( ) ) AGD 2) 7) 1

Similar documents
( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K


9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

多体問題

量子力学 問題

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

TOP URL 1

meiji_resume_1.PDF

TOP URL 1

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

高知工科大学電子 光システム工学科

構造と連続体の力学基礎

0406_total.pdf

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

日本内科学会雑誌第102巻第4号

susy.dvi

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

量子力学A

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

201711grade1ouyou.pdf

LLG-R8.Nisus.pdf

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

DVIOUT-fujin

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Ł\”ƒ-2005

本文/目次(裏白)

第90回日本感染症学会学術講演会抄録(I)

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =


kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

QMII_10.dvi

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)


(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

Note.tex 2008/09/19( )

30

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

KENZOU

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

液晶の物理1:連続体理論(弾性,粘性)

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

第86回日本感染症学会総会学術集会後抄録(I)

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

Maxwell

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P


I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n


i

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)


I ( ) 2019

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義


Transcription:

( 9 5 6 ) ) AGD ) 7)

S. ψ (r, t) ψ(r, t) (r, t) Ĥ ψ(r, t) = e iĥt/ħ ψ(r, )e iĥt/ħ ˆn(r, t) = ψ (r, t)ψ(r, t) () : ψ(r, t)ψ (r, t) ψ (r, t)ψ(r, t) = δ(r r ) () ψ(r, t)ψ(r, t) ψ(r, t)ψ(r, t) = (3) ψ (r, t)ψ (r, t) ψ (r, t)ψ (r, t) = (4) ψ()ψ ( ) G(, ) = i T {ψ()ψ ( )}. (5) (r, t ; r, t ) (, ) T { }. ψ ψ ψ (r) = i ψ(r) = i φ i (r)a i, φ i (r)a i φ i (r) i a i a i 5 t > t (r, t ) (r, t )

.3 T = T T = T 8) T T = Matsubara (955) AGD (959) Fradkin (959) : G R,A G A(ε) 9) ) 3 3 T = S T 3 3 time ordered G(, ) = i T {ψ()ψ ( )} retarded G R (, ) = iθ(t t ) {ψ(), ψ ( )} advanced G A (, ) = iθ(t t) {ψ(), ψ ( )} greater G > (, ) = i ψ()ψ ( ) lesser G < (, ) = i ψ( ) ψ() contour ordered G(, ) = i T C {ψ()ψ ( )}

) 4) T ˆX [ ] ˆX Tr e β(ĥ µ ˆN) ˆX = [ ] (6) Tr e β(ĥ µ ˆN) 4 µ β = /k B T µ β Tr Tr[ ] = n n n ˆX ψψ [ ] Tr e β(ĥ µ ˆN) ψ(t)ψ (t ) [ ]. (7) Tr e β(ĥ µ ˆN) ˆX(t) = e iĥt/ħ ˆX()e iĥt/ħ 5 exp(±iĥt/ħ) exp( βĥ) 6 Time ordered ( Causal) T Contour ordered ( Keldysh) T C Retarded, Advanced {A, B} = AB + BA 4 Ω = Tr[ e β(ĥ Ω) ] Z = Tre βĥ = e βω Ĥ = Ĥ µ ˆN 5 e iĥt/ħ +iĥt/ħ+ +(/n!) (iĥt/ħ ) n+ 6 e iĥt S 8) exp(±βĥ) 3. G αβ (r, τ ; r, τ ) = T τ {ψ α (r, τ ) ψ β (r, τ )} (8) T τ { } T P ( ) P { T τ {ψ()ψ( ψ()ψ( ) for τ > τ )} = ±ψ( )ψ() for τ < τ (9) ψ(r, τ) = e τĥψ(r)e τĥ ψ(r, τ) = e τĥψ (r)e τĥ () () ψ ψ ψ ψ 4

3. T = t τ ) 9) 7 Tr{ABC} = Tr{BCA} τ > τ G αβ (r, τ ; r, τ ) = Tr [ e β(ĥ Ω) e (τ τ )Ĥψ α (r )e (τ τ )Ĥψ β (r ) ] () 8 τ τ τ < τ G αβ (r, τ; r, ) = T τ {ψ α (r, τ) ψ β (r, )} (3) β < τ < 9 G αβ (τ) = ±G αβ (τ + β). (4) 7 9) (4) 8 e τ Ĥe β(ĥ Ω) = e β(ĥ Ω) e τ Ĥ Ĥ Ω 9 G αβ (r, τ) = (π) 3 dp e ip r iεnτ G αβ (p, iε n ) β G αβ (p, iε n ) = dr β n dτe ip r+iε nτ G αβ (r, τ) (5) (6) r = r r 56 4 ε n π/β { nπk B T ε n = (n + )πk B T (7) τ < G αβ (r, τ; r, ) = ψ β (r, )ψ α(r, τ) = Tr [e β(ĥ Ω) ψβ (r )e τĥψ α(r )e τĥ] [ = Tr e βω e τĥψ ] α(r )e (τ+β)ĥ ψβ (r ) [ = Tr e β(ĥ Ω) e (τ+β)ĥψ ] α(r )e (τ+β)ĥ ψβ (r ) = ±G αβ (r, τ + β; r, ) β τ β f(τ) f(τ) = β e inπτ/β f(iε n ) n= f(iε n ) = β dτ f(τ)e inπτ/β β β < τ < f(τ) = ±f(τ + β) f(iε n ) = [ β ] dτ f(τ)e inπτ/β + dτ f(τ)e inπτ/β β = β ( ± e inπ ) dτ f(τ)e inπτ/β n ( ± e inπ ) β f(iε n ) = dτ e iεnτ f(τ) { nπk ε n = B T (n + )πk B T 5

T = 3.3 Ĥ = ε (p)ψ pσψ pσ (8) pσ ˆN = ψ pσψ pσ (9) pσ Baker-Hausdorff e A Ce A G (p, iε n ) = ( ± n p ) β dτ e (iε n ξ p )τ = ( ± n p ) eβ(iε n ξ p ) iε n ξ p = ( ± n p ) e βξp iε n ξ p. (5) G (p, iε n ) = iε n ξ p (6) iε n ξ p = C + [A, C] +! [A, [A, C]] + [A, [A, [A, C]]] + 3! () ψ pσ (τ) = e τ(ĥ µ ˆN) ψ pσ e τ(ĥ µ ˆN) = e τξ p ψ pσ () ψ pσ (τ) = e τ(ĥ µ ˆN) ψ pσe τ(ĥ µ ˆN) = e τξp ψ pσ () ξ p = ε (p) µ θ(τ) G (p, τ) = θ(τ)e ξpτ ψ pσ ψ pσ + θ( τ)e ξpτ ψ pσψ pσ = e ξpτ [θ(τ) ( ± n p ) θ( τ)n p ] iε n ε±iδ (3) n p = ψ pσψ pσ n p = e βξ p e βξ p + (4) 4 (retarded and advanced Green s function) G (p, iε n ) iε n ε+iδ G R (p, ε) for ε n > (7) G (p, iε n ) iεn ε iδ G A (p, ε) for ε n < (8) δ 6

4. G R (p, t t ) = iθ(t t ) ψ pσ (t)ψ pσ(t ) + ψ pσ(t )ψ pσ (t) (9) t i θ(t t ) t t G A (p, t t ) = iθ(t t) ψ pσ (t)ψ pσ(t ) + ψ pσ(t )ψ pσ (t). (3) Ĥ m = E m m G R (t t ) = iθ(t t )e βω n e βĥ { ψ(t)ψ (t ) + ψ (t )ψ(t) } n n n ψ(t) m = n e iĥt ψ()e iĥt m = n ψ() m e i(e n E m )t (3) 3 G R (t t ) = iθ(t t )e βω m,n e βe n { e i(e n E m )(t t ) n ψ m + e i(e n E m )(t t ) m ψ n } = iθ(t t )e βω m,n ( e βe n + e βe m ) e i(en Em)(t t ) n ψ m. (33) 4. G R (r, t) = (π) 4 dpdε e ip r iεt G R (p, ε) (34) G R (p, ε) = drdt e ip r+iεt G R (r, t) (35) (33) dε θ(t) = lim δ πi e iε t ε iδ (36) = iθ(t t )e βω m,n e βen { } n ψ(t) m m ψ (t ) n + n ψ (t ) m m ψ(t) n (3) m m m = ψ p,σ 3 { } m n 7

δ > (33) (35) 4 G R dε (ε) = i dt πi ε iδ e βω ( e βe n + e βe ) m n ψ m m,n = e βω m,n e i(ε+ε +E n E m)t dε δ (ε + ε + E n E m ) ε iδ ( e βe n + e βe ) m n ψ m = e βω n ψ m e βe n + e βe m ε + E m,n n E m + iδ (37) G A G R G A (ε) = [ G R (ε) ] (38) A(p, ε) G R (p, ε) = A(p, ε) = πe βω m,n dε A(p, ε ) π ε ε + iδ (39) n ψ p m ( e βe n + e βe m ) δ(ε + E n E m ). (4) (39) A(p, ε) p ε p ε (39) A(p, ε) = ImG R (p, ε) (4) 4 ε ε dt e iεt = πδ(ε) π x x ± iδ = P iπδ(x) (4) x P A(p, ε) p, ε 5 dε A(p, ε) = (43) π A(ε) A(p, ε) n p = ψ pσψ pσ (44) 5 (3) dε A(p, ε) π = e ( βω n ψ p m e βe n + e βe m m,n = e ) βω n (ψ pψ p + ψ pψ p n e βen n = e βω n e βe n. Z = e βω = Tre βĥ = n e βe n ) 8

n p = e βω m,n m e βĥψ pσ n n ψ pσ m = e βω m,n e βe m n ψ pσ m (45) (4) ( e βe n + e βe m ) δ(ε + E n E m ) = e βe m ( e βε + ) δ(ε + E n E m ) (46) p p e βε + n p = dε A(p, ε) π e βε + (47) n F (ε) = (e βε + ) n p = dε π n F(ε)A(p, ε) (48) p 6 (4) 4.3 (9) G R (p, t t ) = iθ(t t )e i(t t )ξ p ψ pσ ψ pσ + ψ pσψ pσ = iθ(t t )e i(t t )ξ p (49) 6 n p n F (48) 3: A (ε) A(ε) 8. (43) A (ε) A(ε) Baker-Hausdorff ψ pσ (t) = e itξ p ψ pσ (37) G R (p, ε) = ε ξ p + iδ (5) (6) iε n ε + iδ (4) A (p, ε) = πδ(ε ξ p ) (5) p ξ p p ξ p 3 9

5 5. V (r r ) Ĥ = dr ψ(r) ( ) m ψ(r) + drdr ψ(r) ψ(r )V (r r )ψ(r )ψ(r). (5) V (r r ) ψ(r) ψ σ (r) r σ ħ = X(t) i X(t) t ] = [X(t), Ĥ(t) (53) ψ(τ) τ = it ψ(τ) τ ] = [ψ(τ), Ĥ(τ) (54) (5) Ĥ Ĥ [ ] ψ(τ), Ĥ = ψ(r, τ) dr ψ(r, τ) m ψ(r, τ) + dr ψ(r, τ) m ψ(r, τ)ψ(r, τ) (55) i r i ψ(r, τ) m ψ(r, τ)ψ(r, τ) = ψ(r, τ)ψ(r, τ) m ψ(r, τ) = { δ(r r ) ψ(r ) ψ(r ) } m ψ(r, τ) (56) (55) r [ ] ψ(τ), Ĥ = ψ(r, τ) (57) m ψ ψ ψ ψ ψ ψ ψ [ψ, ψ ] + = δ( ) [ψ(τ), Ĥ ] [ ψ(τ), Ĥ ] = dr dr 3 [ψ ψ ψ3 V ( 3)ψ 3 ψ ψ ] ψ3 V ( 3)ψ 3 ψ ψ (58) ψ ψ3 V ( 3)ψ 3 ψ ψ = ψ ψ3 V ( 3)ψ ψ 3 ψ = ψ { δ(3 ) ψ ψ3 } V ( 3)ψ3 ψ = ψ V ( )ψ ψ + { δ( ) ψ ψ } ψ3 V ( 3)ψ 3 ψ = ψ V ( )ψ ψ + ψ 3 V ( 3)ψ 3 ψ ψ ψ ψ3 V ( 3)ψ 3 ψ (59) (58) [ ψ(τ), Ĥ ] = dr ψ(r )V (r r )ψ(r )ψ(r) (6)

τ ψ(r, τ) = ψ(r, τ) m + dr ψ(r, τ)v (r r )ψ(r, τ)ψ(r, τ). 5. (6) (8) G (, ) = θ(τ τ ) ψ() ψ( ) + θ(τ τ ) ψ( )ψ() (6) τ τ G (, ) = δ(τ τ ) [ ψ(), ψ( ) ] T τ { τ ψ() ψ( ) } = δ( ) m T { τ ψ() ψ( ) } { + dr V (r r ) T τ ψ()ψ()ψ() ψ( ) } τ=τ (63) δ( ) = δ(τ τ )δ(r r ) G (; ) = T τ { ψ()ψ() ψ( ) ψ( ) } (64) G [ ] G (, ) = δ( ) τ m dr V (r r )G (; + ) τ =τ. (65) + τ G (6) (65) G G 5.3 G [ ] G (, ) = δ( ) (66) τ m exp[ ip (r r ) + iε n (τ τ )] r, τ 7 β dτ e iε n(τ τ ) G (, ) = iε n G (r r τ, iε n ) (67) dr e ip (r r ) G (, ) = p G (p, τ τ ) G (p, iε n ) = iε n p /m (68) (69) (6) τ iε n (7) p (7) 7 (67) (68) τ (4) r G (, ) r r ± = (6)

(63) G (, ) = iε n Ĥ (7) Ĥ /(iε n Ĥ) (iε n Ĥ) Ĥ p /m (69) (7) iε n G δ, iε n (73) 6 G (r, τ ) (r, τ ) G (, ) G (, )G (, ) (74) (65) [ ] τ m + dr V (r r )G (, + ) τ =τ G (, ) = δ( ) (75) G (, + ) n(r ) (75) G (, + ) n nv = dr V (r r )G (, + ) (75) (69) G (p, iε n ) = iε n p /m nv (76) iε n ε + iδ G R (p, ε) = ε p /m nv + iδ (77) A(p, ε) = πδ(ε p /m nv ) (78)

(, (, ) ( ; ) ( ; ) E(p) = p m + nv (π) 3 dp V (p p )G (p, iε β n) n (83) A(p, ε) = πδ(ε E(p)) (84) E(p) (83) G (p, iε n ) (8) E(p) E(p) (8) (83) G (, ) G (, )G (, ) G (, )G (, ) (79) 8 [ ] G (, ) + dr U(r, r )G (, ) τ m = δ( ) (8) U(r, r ) = δ(r r ) dr 3 V (r r 3 )G (3, 3 + ) τ =τ 7 (8) G (, ) = G (, ) + d d G (, )Ṽ ( ) [ G (, + )G (, ) G (, + )G (, ) ] (85) 9 Ṽ ( ) = δ( τ τ )V ( r r ) 4 V (r r )G (, + ) (8) U(r, r ) G (p, iε n ) = iε n E(p) (8) 8 (64) G (; ) = ±G (; ) Hartree Fock 4: ( 9 (8) τ m ) [ ] G (, ) = δ( ) τ m 3

Hartree Fock 5: 7: 6 8: 7 6: G G G G G V 5G G 4 G 6 6 8 m. m 7 i j ) 4

. G (i, j) i j 3. i j V (i, j) 4. β dr i dτ i (86) 5. ( ) m+f (s + ) F (87) F s s = / m 5. 8 m+f (s + )F ( ) (π) 3m (89) p E(p) p (, ) τ r r (, ) 9. m. G (p i, iε ni ) 3. V (p) 4. β m n i dp i (88) 9: G (, ) G (, )G (, ) G (, )G (, ) β dτ dr dr V (r r ) [G (, )G (, )G (, )G (, ) G (, )G (, )G (, )G (, )] τ =τ (9) 5

(65) ( ) G (, ) + τ m β dτ dr Σ(, )G (, ) = δ( ). (9) Σ Σ(, ) = Σ HF (, ) + Σ B (, ) (9) Σ HF (, ) = δ(τ τ ) [ δ(r r ) dr V (r r )G (, + ) ] V (r r )G (, + ) (93) Σ B (, ) = dr dr V (r r )V (r r ) [ G (, )G (, )G (, ) G (, )G (, )G (, ) ] τ =τ 8. τ =τ (94) (66) e ip (r r ) (9) Σ(r, r ) dp Σ(r) = Σ(p)eip r (π) 3 (95) G (9) dr Σ(r, r )G (r, r ) = dp dp (π) 3 (π) 3 dr eip (r r (π) 3 ) ip (r e r ) Σ(p)G (p ) (96) r r r r p p r (π)3 δ(p p) *4 p p = p dp eip (r r (π) 3 ) Σ(p)G (p) (97) dp(π) 3 e ip (r r ) (9) ) (iε n p m Σ(p, iε n) G (p, iε n ) = (98) (95) dpe ip (r r ) Σ B (94) β dτe iωnτ = βδ ωn AGD (4.5) ω n ε n ε n ( ) πt 6

dq ΣB st (r, r ) = dr r dq (π) 3 (π) 3 V (q)v (q ) e iq (r r ) e iq (r r ) dp dp dp (π) 3 (π) 3 (π) 3 G (p )G (p )G (p ) e ip (r r ) e ip (r r ) e ip (r r) (99) r, r (π) 3 δ( q + p p ), (π) 3 δ( q p + p ) q, q ΣB st (r, r ) dp dp dp = (π) 3 (π) 3 (π) 3 ei(p +p p ) (r r ) V (p p )V (p p )G (p )G (p )G (p ) Σ B (r, r ) = dp eip (r r (π) 3 () ) Σ B (p) () {V (p p ) V (p p )} / 8. (98) G (p, iε n ) = iε n ξ p Σ(p, iε n ). (5) iε n ε + iδ Σ(p, iε n ) Σ R (p, ε) (6) ΣB st dp dp dp (p) = (π) 3 (π) 3 (π) 3 {V (p p )} G (p )G (p )G (p ) (π) 3 δ(p + p p p ) () p p [ {V (p p )} {V (p p )} + {V (p p )} ] / ΣB nd dp dp dp (p) = (π) 3 (π) 3 (π) 3 V (p p )V (p p )G (p )G (p )G (p ) (π) 3 δ(p + p p p ) (3) dp dp dp Σ B (p) = (π) 3 (π) 3 (π) 3 {V (p p ) V (p p )} G (p )G (p )G (p ) (π) 3 δ(p + p p p ) (4) G R (p, ε) = ε ξ p Σ R (p, ε) + iδ (7) (4) Γ (p, ε) A(p, ε) = [ε ξ p ReΣ R (p, ε)] + [Γ (p, ε)/] (8) Γ (p, ε) = ImΣ R (p, ε) 3 Γ ε dε A(p, t t ) = A(p, ) ε)e iε(t t π (9) p t t Γ ε e Γ (p)(t t ) Γ 7

τ = /Γ τ ξ p G (p, iε n ) = iε n ξ p () iε n τ Ĥ G (, ) = iε n Ĥ () G R, G A iε n ε ± iδ A(p, ε) = ImG R (p, ε) () A (p, ε) = πδ(ε ξ p ) E(p) G (p, iε n ) = iε n E(p) (3) E(p) G A(p, ε) = πδ(ε E(p)) G (p, iε n ) = iε n ξ p Σ(p, iε n ) (4) Σ(p, iε n ) 8

[] R. Kubo: J. Phys. Soc. Jpn. (957) 57. [] A. Abrikosov, L. Gorkov, and I. Dzyaloshinskii: Methods of Quantum Field Theory in Statistical Physics (Dover Books on Physics Series. Dover Publications, 975), Dover Books on Physics Series. [3] A. Fetter and J. Walecka: Quantum Theory of Many-Particle Systems (Dover Books on Physics. Dover Publications, ), Dover Books on Physics. [4] G. Mahan: Many-Particle Physics (Physics of Solids and Liquids. Springer, ), Physics of Solids and Liquids. [5] : (, ). [6] : (, 99). [7] : (, 999). [8] T. Matsubara: Prog. Theor. Phys. 4 (955) 35. [9] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskii: Sov. Phys. JETP 9 (959) 636. [] E. S. Fradkin: Sov. Phys. JETP 9 (959) 9. [] H. Ezawa, Y. Tomozawa, and H. Umezawa: Nuovo Cim. 5 (957) 8. 9