5b_08.dvi

Similar documents

untitled

2005 1

Doctor Thesis Template

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

1

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE

gk9c02a.dvi

main.dvi

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

Sonnet - -[1] Sonnet Sonnet Sonnet Sonnet Sonnet SONNET [2]

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

J. Jpn. Inst. Light Met. 65(6): (2015)

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

MKT-TAISEI Co.,Ltd.

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

a) Antenna Technologies for Wireless Body Area Networks Masaharu TAKAHASHI a) BAN BAN 2GHz On-body 2.45 GHz In-body BAN On-body In-body MICS 1. LAN Bo

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

, Evaluation of Certificate Verification Methods in Mobile Environment Katsuyuki UMEZAWA,, Mitsuhiro OIKAWA, Seiichi SUSAKI, Satoru TEZUKA, and Shigei

平常時火災における消火栓の放水能力に関する研究

Fig. 1. Relation between magnetron anode current and anode-cathod voltage. Fig. 2. Inverter circuit for driving a magnetron. 448 T. IEE Japan, Vol. 11

Accuracy check of grading of XCT Report Accuracy check of grading and calibration of CT value on the micro-focus XCT system Tetsuro Hirono Masahiro Ni

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

渡辺(2309)_渡辺(2309)

IPSJ SIG Technical Report Vol.2011-MUS-91 No /7/ , 3 1 Design and Implementation on a System for Learning Songs by Presenting Musical St

LD

Duplicate Near Duplicate Intact Partial Copy Original Image Near Partial Copy Near Partial Copy with a background (a) (b) 2 1 [6] SIFT SIFT SIF

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

EMC 2 EMC 3 EMC EMC PCB EMC [3] [4] [21] PCB EMC EMC PCB EMC SI EMC 2. EMC PCB EMC 1 GND 2 Signal Integrity SI Common mode CM Cross talk 3 4 Immunity

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

Modal Phrase MP because but 2 IP Inflection Phrase IP as long as if IP 3 VP Verb Phrase VP while before [ MP MP [ IP IP [ VP VP ]]] [ MP [ IP [ VP ]]]

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

untitled

X線分析の進歩36 別刷

main.dvi

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b


CHARACTERISTICS OF LOVE WAVE GENERATED AROUND A DIPPING BASEMENT By Susumu NAKAMURA, Iwao SUETOMI, Shinichi AKIYAMA and Nozomu YOSHIDA Source mechanis

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

FDTD(Finite Difference Time Domain) Maxwell FDTD FDTD FDTD (FFT) FDTD CP(Contour-Path)-FDTD i

LED a) A New LED Array Acquisition Method Focusing on Time-Gradient and Space- Gradient Values for Road to Vehicle Visible Light Communication Syunsuk

藤村氏(論文1).indd

013858,繊維学会誌ファイバー1月/報文-02-古金谷

MainOfManuscript.dvi

RIBF

プリント

フジクラ技報 第127号

JIS Z803: (substitution method) 3 LCR LCR GPIB

プラズマ核融合学会誌11月【81‐11】/小特集5

JFE.dvi

, [g/cm 3 ] [m/s] 1 6 [kg m 2 s 1 ] ,58 1, ,56 1, , ,58 1,

** Department of Materials Science and Engineering, University of California, Los Angeles, CA 90025, USA) Preparation of Magnetopulmbite Type Ferrite

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

2 DS SS (SS+DS) Fig. 2 Separation algorithm for motorcycle sound by combining DS and SS (SS+DS). 3. [3] DS SS 2 SS+DS 1 1 B SS SS 4. NMF 4. 1 (NMF) Y

日立金属技報 Vol.34

thesis.dvi

出展者マニュアル 01章 事務局からのお知らせ

3D UbiCode (Ubiquitous+Code) RFID ResBe (Remote entertainment space Behavior evaluation) 2 UbiCode Fig. 2 UbiCode 2. UbiCode 2. 1 UbiCode UbiCode 2. 2

2 The Characteristics of Two Negative Peaks on Visual Evoked Potentials with Depth Perception Yoichi MIYAWAKI, Yasuyuki YANAGIDA, Taro MAEDA, and Susu

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

GD152


IPSJ SIG Technical Report Vol.2012-HCI-149 No /7/20 1 1,2 1 (HMD: Head Mounted Display) HMD HMD,,,, An Information Presentation Method for Weara

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

原稿.indd

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

Run-Based Trieから構成される 決定木の枝刈り法


07_toukei06.dvi

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

1_26.dvi

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

Keysight MIMO MIMO Cluster n Path n σ n, AoA σ n, AoD Θ n, AoA MS/UE Array Boresight Rx0 Tx0 Θ n, AoD LOS BS Array Boresight Θ n+1, AoA Rx1 Tx1 Path n


cp57_h1_0312_n

2

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

‡Â‡È‡ª‡é

JFE(和文)No.4-12_下版Gのコピー

2003/3 Vol. J86 D II No Fig. 1 An exterior view of eye scanner. CCD [7] CCD PC USB PC PC USB RS-232C PC

LAGUNA LAGUNA 8 p Saline wedge at River Gonokawa, Shimane Pref., Japan Saline water intrusion at estuary r

IEEE ZigBee 2.4GHz 250kbps O-QPSK DSSS Bluetooth IEEE GHz 3Mbps G-FSK FHSS PC LAN IEEE b 2.4GHz 11Mbps CCK DSSS LAN LAN IEE

橡A PDF

untitled

untitled

倉田.indd

01津行篤士ほか.indd

Transcription:

, Circularly Polarized Patch Antennas Combining Different Shaped Linealy Polarized Elements Takanori NORO,, Yasuhiro KAZAMA, Masaharu TAKAHASHI, and Koichi ITO 1. GPS LAN 10% [1] Graduate School of Science and Technology, Chiba University, Chiba-shi, 263 8522 Japan Japan Radio Co., Ltd., Mitaka-shi, 181 8510 Japan Japan Aerospace Exploration Agency, Sagamihara-shi, 229 8510 Japan Research Center for Frontier Medical Engineering, Chiba University, Chiba-shi, 263 8522 Japan Graduate School of Engineering, Chiba University, Chibashi, 263 8522 Japan [2] 2 90 [3] 10% [4][6] [7][9] [4], [5] 0.5λ [6] 90 2 8% 2dB 90 G/T B Vol. J91 B No. 5 pp. 595 604 c 2008 595

2008/5 Vol. J91 B No. 5 [7], [8] [10] [9] % [11] % 10% 2. 3. 4. 5. 3. 6. 2. 1 1 AL 1 1 AL 2 (Pcut) ε r=1 Ensemble [12] 1 3. 3. 1 [11] (a) Top view (b) Side view 1 Fig. 1 Geometry of proposed circularly polarized patch antenna. 1 Table 1 Fundamental antenna parameters. Length and width of excited patch AL 1 89 mm Length and width of parasitic patch AL 2 73 mm Chamfered depth Pcut 35 mm Distance between excited patch and GND TL 8mm Distance between excited and parasitic patch TH 10 mm 596

(a) Top view (b) Side view 2 Fig. 2 Geometry of conventional corner-truncated patch antenna. 2 2 I 1I 2 I 1I 2 f 1 f 2f 1f 2 f o f 2 f 1 /f o Q f o Q Q 2050 25% 2 1 (TL = 8 mm) 1.6 GHz Q 10 ΔS/S Q =0.5 ΔS/S =5% [11] ΔS/S =15.5% 3. 2 1 1 3 3 Fig. 3 Calculated frequency response of axial ratio. 1 3 3dB 12% 1.55 GHz (f alower ) 1.66 GHz (f aupper) 1.6 GHz (f acenter) 0.17 db0.20 db f alower f aupper f acenter 4. 2 1 4. 1 4 12.5 GHz 1.46 GHz1.98 GHz 30% 597

2008/5 Vol. J91 B No. 5 (a) t =0 (b)t = T/4 4 Fig. 4 Frequency response of return loss. (excited patch only) (c) t = T/2 (d) t =3T/4 6 Fig. 6 Time variation of currents on excited patch. (excited patch only) (a) Frequency: 1.46 GHz (b) Frequency: 1.55 GHz (c) Frequency: 1.60 GHz (d) Frequency: 1.66 GHz (e) Frequency: 1.76 GHz (f) Frequency: 1.98 GHz 5 Fig. 5 Current distributions on excited patch. (excited patch only) 4. 2 5 4 1.46 GHz1.98 GHz 3 1.55 GHz 1.66 GHz 1.6 GHz 1.66 GHz 1.98 GHz 1.76 GHz 5(a) (f) 1.46 GHz 1.98 GHz 1.46 GHz 2 I 1 1.98 GHz I 2 5(b)(e) (b)(d) 1.6 GHz 6 3 1.6 GHz 11 db 4. 3 7 I 1 I 4 [11] P 1 598

7 Fig. 7 Schematic of currents on proposed patch antenna. (a) Amplitude (a) Amplitude (b) Phase difference 9 P1P2 I1-I4 Fig. 9 Calculated frequency response of current I1-I4 at observation point P1 and P2. (b) Phase difference 8 P1 I1I2 Fig. 8 Calculated frequency response of current I1, I2 at observation point P1. P 2 P 1 7 8 9(a) I 2 8(a) I 1 f 1 =1.44 GHz I 2 f 2 =1.9GHz f 1 f 2 4.2 I 2 1.4 GHz I 1 1.44 GHz I 1 8(b) I 1 I 2 3 3dB 1.51.7 GHz 150 TH 9 8 9(a) I 2 I 1 I 4 7 I 1 1.4 GHz 1.7 GHz I 2 1.9 GHz 2.1 GHz I 1 I 2 I 1 1.51.7 GHz I 1I 2 1.54 GHz I 1 I 2 107 599

2008/5 Vol. J91 B No. 5 10 t Fig. 10 Loci of elliptical waves radiated from excited and parasitic patch and of their superposition. I 3 I 1 1.7 GHz I 4 1.7 GHz I 3 I 2 1.54 GHz I 3 I 4 114 P1 I 1I 2 P2 I 3I 4 9 P1 3 1.54 GHz 10 2.7 db 4.4 db P2 P1 βth 3 11 Fig. 11 Schematic of currents on proposed patch antenna. 11 I ai b I ci d I ci d I ai b 9(a) I 1I 2 I ci d I 3I 4 I a I b I a I b I ci d I ci d I ci d I ci d (I a + I c)(i b + I d) 7 I 1 (I a + I c) 1.44 GHz 1.7 GHz I 2 (I b + I d) 1.7 GHz 1.9 GHz 2.1 GHz 1.7 GHz (I a + I c) I a I b I c I d I ci d 600

I a I c I b I d f a f b f a >f b 2(f a f b )/(f a + f b ) 9 I 1 I 3 C 13I 2 I 4 C 24 C 13 =0.19C 24 =0.21 I 1 I 2 I 3( C 13I 1) I 4( C 24I 2) I a I c I b I d 5. 12 2 2 1 0.5 mm 200 mm 12 Fig. 12 Photograph of fabricated antenna. 2 Table 2 Fabricated antenna parameters. Length and width of excited patch AL 1 87 mm Length and width of parasitic patch AL 2 71 mm Chamfered depth Pcut 35 mm Distance between excite patch and GND TL 8mm Distance between excite and parasitic patch TH 10 mm 13 VSWR Fig. 13 Measured and simulated VSWR. VSWR 13 1.51.7 GHz VSWR 90 180 1.51.7 GHz VSWR 601

2008/5 Vol. J91 B No. 5 (a) Measured and simulated gain (a) φ =0 (b) Measured and simulated axial ratio 14 Fig. 14 Measured and simulated antenna gain and axial ratio. 14 3dB8.9 dbi 1.66 GHz φ =0 φ =90 15 θ =90 270 θ =0 3dB φ =0 59 φ =90 60 φ =0 67 φ =90 68 3dB φ =0 96 φ =90 71 φ =0 109 φ =90 93 3dB 3dB (b) φ =90 15 Fig. 15 Measured and simulated radiation patterns. 6. 12% 3dB 602

[1] (http://www.jrc.co.jp/) Fleet F77 Maritime Satellite Communication Terminal. [2] J.D. Kraus, Antennas, McGraw-Hill, N.Y., 1959. [3] J.Q. Howel, Microstrip antennas, IEEE Trans. Antennas Propag., vol.ap-23, no.1, pp.90 93, Jan. 1975. [4] 4 Bvol.J65-B, no.10, pp.1267 1274, Oct. 1982. [5] H. Nakano, H. Tanaka, T. Honma, H. Mimaki, and J. Yamaguchi, Low-profile helical array antenna fed from a radial waveguide, IEEE Trans. Antennas Propag., vol.40, no.3, pp.279 284, March 1992. [6] Bvol.J68-B, no.4, pp.515 522, April 1985. [7] A P81-102, Nov. 1981. [8] T. Teshirogi, M. Tanaka, and W. Chujo, Wideband circularly polarized array antennas with sequential rotations and phase shift of elements, Proc. Int. Symp. on Antennas and Propagat., vol.i, pp.117 120, Japan, Aug. 1985. [9] 2 Bvol.J65-B, no.2, pp.238 243, Feb. 1982. [10] J.R. James and P.S. Hall, eds., Handbook of microstrip antennas, Peter Peregrinus, Ltd., London, 1989. [11] Bvol.J63-B, no.6, pp.559 565, June 1980. [12] Ansoft, Ansoft Ensemble user s Manual. A 1 TL Fig. A 1 Simulated axial ratio vs. spacing between excited patch and ground plane, TL. A 2 TH Fig. A 2 Simulated axial ratio vs. spacing between excited patch and parasitic patch, TH. 1 A 1 A 5 1 TL f alower 2 TH f aupper 3 Pcut f acenter 4 AL 1 A 3 Pcut Fig. A 3 Simulated axial ratio vs. chamfered length of excited patch, Pcut. 5 AL 2 603

2008/5 Vol. J91 B No. 5 51 53 11 55 19 IEEE A 4 AL 2 (AL 1 = 89 mm) Fig.A 4 Simulated axial ratio vs. length and width of parasitic patch, AL 2 (AL 1 = 89 mm). 6 12 16 16 RLSA IEEE A 5 AL 2 (AL 1 = 95 mm) Fig.A 5 Simulated axial ratio vs. length and width of parasitic patch AL 2 (AL 1 = 95 mm). A 1 A 5 19 9 4 12 17 49 51 54 9 15 17 18 19 IEEE AP-S Distinguished Lecturer AdCom IEEE FellowAAAS 8 10 10 IEEE 604