I -- H: Nutrient Load Hysteresis Coefficient, n: Power of the flow rate D: Dilution type, C: Constant type, I: Increasing type ++ to +: clockwise rotation type, none: little hysteresis, - to --: anticlockwise rotation type 26

Results- Classification of the characteristics of nutrients load L by modeling with power number n in the L = CQ n and H Components n H Classification Max. Av. Min. S.D. Max. Av. Min. S.D. Turbidity 2.13 1.67 1.18 0.25 0.86 0.46 0.00 0.29 I ++ SS 2.29 1.83 1.05 0.34 0.79 0.51 0.11 0.27 I ++ NH + 4 -N 1.33 1.05 1.00 0.10 0.61-0.03-0.38 0.28 C NO - 2 -N 1.61 1.16 1.00 0.22 0.27-0.02-0.66 0.28 I NO - 3 -N 1.37 1.04 0.88 0.21 0.13-0.12-0.30 0.15 C - DN 1.33 1.04 0.87 0.18 0.14-0.10-0.28 0.14 C TN 1.40 1.20 1.06 0.11 0.31 0.17 0.02 0.10 I + PN 2.07 1.57 1.04 0.28 0.70 0.43-0.01 0.27 I ++ DRP 1.19 0.89 0.21 0.28 0.73 0.16-0.05 0.25 D + DP 1.38 0.91 0.35 0.30 0.96 0.33-0.16 0.38 C ++ TP 1.91 1.51 0.91 0.26 0.77 0.51 0.07 0.26 I ++ PP 1.94 1.59 0.92 0.30 0.77 0.50-0.04 0.29 I ++ TOC 2.04 1.62 1.04 0.29 0.81 0.34-0.40 0.42 I ++ DOC 1.67 1.14 0.95 0.21 0.66-0.01-0.80 0.54 I POC 2.24 1.75 1.06 0.32 0.84 0.39-0.40 0.44 I ++ Hinuma R And Shirakawa R. L-Q L-Q C=K Q -1 27

Sebangau R. 28

H. Tachibana, R. Iqbal, S. Akimoto, M. Kobayashi, K. Ohno, A. Mori, T. Itakura, H. Takahashi, K. Utosawa, N. Sumawijaya, S. Dohong, U. Darung and S. Limin Chemical characteristics of water at the upper reaches of the sebangau river, central kalimantan, indonesia TROPICS 15(4),411-415,2006 29

30

L-Q C, 31

Brisbane R. 32