空間多次元 Navier-Stokes 方程式に対する無反射境界条件

Similar documents
JFE.dvi

200708_LesHouches_02.ppt

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

第5章 偏微分方程式の境界値問題

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

工学的な設計のための流れと熱の数値シミュレーション

Japanese Journal of Family Sociology, 29(1): (2017)

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

空力騒音シミュレータの開発

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

: 1g99p038-8

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

Numerical Analysis II, Exam End Term Spring 2017

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi


Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

IV (2)

Classic HD:ŠŸŠp”Ò:Discovery:‘‚ŠÞ:‚²„¤:Ÿ_Ł¶:Simulation_for_HRO.dvi

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

揃 Lag [hour] Lag [day] 35

Q [4] 2. [3] [5] ϵ- Q Q CO CO [4] Q Q [1] i = X ln n i + C (1) n i i n n i i i n i = n X i i C exploration exploitation [4] Q Q Q ϵ 1 ϵ 3. [3] [5] [4]

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

The 15th Game Programming Workshop 2010 Magic Bitboard Magic Bitboard Bitboard Magic Bitboard Bitboard Magic Bitboard Magic Bitboard Magic Bitbo

T07M cm 3 cm/sec FreeFEM++ FreeFEM++

日本数学会・2011年度年会(早稲田大学)・企画特別講演

音響問題における差分法を用いたインパルス応答解析予測手法の検討 (非線形波動現象の数理と応用)

Fig. Division of unbounded domain into closed interior domain and its eterior domain. Zienkiewicz [5, 6] Burnett [7, 8] [3] The conjugated Ast


IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

untitled

Web Two-phase Flow Analyses Using Interface Volume Tracking Tomoaki Kunugi Kyoto University 1) 2) 3)

Quantitative Relationship between SAR and Temperature Rise inside Eyeball in a Realistic Human Head Model for 1.5 GHz-Microwave Exposure Kiyofumi Taka

28 Horizontal angle correction using straight line detection in an equirectangular image

微分方程式の解を見る

TM

soturon.dvi

橡表紙参照.PDF

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

( )

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

DEIM Forum 2009 E

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

Web Web Web Web 1 1,,,,,, Web, Web - i -

untitled

JAXA-SP indd

xia2.dvi

プログラム

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

季報2010C_P _4-3.indd

KII, Masanobu Vol.7 No Spring

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2


4 i

早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Ec

_Y05…X…`…‘…“†[…h…•

RIMS Kôkyûroku Bessatsu B3 (22), Numerical verification methods for differential equations: Computer-assisted proofs based on infinite dimension

kokyuroku.dvi

, COMPUTATION OF SHALLOW WATER EQUATION WITH HIERARCHICAL QUADTREE GRID SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

55_1-4_特集4部_2-2.qxd

Consideration of Cycle in Efficiency of Minority Game T. Harada and T. Murata (Kansai University) Abstract In this study, we observe cycle in efficien

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

16_.....E...._.I.v2006

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 *

先端社会研究 ★5★号/4.山崎


yasi10.dvi

<31322D899C8CA982D982A95F985F95B65F2E696E6464>

dvi

g µν g µν G µν = 8πG c 4 T µν (1) G µν T µν G c µ ν 0 3 (1) T µν T µν (1) G µν g µν 2 (1) g µν 1 1 描

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

4.1 % 7.5 %

A Precise Calculation Method of the Gradient Operator in Numerical Computation with the MPS Tsunakiyo IRIBE and Eizo NAKAZA A highly precise numerical

Untitled

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

ON STRENGTH AND DEFORMATION OF REINFORCED CONCRETE SHEAR WALLS By Shigeru Mochizuki Concrete Journal, Vol. 18, No. 4, April 1980, pp. 1 `13 Synopsis A


Web Basic Web SAS-2 Web SAS-2 i

sakigake1.dvi

Transcription:

81 Navier-Stokes Poinsot Lele Poinsot Lele Thompson Euler Navier-Stokes A Characteristic Nonreflecting Boundary Condition for the Multidimensional Navier-Stokes Equations Takaharu YAGUCHI, Kokichi SUGIHARA Graduate School of Information Science and Technology, University of Tokyo (Received 4 June, 004; in revised form 4 January, 005) Because the computational resources are finite, one needs to truncate the computational domain when he/she simulates a physical problem. This truncation gives rise to non-physical artificial boundaries and one cannot obtain proper solutions unless appropriate boundary conditions on such boundaries are imposed. Practically nonreflecting boundary conditions, which are boundary conditions that prevent the generation of reflections, are of great importance. By the reason of the practical robustness and the simplicity of implementation, the Poinsot Lele boundary condition is one of the most popular methods for the Navier-Stokes equations right now. Their method is based on Thompson s boundary condition for the Euler equations, which, however, is essentially one-dimensional. Therefore the Poinsot Lele boundary condition is valid only when the flow is perpendicular to the boundary theoretically. Here we propose a nonreflecting boundary condition for the Euler equations which does not have the assumption on the direction of flow. We also discuss its extension to the Navier-Stokes equations. Our basic idea is to estimate the direction of the flow from numerical data. KEY WORDS : Nonrefrecting Boundary Conditions, Absorbing Boundary Conditions, NSCBC, DNS, Computational Aeroacoustics, Poinsot Lele Boundary Conditions 1 113 8656 7 3 1 E-mail: yaguchi@mist.i.u-tokyo.ac.jp

8 Navier-Stokes 3, 7, 17) DNS Poinsot Lele 1) Poinsot Lele ( Euler ) Thompson 15) Dutt 5) Thompson 1 Hedstrom 8) 1 3, 13, 17) 6) 11) 13) 14) PML (Perfectly Matched Layer) 1) Hedstrom Thompson 17) 4) 1 Euler Navier-Stokes Euler Euler ρ ρ u 1 + A 1 (ρ, u 1, u, s) u 1 t u u s s ρ u 1 +A (ρ, u 1, u, s) = 0 (1) u s

83 u 1 ρ 0 0 c /ρ u 1 0 p/ρs A 1 (ρ, u 1, u, s) =, 0 0 u 1 0 0 0 0 u 1 u 0 ρ 0 0 u 0 0 A (ρ, u 1, u, s) = c /ρ 0 u p/ρs 0 0 0 u ρ p u 1 u x y s γ s = pρ γ c c = γp/ρ Euler α 1 α α 1 A 1 + α A Navier-Stokes Poinsot Lele Thompson Hedstrom 1 Hedstrom 1(Hedstrom) t + A(u) = 0 x > 0 u A(u) l j t = 0 for j s.t. λ j > 0 x = 0 l j A(u) λ j u λ j Thompson (Thompson) Euler (1) x = 0 t + + A (u) = 0 u ( ) j = min{λ j, 0}l j r j r j, l j A 1 (u) λ j Hedstrom x Thompson Poinsot Lele A 1 (u) = 0x 3 Euler Hedstrom Thompson Hedstrom Jeffrey and Taniuti 9) John 18) 1.,

84 Navier-Stokes. du = 0 3 Euler (1) u(x, y, t) = φ(θ) () θ x, y, t φ θ = dφ dθ, = dφ dθ, t = (3) dφ t dθ () (1) (3) ( t I + A 1(u) + ) dφ A (u) dθ = 0 ( det t I + A 1(u) + ) A (u) = 0 ( t = A 1(u) + ) A (u) t + u 1 + u = 0 (4) t + u 1 + u ( ) ( ) ±c + = 0 (5) (4) (4) = u 1, dy = u (6) (5) = u 1 ± c sign ( ) ( ), 1 + dy = u sign ( ) ± c ) 1 + ( (7) (7) sign ( ) sign ( ) (3) j = ( ) j ( ) j (8) (v) j v j (8), θ (7) sign ( ) sign ( ) ± > 0 (7) A 1(u) + A (u) (9) 0 3 l j t = 0 j S

85 S S = { j v j } v j (9) l j l j (9) r M λ k 0 r km kλ (9) A 1 + A (10) 4( ) j S l j t = 0 (9) v j S S = { j v j } l j (10) Euler 3 0 0 0 1) ) (5) Fourier Thompson Poinsot Lele

86 Navier-Stokes 4 1, A 1 (u) + A (u) 3 l j l j t = 0 4.1 1, (8) j = ( ) j ( ) j (v) j v j (8) j α α 4 ( min. ) j α ( ) α j α = 1 4 4 α = 1 4 ( ) j ( ) j 4 ( ) j ( ) j α A 1(u) + A (u) (6) (7) α dy = u 1, = u 1 ± = u (11) 1 c, 1 + α dy = u ± sign (α ) c 1 + α (1) 3 l j l j t = 0 Thompson 16) t + A(u) = 0 (13)

87 l j t = 0 Thompson A(u) A = PΛP 1 Λ λ 1 0 0 ˇΛ = 0 λ 0 0 0 λ 3 t + Ǎ(u) = 0, Ǎ(u) = P ˇΛP 1 (14) t = A(u) (15) l j t = 0 l j A(u) = 0 λ j = 0 Ǎ(u) (14) l j t = 0 (15) t (15) u(x, y, t) = φ(θ) Euler t + A 1(u) + A (u) dφ dθ = 0 l j A 1(u) + A (u) A 1 (u) + A (u) (3) α t + (A 1(u) + α A (u)) = 0 (16) Thompson 1 1. α α 1 4 4 ( ) j ( ) j. λ 1 u 1 + α u, λ u 1 + α u c, λ 3 u 1 + α u + c 3. A 1 (u) + α A (u) λ j 1 1 λ j 0 () λ 1 = u 1 + α u = u 1, dy = u 1 λ = u 1 + α u = u 1 + c, 1+α + 1 + α c dy = u + sign(α ) c 1+α 1 λ 3 = u 1 + α u = u 1 c, 1+α 1 + α c dy = u sign(α ) c 1+α 4. u 4. t + Ǎ(u) = 0, λ 1 0 0 0 0 λ 1 0 0 Ǎ(u) = P P 1 0 0 λ 0 0 0 0 λ 3 1 α

88 Navier-Stokes (16) 1 α = 1 4 4 ( ) j ( ) j ( ) j 0 ( ) j 0 x y x y α 1 = 1 4 4 ( ) j ( ) j (17) α 1,α α 1, α sign( ) sign( ) (16) 1 x y x y (16) t + (α 1A 1 + A ) = 0 (18) α 1 1 (17) α 1 α α 1 α α 1 α = 1 (16) (18) t + 1 1 + α 1 (α 1A 1 + A ) ( sign(α 1 ) + ) = 0 (19) t + 1 1 + α (A 1 + α A ) ( + sign(α ) ) = 0 (0) (19) (0) 1 α 1 α () 1. α 1,α. α > α 1 α 1 α 1 1

89 3. u t + 1 α 1 + α (α 1A 1 + α A ) ( sign(α 1 ) + sign(α ) ) = 0 (1) α 1 A 1 (u)+α A (u) 1 0 5 Navier-Stokes Navier-Stokes Poinsot Lele Thompson Dutt Dutt Navier-Stokes Dutt Navier-Stokes L x = ( ) 5, 1) τ 1 = 0, T = 0. T τ 1 Poinsot 1) T = 0 Dutt 5) Dutt Dutt ( ) k(γ 1) T T T Ω R T T dσ 6 Naviser-Stokes 6 ( 4 ) 10) 4 Runge-Kutta Lele 10) Poinsot Lele 1 1 Poinsot Lele Poinsot Lele

90 Navier-Stokes ρ ρ ( ρu 1 1 + t ρu α 1 + α Ǎ sign(α 1 ) + sign(α ) ) u 1 = 0, () u ρ(e + u 1 +u ) p d 3 α 1 l 1 α l 1 m u 1 d 3 α 1 (u 1 l 1 + α 1 m 1 ) + m 4 α (u 1 l 1 + α 1 m 1 ) u 1 m + α 1 m 3 Ǎ =. u d 3 α 1 (u l 1 + α m 1 ) α (u l 1 + α m 1 ) + m 4 u m + α m 3 d 3 (ẽ c γ 1 ) α 1l + u 1 ρd 3 α l + u ρd 3 ẽm + r 0 m 3 + d 3 γ 1 d 1 = r+r1, d = r r1, d 3 = r 3, m 1 = ρ(d 1 d 3 ) κ, m = d 1 d 3 c, m 3 = d cκ, m 4 = ρd 3, l 1 = ρd cκ, l = r 0 m 1 + ρd ẽ cκ, ẽ = u 1 +u + c γ 1 7 Euler Navier-Stokes Poinsot Lele : 1 COE (S) 1. α 1 1 4 4 ( ) j ( ) j α 1 4 4 ( ) j ( ) j. α 1 = α = 0 3 3. α > α 1 α 1 α 1 1 4. κ α 1 + α r 0 α 1 u 1 + α u r 1 r 0 κc r r 0 + κc r 3 r 0 5. j = 1,, 3

91 r j 0 ( ) r 1 r r 3 = u 1 sign(α 1) c, α 1 +α dy = u sign(α ) α 1 +α = u 1 + sign(α 1) c α 1 +α c, dy = u + sign(α ) α 1 +α = u 1, dy = u 6. u () r 0 r 3 0 1) J. P. Berenger : A Perfectly Matched Layer for the Absorption of Electromagnetic Waves, Journal of Computational Physics, 114 1994 185 00. ) C. H. Bruneau and E. Creuse: Towards a Transparent Boundary Condition for Compressible Navier- Stokes Equations, International Journal for Numerical Methods in Fluids, 36 001 807 840. 3) T. Colonius: Modeling Artificial Boundary Conditions for Compressible Flow, Annual Review of Fluid Mechanics, 36 004 315 345. 4) R. Courant and D. Hilbert: Methods of Mathematical Physics, vol. John Wiley and Sons, 196 430 431, 600 605. 5) P. Dutt: Stable Boundary Conditions and Difference Schemas for Navier-Stokes Equations, SIAM Journal on Numerical Analysis, 5 1988 45 67. 6) B. Engquist and A. Majda: Absorbing Boundary Conditions for the Numerical Simulation of c Waves, Mathematics of Computation, 31 1977 69 651. 7) D. Givoli: Non-Reflecting Boundary Conditions, Journal of Computational Physics, 91 1991 1 9. 8) G. W. Hedstrom: Nonreflecting Boundary Conditions for Nonlinear Hyperbolic Systems, Journal of Computational Physics, 30 1979 37. 9) A. Jeffrey and T. Taniuti: Non-Linear Wave Propagation Academic Press 1964 65 91. 10) S. Lele: Compact Finite Difference Schemes with Spectral-Like Resolution, Journal of Computational Physics, 103 199 16 4. 11) P. Luchini and R. Tognaccini: Direction-Adaptive Nonreflecting Boundary Conditions, Journal of Computational Physics, 18 1996 11 133. 1) T. J. Poinsot and S. K. Lele: Boundary Conditions for Direct Simulations of Compressible Viscous Flows Journal of Computational Physics, 101 199 104 19. 13) K. Mazaheri and P. Roe: Numerical Wave Propagation and Steady-State Solutions: Soft Wall and Outer Boundary Conditions, AIAA Journal, 36 1997 1 4. 14) S. Ta asan and D. M. Nark: An Absorbing Buffer Zone Technique for Acoustic Wave Propagation, AIAA Paper, 1995 95 146. 15) K. W. Thompson: Time Dependent Boundary Conditions for Hyperbolic Systems, Journal of Computational Physics, 68 1987 1 4. 16) K. W. Thompson: Time Dependent Boundary Conditions for Hyperbolic Systems II, Journal of Computational Physics, 89 1990 439 461. 17) S. V. Tsynkov: Numerical Solution of Problems on Unbounded Domains. A Review, Applied Numerical Mathematics, 7 1998 465 53. 18) F., :, 003 11 67.