液晶の物理1:連続体理論(弾性,粘性)

Similar documents
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Gmech08.dvi

II 2 II

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

i

Note.tex 2008/09/19( )

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

量子力学 問題


120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

PDF

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

The Physics of Atmospheres CAPTER :

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

pdf

Untitled

Part () () Γ Part ,


meiji_resume_1.PDF

201711grade1ouyou.pdf

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Gmech08.dvi

untitled

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,


振動と波動

sec13.dvi


変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google


t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z


 NMRの信号がはじめて観測されてから47年になる。その後、NMRは1960年前半までPhys. Rev.等の物理学誌上を賑わせた。1960年代後半、物理学者の間では”NMRはもう死んだ”とささやかれたということであるが(1)、しかし、これほど発展した構造、物性の

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ


( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

( )

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

all.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

05Mar2001_tune.dvi

newmain.dvi

30

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Z: Q: R: C: 3. Green Cauchy

77

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Z: Q: R: C: sin 6 5 ζ a, b

gr09.dvi

B ver B

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

2011de.dvi


JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

29

Transcription:

The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers of this book will feel the same attraction, help to solve the mysteries, and raise new questions.

SmA SmC

N a = 1/ N a = 0 z i= 1 iz N z = 1/ iz i= 1 a N a

a = a = a, a + a + a = 1 x y z x y z a = a = a = 1/3 x y z a = 1 z S 0 S = 3 1 S = a z S =1 3 1 0< S < 1 = 3 a z 1 ( )

r' r r ' = Ur r = ( xyz,, ) = ( x1, x, x3) r ' = ( x', y', z') = ( x ', x ', x ') 1 3 U11 U1 U13 3 U1 U U x U = α ' = Uαβ xβ = U αβ x β 3 β = 1 U31 U3 U 33 r a θ b a ' a b= a' b' θ b' a b= ab α α

P = χε P E χ P1 χ11 χ1 χ13 E1 P = χ χ χ E 1 3 P 3 χ31 χ3 χ 33 E 3 P ' = χε ' ' UP = χ ' UE P' = UP ' = Ε UE χ' χ χ' = U U t = U U χ αβ αγ βδ γδ ( 1 χ ' ) P = U U E t U χ a aa χ αα α β

S 1 ( S = 3 a 1 ) z 1 = ( 3 a a δ ) αβ α β αβ S αβ n n S S = (3 n n δ ) αβ α β αβ

- F S αβ A B C ( ) C 3 4 4 1 F = F0 + Sαβ Sβα + Sαβ Sβγ Sγα + Sαβ Sβα + Sαβ Sβγ Sγδ Sδα 3A B 9C F F S S S 4 4 16 S S = (3 n n δ ) αβ α β αβ A= A ( T T ) 3 4 = 0 + + + 0 0 C = C + C / 1 T c

S n / x = 0 n / x 0 α β ( αβ=, 1,,3) α β f d n / x F = f dv d α β nr ()

f d f d f d f d n n 1 1 fd = K1( n) + K( n ( n) ) 1 + K3( n ( n) ) + K' n ( n) (.) ( / x, / y, / z) n= div n, n= rotn K ( i = 1,,3) i

1 1 fd = K1( n) + K( n ( n) ) 1 + K3( n ( n) ) + K' n ( n) = ( / x, / y, / z) n = n / x+ n / y+ n / z x y z ( n / y n / z, n / z n / x, n / x n / y) n = z y x z y x n ( n ) K '

x-z n = (sin θ,0,cos θ) ( θ,0,1) 1 ( ) 1 K n n θ / x = θ = cx c θ K, n 1 K, ( n ) n K, 3 ( n ) n

1 1 fd = K1( n) + K( n ( n) ) 1 + K3( n ( n) ) + K' n ( n) = 1 K ( n) + 1 K ( n ( n) + q ) + 1 K ( n ( n) ) 1 K q 1 0 3 0 q = K '/ K 0 ( ) 0 0 n n + q = nr ( ) = (cos qz,sin qz,0) 0 0 z

x y nr () = (cos φ(),sin r φ(),0) r 1 1 1 fd = K1( n) + K( n ( n) ) + K3( n ( n) ) K1 = K = K3 = K f d φ 1, φ K φ φ = + x y x y (3.47)

F = f dv d φ() r δφ() r φ() r φ() r + δφ() r F δf δf = f ( ( φ+ δφ)/ x, ( φ+ δφ)/ y)dv d δ F fd ( φ/ x, φ/ y)dv = δφdv + L > 0 δφ δ F δφ fd fd fd φ x ( φ/ x) y ( φ/ y) = 0 δ F δφ : φ x φ y + = 0 f d 1 K φ φ = + x y

45 φ = sα + c (3.49) α = 1 tan ( y/ x) s =± 1, ±, ± 3, L ± 1/, ± 3/, ± 5 /, L c :

f ( ) el = 1 D E = 1 εε 1 1 0 E E = εε 0 E ε0 ε n E (3.3) ε = ε δ + ( ε ε )nn (3.) αβ αβ α β ε : ε ε : 0 ε = ε ε : ε > 0 n E ε < 0 n E 1 1 1 1 f ( ) mag = µ 0 χ B µ 0 χ n B (3.4) µ : µ µ : 0 µ = µ µ :

n = (cos θ( z),sin θ( z),0) 1 dθ 1 f fd + fmag = K sin dz ξ θ (3.6) K ξ = µ χ 1 0 1 B

dθ F = f θ( z), dz θ( z) dz f d f = θ d z (d θ /d z) 0 d θ 1 + sin θ cos θ =0 dz ξ (3.6) (3.14) θ x, z t ξ d x 1 cos = x dt x

θ (b) z = 0 θ (0) = 0, z θ = ± π/, = 0 z θ π ± z / ξ tan + = 4 e ξ K = µ χ 1 0 1 B

θ(0) = θ( d) = 0 3. (a) (3.14)

1 3 θ < θm << 1 sin θ θ θ 6 d 1 d θ 1 ( 4 F ( f ) = 0 d + fmag)d z K θ θ /3 dz 0 z ξ θ() z = θ sin( qz) q= π / d m F d 1 1 F = K q θ θ 4 ξ + 4ξ 4 m m θ m B = π K µ χ c 1 d 0 :

F / θ = 0 m F d 1 1 = K θ q + θ = m m θm ξ ξ 0 B< B q ξ θ = c ( > m 0 B > B q ξ θ ( < c c m =± 1 ξ q =± B B ( B+ B )( B B ) B ( B B ) B B =± ± =± B c c c c c B Bc Bc

x = ρcos α, y = ρsinα (3.47) 1 φ 1 φ (3.49) 1 s f = K K ρ + = ρ α ρ d ρ 1 s F = fd x y = K πρ ρ = π Ks ρ a max a ρ max dd d log( / ) ρmax a: (3.55)

σ line σ line F l = l T F : l l Fl = Fl σ = line F

dr dt = Γ R R = Γ t0 t ( ) R Γ Formation, Dynamics and Statistics of Patterns (World Scientific, 1993)

K = K = K = K φ = sα + s α + c 1 1 1 3 = s tan ( y / x) + s tan ( y /( x d)) + c 1 1 1 (3.59) z K φ φ F = + dd x y x y (3.60) φ φ ε = K, Ex =, Ey = (3.61) y x ε { (3.60) F = E } x + Ey dd x y

(3.59) (3.61) x x d y y ( Ex, Ey) = s1 + s, s1 + s x + y ( x d) + y x + y ( x d) + ε σ1 x σ x d ( Ex, Ey) = +, πε x + y πε ( x d) + y σ1 y σ y + πε x + y πε ( x d) + y σ i i s = σ σ, s πε = πε (3.65) 1 1 y

ε f int = σσ 1 πε d (3.65) f int = π Ks s d 1

G dl = d t l l = G( t0 t) l G

εε, ε : ε: 0 0 z E ( z, t) = acos( kz ωt+ δ ), E ( z, t) = 0 (1.a) x E ( z, t) = 0, E ( z, t) = bcos( kz ωt+ δ ) (1.b) x y 1 y δ = δ 1 k = πn/ λ n= ε, λ : (1.a) (1.b)

(1.a) (1.b) E ( z, t) = acos( kz ωt+ δ ), E ( z, t) = asin( kz ωt+ δ ) x 1 y 1 E ( z, t) = bcos( kz ωt+ δ ), E ( z, t) = bsin( kz ωt+ δ ) x y E ( z, t) = acos( kz ωt+ δ ), E ( z, t) = bcos( kz ωt+ δ ) x 1 y

( E, E ) = ( E cos( kz ωt), 0) x 0 0 y 0 ( ω ω ) ( ω ω ) = E / cos( kz t), sin( kz t) + E / cos( kz t), -sin( kz t) E ( E ) 0 ( ) 0 x, Ey = cos( krz ωt), sin( krz ωt) + ( cos( klz ωt), sin( klz ωt) ) kr kl kr kl kr + kl = E0 cos z,sin z cos z ωt ψ = ( k k )/ d = ( v v ) ωd / = π( n n ) d / λ -1-1 R L L R L R E (5.39) nl, nr :

ε x 0 0 0 ε y 0 0 0 ε z z E ( z, t) = acos( k z ωt+ δ ), E ( z, t) = 0 x x 1 y E ( z, t) = 0, E ( z, t) = bcos( k z ωt+ δ ) x y y k = πn / λ n = ε x x x x k = πn / λ n = ε y y y y

d

E ( z, t) = E e i kz t x E ( z, t) = E sinα e E ( z, t) = E cosα e 0 0 0 ( ω ) i( πn / λ z ωt) i( πn / λ z ωt) x E ( d, t) = E ( d, t)sin α + E ( d, t)cosα y 1 = E0 α n, n : ( / / ) i πn d λ i πn d λ iωt sin e e e π nd a I = Ey = I0sin α sin, na = n n : λ

z Er (,) t = ( E(,), zt E(,),0), zt Hr (,) t = ( H(,), zt H (,),0) zt x y x y H = D = εε E 0, E = B = µ H 0 t t t t ε E E = ( E) = E ( E) = (5.45) c t z (3.) ( ε + ε )/ 0 0 cosqz 0 sinqz 0 0 ε a ε ( z) = 0 ( ε + ε )/ 0 + sinqz 0 cosq0z 0 0 0 ε 0 0 0 q : 0

1 iωt 1 E(,) zt = E()e z + E()*e z iωt = Re[ E( z)e ] ± E ( z) E ( z) ± ie ( z) x y iωt E + ( z) E ( z) z ( + ) ( ikz ) E ( z), E ( z) = e,0 ( k > 0) ikz ikz ( E ( z), E ( z)) = (e /, ie /) x y E ( z, t), E ( z, t) = cos( kz ωt)/,sin( kz ωt)/ ( ) ( ) x y

± E ( z) E ( z) ± ie ( z) x y + iq0z + d E ( z) k0 k1 e E ( z) = iq0z dz E ( z) k1 e k0 E ( z) k ω ω ε a 0 = ε, k1 = c c ε = ( ε + ε )/, ε = ε ε a + E z a il ( + q0 ) z ( ) = e, E ( z) = be il ( q ) z 0 (5.60)

( l+ q0) k0 k a 1 = k1 ( l q0) k b 0 0 (5.61) ( l+ q ) k k 0 0 1 k1 ( l q0) k0 4 = ( k0 l q0) 4q0l k1 = 0 (5.6) ω ω ± () l = c ( l + q ) ± 4 q l + ( ε / ε) ( l q ) ε ε ε 0 0 a 0 1 ( a / )

L R +R + L L +R R + L + R: z L: z

l ± iκ ( κ > 0) cq ω (0) < ω < ω (0) ω (0) =, ω (0) = cq 0 0 + + n n (5.60) + E z a a il ( + q0) z mκ iqz 0 ( ) = e = e z e, E z = b = b il ( q0) z mκ z iqz 0 ( ) e e e

(5.6) 4 k1 kl k0 + 8 kq( q + k) k k + R 0 0 0 0 0 4 k1 8 kq( q k) 0 0 0 0 (5.39) 4 k1 ( kl kr) /= 8 q ( k q ) 0 0 0 q n 0 n 1 = n + n λ λ 0 0 3 ' (1 ' ) λ' = λ/ P= q / k, λ:, P:

ω l ( λ << ( n n ) P) (5.6) ω ω l n ( ω ( l) ) l n ( ω+ ( l) ) c c a = b (5.61) a = b Ex (,) z t cos qz 0 acos( lz t) E ( zt, ) ω = sin qz y 0 Ex (,) z t sin qz 0 = asin( lz ω t) Ey ( z, t) cos qz 0 cos qz 0 n( z) = sin qz 0

TN(Twisted Nematic)

n = (cos( φ ( z/ d 1)),sin( φ ( z/ d 1)),0) 0 0

n() z = (sin θ()cos z φ(),sin z θ()sin z φ(),cos z θ()) z 1 θ 1 φ fd = g( θ) + h( θ) z z g( θ) = K sin θ + K cos θ, h( θ) = ( K sin θ + K cos θ)sin θ 1 3 3 θ = π / ψ ( ψ << 1) 1 ψ 1 φ 1 d = 1 + + 3 ψ ε0 εψ { ( ) } f K z K K K z E (5.86) (3.3)

m 0 ( z d ) ψ = ψ sin( πz/ d), φ = φ / 1 1 1 F / d = K + ( K K ) E + K 4 d d d π φ0 φ0 1 3 ε0 ε ψm ψ m V K K K π c = 1/ 1 + ( 3 ) φ0 ( ε0 ε) 1/

vr (): ρ div( ρ ) t = v ρ divv = 0 ρ d v vr ( + vdt, t + d t) vr (, t) dt dt v = + ( v grad) v t

ρ dv v v σ ρ + vβ = dt t dxβ dx α α α βα β σ αβ v / x v x α β A W = A + W αβ αβ αβ αβ 1 v v α = + xβ x 1 v v α = xβ x ω = ( W, W, W ) β α β α β α (4.16a) (4.16b) yz zx xy

v y x = A + W xy xy 0

σ α αβ β σ βα n β (s) f = σ / x (s) α βα β f α

σ αβ = (visc) σ α β pδ αβ A v η : (visc) α σαβ = η αβ = η + xβ p : v x β α vα ρ + ρv v = p+ η v t xβ xα vα = 0 x α β α α

edθ= Ω dt = n dn Ω Ω d = n n dt I dω dt = Γ I Γ

Γ hr () nr () nr () +δ nr () h α δf = hr () δn()d r V (4.6) () r f f δ F nα xβ ( nα / xβ) δ nα d d = = (4.7) ( nr hr ) ( nr () δ nr ()) δ F = hr () δ nr ()dv = () () dv ( F ) eδθ = n δ n: Γ = n h : (4.56)

Γ, Γ (visc) (visc) 1 N dn dt = Ω n d N ( Ω ω) n= n ω n(4.55) dt γ 1 Ω? ω ( Ω ω) = n N + ( n Ω ) n (4.55) 0 dn = dt (visc) Γ 1 = γ1n N γ1n ω n 1 γ

Γ = γ n (visc) An I dω = Γ = Γ + Γ + Γ dt dn = n h n ω n dt ( F ) (visc) (visc) 1 γ1 γ n Γ = Γ + Γ (visc) (visc) (visc) An 1 dn = γ n γ A 1 ω n n n dt (4.63) d γ n n h= 1n ω n + γn An dt

σ = σ α + σ (e) (visc) αβ β αβ σ σ = f n (e) d γ βα ( nγ / nβ) xα pδ = α A + α n n n n A + α n n A + α n n A (visc) αβ 4 αβ 1 α β µ ρ µρ 5 α µ µβ 6 β µ µα + α nn + α nn α β 3 β α αβ α i dn N = ( Ω ω) n= ω n dt

α nnnna 1 α β µ ρ µρ A = 1, A = 1 n = ( n, n,0) x y xx yy nnnna α β µ ρ µρ n ( ) x nxny nx ny nn x y ny

γ = α α 1 3 γ = α α 6 5 α α = α + α 6 5 3

dvα ( (e) (visc) ρ = σ ) βα + σβα (4.76a) dt xβ Ω dn I ( =0 ) = n h γ1n ω n γn An t dt (4.76b) vα = 0 (4.76c) x α σ = α A + α n n n n A + α n n A + α n n A (visc) αβ 4 αβ 1 α β µ ρ µρ 5 α µ µβ 6 β µ µα + αnn α β + α3nn β α (4.77) (e) f nγ σ βα = pδαβ (4.78a) ( nγ / nβ) xα f fd hα = (4.78b) xβ ( nα / xβ) nα dnα dnα Nα = ( ω n) α = Wαβnβ (4.78c) dt dt vn,, p

v = (0,0, γ& x) γ& n n = (sinθ cos φ,sinθsin φ,cos θ) (4.80) (4.16) 1 Axz = Wzx = ωy = γ& (4.81) (4.78c) 1 1 Nz = ωynx = γ& nx, Nx = ωynz = γ& nz (4.77) γ& = u/ h, σ = K / S ( visc) σ xz = ηθφγ (, )& η( θφ, ) 1 η( θφ, ) (α cos θ α + α)sin θcos φ+ ( α + α)cos θ+ α { } 1 5 3 6 4 xz

( θ = 90, φ = 0 ) (a) 1 η1 = ( α + α4 + α5) ( ) (b) θ= 0 1 η = ( α3 + α4 + α6) (c) ( θ = 90, φ = 90 ) 1 η3 = α 4

4.1(c) (4.63),(4.80),(4.81) Γ (visc) = 0 4.1(a) (b) ( φ= 0) n = (sin θ,0,cos θ),(4.63),(4.81) Γ = γ ( nn nn) γ ( nn A nn A ) (visc) y 1 z x x z z µ µ x x µ µ z 1 = γ& γ1+ γ θ Γ = (visc) y 0 { cos } cos θ = γ / γ ( γ / γ < 1 ) θ 0 1 1 0

3.3 vr (, t = 0) = 0 (4.78 c) (4.77) vr (, t) = 0 ω = 0, A= 0 (4.76b) z d γ n 1 n = ( n h) z dt z (4.56) ( n h) e d ( n h) δf = δθ V = δθdv z δ F ( nr () hr ()) z = δθ n = (cos θ,sin θ,0) dn dθ n = dt dt z

dθ δf (3.6) θ 1 1 = = K + 0 B γ µ χ sinθcosθ dt δθ z θ(0) = θ( d) = 0 B= 0 θ( z, t) = θm ( t)sin( qz) ( q= π / d) dθm π K = θ m dt γ d 1 θ ( t) = θ (0)exp( t/ τ), τ = γ d / π K m m 1